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Background

§ important kernel in many applications, but challenging to parallelize
§ Sparsity structure may limit the parallel scalability

§ focus on particular cases where each process uses sparse direct solve
§ SIERRA-Structural Dynamics (SIERRA-SD): distributed-memory domain-decomposition based linear solver 

that uses a local direct solver and applies SpTRSV ∽104 times for each factorization

§ Low Mach fluid simulation: multigrid preconditioner that uses local direct solver on a coarse grid and 
potentially as a smoother

§ study two algorithmic variants
§ Supernode/block based level-set scheduling to exploits hierarchical parallelism
§ Partitioned inverse to transform SpTRSV into a sequence of SpMV
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Triangular solve with level-set scheduling [Anderson & Saad’89]

§ Dense triangular solve computes each solution element 
in sequence through backward/forward substitution

§ For a sparse triangular matrix, multiple independent
elements can be computed at each step

§ Level-set scheduling finds a independent elements 
(e.g., using DAG), and computes these elements 
in parallel at each level
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Supernode-based level-set scheduling

§ Sparsity often limits the available parallelism
§ lots of levels with small number of tasks at each level

(e.g., tri-diagonal matrix)

§ We exploit the block structure in the matrix
§ direct factorization leads to triangular matrices 

with the block structure called supernodes
§ merge columns with a similar sparsity structure 

into a singe block column
§ these columns in a supernode leads to the chain

§ We used supernode-based level-set scheduling
§ reduces the number of levels
§ batched kernels for hierarchical parallelism 

§ all the leaf-supernodes in parallel
§ threaded kernels (e.g., BLAS/LAPACK) on each block column 
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Partitioned inverse with supernode-based level-set

§ Dense triangular solve with the diagonal block 
is fundamentally sequential (chain)

§ Invert diagonal block to replace TRSM with GEMV 
for computing the solution blocks, and then 
use another GEMV to update the RHS
§ Use batched GEMV to update all solutions 

in parallel with a single kernel launch

§ Apply the inverse of the diagonal blocks to the corresponding off-diagonal blocks
to merge these two batched GEMV calls into one
§ Partitioned inverse [Alvardo, Pothen, Schreiber,93] based on level-set partition of supernodes
§ It transforms SpTrsv into a sequence of SpMVs

§ Instead of batched GEMVs, we can use a single SpMV call
§ no operation with explicit zeros, but lose block structure
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update with single gemv
with gather/scatter of x



Implementation
§ Kokkos & Kokkos-kernels

§ Portable to different manycore architectures
§ Some more details in the paper

§ Data structure
§ CSR/CSC, with explicit zeros to form supernodal

blocks for dense operations, e.g., TRSM+GEMV

§ Interfaced with SuperLU & Cholmod packages
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§ SuperLU to factor the matrix with METIS ordering

§ Performance on an NVIDIA V100 and P100 GPU
§ gcc compiler version 6.40 or 5.40 and nvcc 10.1 or 10.0

§ Performance comparison with NVIDIA’s CuSPARSE, cusparseDcsrsv2_solve
§ Use level-set scheduling cusparseDcsrsv2_analysis with CUSPARSE_SOLVE_POLICY_USE_LEVEL

Experiment setups



SIERRA-SD matrix (n=27k)

6/10

§ Lots of small blocks in the beginning and a fewer larger blocks at the end

§ Merging block columns with the same sparsity pattern reduce the number of levels and
increase the compute intensity per level

number of blocks



Performance results with SIERRA-SD on V100
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§ Default uses a standard device-level kernel (e.g., CuBLAS) on each block
§ Speedups using team-level or batched kernels
§ Further speedup with inversion (up to 8.7x)

§ Same solution accuracy using all the approaches 



Performance results with SIERRA-SD on P100
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§ Varying, but significant, speedups for different sizes of matrices
§ Kernel-launch time can become significant



Performance results with SuiteSparse matrices
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§ Performance depends on 
number of levels and sizes of supernodes

P100 V100



Final remarks

§ SpTRSV is an important kernel in many applications, but a challenge to parallelize

§ We studied two algorithmic variants where sparse direct factorization is used
§ Supernode/block based SpTRSV exploits hierarchical parallelism
§ Partitioned inverse transforms SpTRSV into a sequence of SpMV

§ We implemented using Kokkos and Kokkos-kernels
§ Portable to different manycore architectures

§ Some performance results on CPUs in the paper

§ We show performance results with SIERRA-SD (C. Dohrmann)
§ Up to 8.3x speedup over CuSPARSE on V100, and 17.5x using partitioned inverse

§ Further extensions
§ Performance improvements (reducing setup time, improving kernel performance, reducing kernel launch costs) 

§ Interface with other packages including ILU

§ It is available from Kokkos-kernels and Trilinos packages
§ https://github.com/kokkos/kokkos-kernels
§ https://github.com/trilinos/Trilinos
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