

Dual-Way Gradient Sparsification for Asynchronous Distributed Deep Learning

Zijie Yan, Danyang Xiao, MengQiang Chen, Jieying Zhou, Weigang Wu⁺ Sun Yat-sen University Guangzhou, China

- 1. Introduction
- 2. The Proposed Algorithm
- 3. Performance Evaluation
- 4. Conclusion and Future Work

- Training may take an impractically long time
 - Growing volume of training data (e.g., ImageNet >1TB)
 - More complex model
- Solution: distributed training
 - The common practice of current DL frameworks
 - Enabled by Parameters Servers (PS) or Ring All-Reduce
 - Synchronous SGD or Asynchronous SGD

Introduction

Communication overhead: Distributed training can significantly

reduce the total computation time. However, the communication overhead seriously affect the efficiency of training.

Solutions: Reduce the frequency / data size of communication.

Introduction

- Gradient Quantization
 - 1-Bit SGD, QSGD, TernGrad: use fewer bits to represent value.
- Gradient Sparsification
 - Threshold Sparsification: only gradients which are greater than a predefined threshold will be sent.
 - Gradient Dropping: remove the gradient of R% with the smallest absolute value.
 - Deep Gradient Compression: apply momentum correction to correct the disappearance of momentum discounting factor.

Introduction

PS based ASGD

Contributions

- Dual-Way Gradient Sparsification (DGS)
 - Model Difference Tracking
 - Dual-way Gradient Sparsification Operations
 - Eliminates the communication bottleneck
- Sparsification Aware Momentum (SAMomentum)
 - A novel momentum designed for gradient sparsification scenario
 - Offers significant optimization

Contributions

DGS

Model Difference Tracking

- Notions
 - M_t : The accumulation of updates at the time t.
 - $G_{k,t}$: Model difference between the server and the worker k.
 - v_k : Accumulation of model difference sent by the server to the worker k.

Model Difference Tracking

- What's changed?
 - DGS chooses to transmits model difference $G_{k,t+1}$ rather than the global model
 - Model differences (residual gradients) that have not sent yet are recorded in $M_{t+1} v_{k, t}$, implicitly avoiding the loss of information.
- Now we can compress the downward communication!

Dual-way Gradient Sparsification - Worker Side

3: **for**
$$t = 0, 1, ...$$
 do
4: Sample data x from X
5: $\nabla_{k,t} \leftarrow Backward(x, \theta_{k,prev}(k))$
6: $r_{k,t} \leftarrow r_{k,prev}(k) + \eta \nabla_{k,t}$
7: **for** $j = 0, ..., J$ **do**
8: // iterate over every layer
9: $thr \leftarrow R\%$ of $|r_{k,t}[j]|$ \rightarrow Select threshold
10: $Mask \leftarrow |r_{k,t}[j]| > thr$
11: $r_{k,t}[j] \leftarrow r_{k,t}[j] \odot \neg Mask$
12: $g_{k,t}[j] \leftarrow r_{k,t}[j] \odot Mask$
13: **end for**
14: Send $encode(g_{k,t})$ to the server
15: Recieve $G_{k,t+1}$ from the server
16: $\theta_{k,t+1} \leftarrow SGD\left(\theta_{k,prev}(k), decode(G_{k,t+1})\right)$

Dual-way Gradient Sparsification - Worker Side

3: f	or $t = 0, 1,$ do	
4:	Sample data x from X	
5:	$\nabla_{k,t} \leftarrow Backward(x, \theta_{k, prev(k)})$	
6:	$r_{k,t} \leftarrow r_{k,\mathrm{prev}(k)} + \eta \nabla_{k,t}$	
7:	for $j = 0,, J$ do	
8:	<pre>// iterate over every layer</pre>	
9:	$thr \leftarrow R\% \text{ of } \left r_{k,t}[j] \right $	
10:	$Mask \leftarrow r_{k+1}[j] > thr$	
11:	$r_{k,t}[j] \leftarrow r_{k,t}[j] \odot \neg Mask$	
12:	$g_{k,t}[j] \leftarrow r_{k,t}[j] \odot Mask$	> Sparsmeation
13:	end for	
14:	Send $encode(g_{k,t})$ to the server	
15:	Recieve $G_{k,t+1}$ from the server	
16:	$\theta_{k,t+1} \leftarrow SGD\left(\theta_{k,\operatorname{prev}(k)}, \operatorname{decode}(G_{k,t+1})\right)$	

