

### Detecting Anomalous Computation with RNNs on GPU-Accelerated HPC Machines

### Pengfei Zou, Rong Ge

**Clemson University** 

### Ang Li, Kevin Barker Pacific Northwest National Laboratory

## Overview

- The new threat in HPC
  - ▲ Illicit workloads exploit powerful GPUs committed to HPC workloads

### • Our approach

- ▲ Leverage identifiable patterns of HPC workloads
- Treat illicit workload detection as a classification problem
- Devise RNN models to infer workloads from high-level profiles

### Contribution

- ▲ An online illicit workload detection suitable for practical use
  - > 95% accuracy, with system level light weight profiling only
- ▲ Techniques to handle data heterogeneity, irregularity and loss
- ▲ Advanced RNN modeling for inference accuracy

# **Illicit Applications on HPC Systems**

### Illicit computations begin running on HPC systems

- ▲ Crypto mining
- Password cracking
- ▲ Denial-of-service (DoS) attacks

### Common characteristics

- ▲ For-profit or malicious attacks instead of science
- ▲ Resource intensive
  - Powerful GPU accelerators are ideal
- ▲ Long execution time: days to weeks or longer

### Risks and security issues to HPC

- ▲ Mission-critical applications deprived of computing cycles
- ▲ data leaking, system damage, etc
- Empowered hacks and attacks

# A Unique, New Thread

- Penetrating login nodes imposes the risks
  - ▲ HPC systems only protect login nodes
- Authorized users can run illicit computations
  - Authorization and authentication easily passed

#### Little barriers and guards exist

- Due to performance priority in HPC systems
- ▲ Little or no network traffic monitoring and host auditing

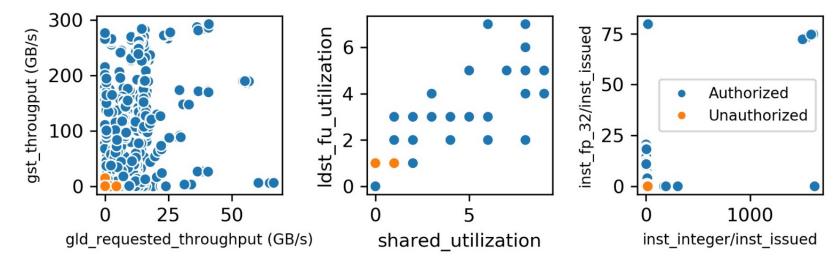
### Computations masked and offloaded to accelerators

▲ CPU-side monitoring and detection measures would fail

#### Novel security measures needed to detect illicit computation in HPC

# **Opportunities and Challenges**

- HPC workloads have unique patterns identifiable by ML
  - ▲ A small set of programs with specific resource usage patterns
  - Certain kernels and functions, e.g., FFT, BLAS



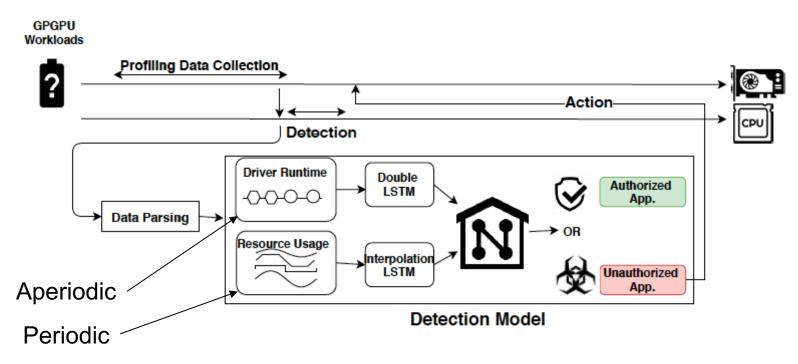
Accurate ML models use many HW counters as input

- Large overhead for online detection
- Intrusive to user applications

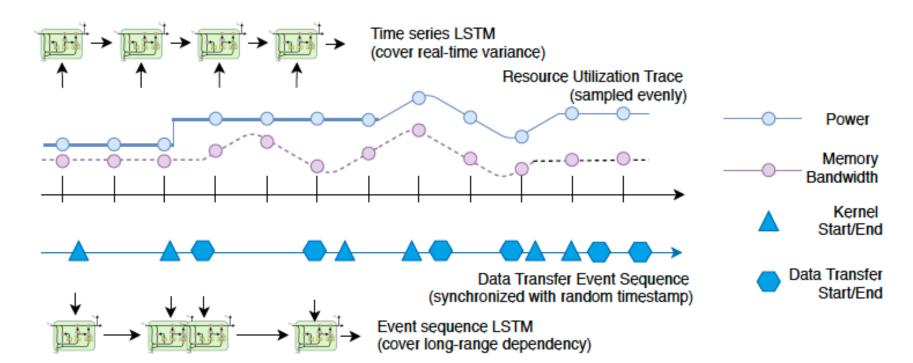
# Our Approach

### Online illicit workload detection

- ▲ Illicit GPU computation detection as classification problems
- Light-weight, common system level profiling for model input
- Multiple input sequences for inference accuracy
- ▲ Synergistic multi-RNNs to handle complex, heterogeneous inputs