Dual-way Gradient Sparsification - Server Side

6: 7: 8: Model Difference Tracking 9:

2: while Receive $encode(g_{k,t})$ from worker k do $M_{k,t+1} \leftarrow M_{k,t} - g_{k,t}$ 3: $G_{k,t+1} \leftarrow M_{t+1} - v_{k,\text{prev}(k)}$ 4: if Need secondary compression then 5: **for** j = 0, ..., J **do** // iterate over every layer 7: *thr* \leftarrow *R*% of $|G_{k,t+1}[j]|$ 8: $Mask \leftarrow |G_{k,t+1}[j]| > thr$ 9: $G_{k,t+1}[j] \leftarrow G_{k,t+1}[j] \odot Mask$ 10: end for 11: end if 12: Send $encode(G_{k,t+1})$ to the worker k 13: $v_{k,t+1} \leftarrow v_{k,\mathrm{prev}(k)} - G_{k,t+1}$ 14: $\operatorname{prev}(k) \leftarrow t+1$ 15:

Dual-way Gradient Sparsification - Server Side

Secondary compression

- Secondary compression guarantees the sparsity of the send-ready model difference in downward communication, no matter how many workers are running.
- The server implicitly accumulates remaining gradient locally.
- Eliminates the overhead of the downward communication.

2: V	while Receive $encode(g_{k,t})$ from worker k do
3:	$M_{k,t+1} \leftarrow M_{k,t} - g_{k,t}$
4:	$G_{k,t+1} \leftarrow M_{t+1} - v_{k,\operatorname{prev}(k)}$
5:	if Need secondary compression then
6:	for $j = 0,, J$ do
7:	// iterate over every layer
8:	$thr \leftarrow R\% \text{ of } \left G_{k,t+1}[j] \right $
9:	$Mask \leftarrow G_{k,t+1}[j] > thr$
10:	$G_{k,t+1}[j] \leftarrow G_{k,t+1}[j] \odot Mask$
11:	end for
12:	end if
13:	Send $encode(G_{k,t+1})$ to the worker k

14:
$$v_{k,t+1} \leftarrow v_{k,\text{prev}(k)} - G_{k,t+1}$$

15:
$$\operatorname{prev}(k) \leftarrow t+1$$

SAMomentum - Background

- Momentum is commonly used in deep training, which is known to offer a significant optimization boost.
- However, indeterminate update intervals in gradient sparsification will result in the disappearance of momentum.

SAMomentum - Background

Dense update :

$$u_t = mu_{t-1} + \eta \nabla_t, \ \theta_{t+1} = \theta_t - u_t$$

After *T* updates

Dense
$$u_{t+T}^{(i)} = \eta \left[\dots + m^{T-2} \nabla_{t+2}^{(i)} + m^{T-1} \nabla_{t+1}^{(i)} \right] + m^T u_t^{(i)}$$

 $u_t^{(i)}$ denotes the *i*-th position of a flattened velocity u_t

SAMomentum - Background

SUN HIS

Sparse update :

$$r_{k,t} = r_{k,t-1} + \eta * \nabla_{k,t}, \quad u_t = mu_{t-1} + sparsify(r_{k,t})$$
$$r_{k,t} = unsparsify(r_{k,t}), \quad \theta_{t+1} = \theta_t - u_t$$

Remaining Gradients

After T updates

Sparse
$$u_{t+T}^{(i)} = \eta \left[\dots + \nabla_{t+2}^{(i)} + \nabla_{t+1}^{(i)} \right] + m^T u_t^{(i)}$$

 $u_t^{(i)}$ denotes the *i*-th position of a flattened velocity u_t

Momentum Disappearing

Dense
$$u_{t+T}^{(i)} = \eta \left[\dots + m^{T-2} \nabla_{t+2}^{(i)} + m^{T-1} \nabla_{t+1}^{(i)} \right] + m^T u_t^{(i)}$$

Sparse
$$u_{t+T}^{(i)} = \eta \left[\dots + \nabla_{t+2}^{(i)} + \nabla_{t+1}^{(i)} \right] + m^T u_t^{(i)}$$

- Momentum factor *m* controls the proportion of historical information.
- The disappearance of *m* impairs the convergence performance.

SAMomentum

$$u_{k,t} = mu_{k,\text{prev}}(k) + \eta \nabla_{k,t} + unsparsify \left(mu_{k,\text{prev}(k)} + \eta \nabla_{k,t} \right) * \left(\frac{1}{m} - 1 \right)$$
$$g_{k,t} = \text{sparsify} \left(mu_{k,\text{prev}(k)} + \eta \nabla_{k,t} \right)$$
$$\theta_{t+1} = \theta_t - g_{k,t}$$

prev(k): The timestamp of the last update on worker k, which is also the timestamp of its local model.

SAMomentum

From parameter perspective:

$$u_{k,c}^{(i)} = \begin{cases} mu_{k,c-1}^{(i)} + \eta \nabla_{k,c}^{(i)} > thr \\ \left(mu_{k,c-1}^{(i)} + \eta \nabla_{k,c}^{(i)}\right) * \frac{1}{m} \leq thr \end{cases}$$

$$\int Send \ u_{k}^{(i)} \text{ at } c \text{ and } c + T$$

$$u_{k,c+T}^{(i)} = mu_{k,c+T-1}^{(i)} + \eta \nabla_{k,c+T}^{(i)}$$

$$= m\left(\left(mu_{k,c+T-2}^{(i)} + \eta_{k,c+T-1}^{(i)}\right) * \frac{1}{m}\right) + \eta \nabla_{k,c+T}^{(i)}$$

$$= mu_{k,c+T-2}^{(i)} + \eta \nabla_{k,c+T-1}^{(i)} + \eta \nabla_{k,c+T}^{(i)}$$

$$= mu_{k,c}^{(i)} + \eta \sum_{k,c+i}^{T} \nabla_{k,c+i}^{(i)}$$

i=1

 $u_t^{(i)}$ denotes the *i*-th position of a flattened velocity u_t

SAMomentum and Enlarged Batch Size

SAMomentum

Enlarged Batch Size

$$\begin{split} u_{k,c+T}^{(i)} &= m u_{k,c+T-1}^{(i)} + \eta \, \nabla_{k,c+T}^{(i)} \\ &= m \left(\left(m u_{k,c+T-2}^{(i)} + \eta_{k,c+T-1}^{(i)} \right) * \frac{1}{m} \right) + \eta \, \nabla_{k,c+T}^{(i)} \\ &= m u_{k,c+T-2}^{(i)} + \eta \, \nabla_{k,c+T-1}^{(i)} + \eta \, \nabla_{k,c+T}^{(i)} \\ &= \cdots \\ &= m u_{k,c}^{(i)} + \eta \, \sum_{i=1}^{T} \nabla_{k,c+i}^{(i)} \end{split}$$

$$u_{k,c+T}^{(i)} = m u_{k,c}^{(i)} + T\eta * \frac{1}{T} \left(\nabla_{k,c+1}^{(i)} + \dots + \nabla_{k,c+T}^{(i)} \right)$$
$$= m u_{k,c}^{(i)} + \eta \sum_{i=1}^{T} \nabla_{k,c+i}^{(i)}$$