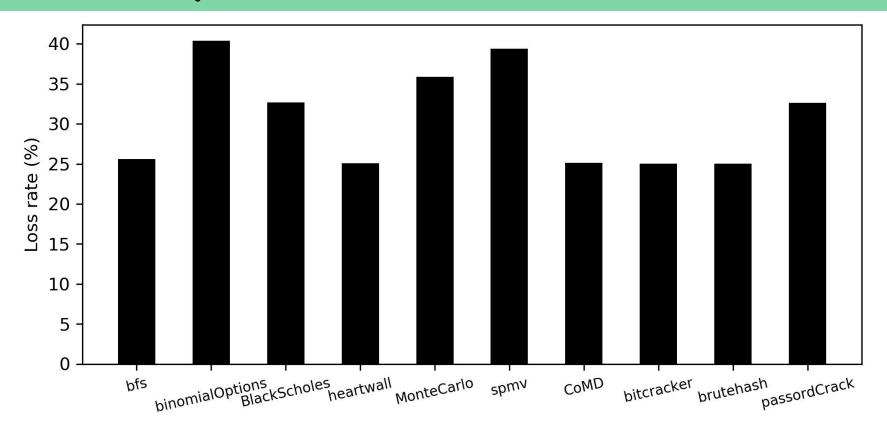
## Data Heterogeneity



- Heterogeneity in data sequences
  - ▲ Varying sample losses in resource utilization sequences
  - ▲ Asynchronism between the types

#### Irregularity of event-based data sequence

## Sample Losses in Utilization Data



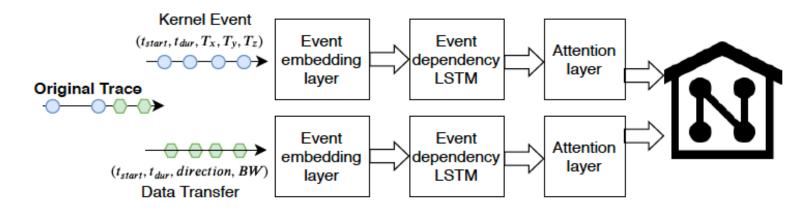
- Nvidia-smi profiling loses samples
  - ▲ E.g., 30% on average

Losses depend on application and sampling interval

▲ Different temporal information from different training apps

# LSTM Layers for Advanced Training

#### Split Layers for the event-based driver runtime



Interpolation layer for the resource utilization sequences



# Model Training and Validation

### Workloads

- 83 authorized applications
  - Rodinia, Parboil, SHOC, PolyBench, exascale Proxy Apps, etc
- 17 unauthorized applications from GitHub and BitBucket
  - Crypto mining, password cracking, brute force attacking...

### Data collection

- Periodic resource utilization
  - Power, core utilization, memory footprint, memory bandwidth
- Event based driver runtime
  - Kernel events: starting time, duration, configuration
  - Data transfer events: starting time, latency, direction, bandwidth
- ▲ HW performance counters for counterpart comparison

Three generations of GPUs: K40, P100, and V100

## Selected Evaluation Results

| Sequences      | K40  |        | P100 |        | V100 |        |
|----------------|------|--------|------|--------|------|--------|
|                | seen | unseen | seen | unseen | seen | unseen |
| Events         | 98.2 | 78.1   | 96.7 | 81.2   | 97.0 | 77.8   |
| Resource Util. | 99.7 | 96.7   | 97.2 | 95.0   | 92.1 | 90.4   |
| Combined       | 99.2 | 97.2   | 98.2 | 92.4   | 95.7 | 90.1   |

Accuracy

| Sequences      | K40  |        | P100 |        | V100 |        |
|----------------|------|--------|------|--------|------|--------|
|                | seen | unseen | seen | unseen | seen | unseen |
| Events         | 0.6  | 62.4   | 2.4  | 64.4   | 0.4  | 68.7   |
| Resource Util. | 1.3  | 12.6   | 1.5  | 8.2    | 2.8  | 8.5    |
| Combined       | 3.1  | 11.4   | 1.4  | 4.1    | 1.9  | 7.2    |

False NR

| Metrics                       | Accuracy |        | FNR  |        |
|-------------------------------|----------|--------|------|--------|
| Data                          | seen     | unseen | seen | unseen |
| Hardware metrics              | 98.5     | 91.2   | 1.3  | 59.5   |
| Event & utilization sequences | 98.2     | 92.4   | 1.4  | 4.1    |

vs. HMC based

## Conclusion

### A new thread in HPC

▲ Illicit computation takes execution cycles and empowers attacks

### Our proposed online detection

- Lightweight profiling
- ▲ Accurate detection with fused LSTMs using multiple data sequences

### • Our findings

- ▲ Illicit workloads have different patterns from HPC workloads
- Multiple system-level profiling is sufficient for accurate detection
- Fused RNNs are suitable for online detection