Experiments Setup

NUN UNITE

- **1. Comparison to Other Algorithms**
 - Dense:
 - Single node momentum SGD
 - Asynchronous SGD
 - Sparse:
 - Gradient Dropping (EMNLP 2017)
 - Deep Gradient Compression (ICLR 2018, STOA)
- 2. Datasets
 - ImageNet
 - · CIFAR-10

Scalability and Generalization Ability CIFAR-10

Workers in total	Batchsize per worker	Training Method	Top-1 Accuracy		
		MSGD	93.08% -	1.8	
		ASGD	91.54% -1.54%	1.6-	
1	256	GD-async	92.15% -0.93%	9 1.2	
		DGC-async	92.75% -0.33%	1 8.0 8.0 1 0.6	
		DGS	92.97% -0.11%		
		ASGD	90.7% -2.38%	0.6	
		GD-async	92.01% -1.07%	0.2	
4	128	DGC-async	92.64% -0.44%	0 10	
		DGS	92.91% -0.17%	solution in the second	
		ASGD	90.46% -2.62%	2	
	64	GD-async	91.81% -1.27%		
8		DGC-async	92.37% -0.71%		
		DGS	93.32% +0.24%		
		ASGD	90.53% -3.01%	N / Coss	
16		GD-async	91.43% -1.65%		
	32	DGC-async	92.28% -0.80%	solution in the second	
		DGS	92.98% -0.10%		
		ASGD	88.36% -4.71%	solution in the second	
		GD-async	91% -2.08%	0 10	
32	16	DGC-async	91.86% -1.22%		
		DGS	92.69% -0.39%		
	Workers in total	WorkersBatchsize per worker1256412886416323216	WorkersBatchsize per workerTraining MethodInternationalMSGDASGDASGD256GD-asyneDGC-asyneDGSASGDGD-asyne128GD-asyneBateInternationalASGDInternationalAGD-asyneBateInternationalBateInternationalBateInternationalAInternationalBateInternationalBateInternationalBateInternationalBateInternationalBateInternationalInternatio	Workers in totalBatchsize per workerTraining MethodTop-1 Accuracy1MSGD93.08% -256GD-async92.15% -0.93%256GD-async92.75% -0.33%DGC-async92.75% -0.33%DGS92.97% -0.11%ASGD90.7% -2.38%GD-async92.01% -1.07%DGC-async92.01% -1.07%DGC-async92.01% -0.17%DGS92.91% -0.17%DGS92.91% -0.17%DGS92.91% -0.17%BASGD90.46% -2.62%GD-async91.81% -1.27%DGC-async92.37% -0.71%DGC-async92.37% -0.71%DGS93.32% +0.24%ASGD90.53% -3.01%GD-async91.43% -1.65%DGC-async92.98% -0.10%ASGD88.36% -4.71%ASGD88.36% -4.71%ASGD91.86% -1.22%DGC-async91.86% -1.22%DGS92.69% -0.39%	

Fig. 4 nodes

Scalability and Generalization Ability

ImageNet

Workers in total	Batchsize per iteration	Training Method	Top-1 Accuracy	
1	1 4 256	MSGD	69.40% -	
		ASGD	66.68% -2.72%	
4		GD-async	66.26% -3.14%	
4		DGC-async	68.37% -1.03%	
		DGS	69.00% -0.40%	
		ASGD	66.25% -3.15%	
16		GD-async	66.19% -3.21%	
16		DGC-async	67.62% -1.78%	
		DGS	68.25% -1.15%	

Fig. 4 nodes

Low Bandwidth Results

Fig : Time vs Training Loss on 8 workers with 1Gbps Ethernet

Speed up

Fig : Speedups for DGS and ASGD on ImageNet with 10Gbps and 1Gbps Ethernet

Conclusion and Future Work

Conclusion

1. Enable dual-way sparsification for PS-based asynchronous training.

2. Introduce SAMomentum to bring significant optimization.

3. Experiment results show that DGS outperforms existing routing algorithms.

Future Work

1. Apply SAMomentum to synchronous training.

2. Combine DGS with other compression approaches.

Thanks for listening