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Background

= important kernel in many applications, but challenging to parallelize
= Sparsity structure may limit the parallel scalability

= focus on particular cases where each process uses sparse direct solve

= SIERRA-Structural Dynamics (SIERRA-SD): distributed-memory domain-decomposition based linear solver
that uses a local direct solver and applies SpTRSV ~10% times for each factorization

= Low Mach fluid simulation: multigrid preconditioner that uses local direct solver on a coarse grid and
potentially as a smoother

= study two algorithmic variants
= Supernode/block based level-set scheduling to exploits hierarchical parallelism
= Partitioned inverse to transform SpTRSV into a sequence of SpMV
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Triangular solve with level-set scheduling (anderson & saad’so]

= Dense triangular solve computes each solution element
in sequence through backward/forward substitution

=  For a sparse triangular matrix, multiple independent
elements can be computed at each step

00000

= Level-set scheduling finds a independent elements
(e.g., using DAG), and computes these elements

Sandia

B Level 3
Level 2

v

National _
Laboratories

Level 4

in parallel at each level
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Supernode-based level-set scheduling LU

= Sparsity often limits the available parallelism

= |ots of levels with small number of tasks at each level -
(e.g., tri-diagonal matrix)

1+

ja mae™ il
= We exploit the block structure in the matrix -
= direct factorization leads to triangular matrices il -
with the block structure called supernodes
= merge columns with a similar sparsity structure :

0 0.5 1 15 2 2.5
nz = 13950798 x10*

into a singe block column

= these columns in a supernode leads to the chain

Level 4

"= We used supernode-based level-set scheduling Level 3
= reduces the number of levels /N ,

Level 2

= batched kernels for hierarchical parallelism
= all the leaf-supernodes in parallel

v

= threaded kernels (e.g., BLAS/LAPACK) on each block column
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Partitioned inverse with supernode-based level-set

= Dense triangular solve with the diagonal block
is fundamentally sequential (chain)

1. for each level
2. parallel-for each s in this level
3. // compute sth solution
4 X 1= L;ixs
5 // use sth solution

// to update child RHS
6 for each non-empty block L; .
7. X; = X; — Lj sXs
8. end for
9
1

= |nvert diagonal block to replace TRSM with GEMV
for computing the solution blocks, and then
use another GEMV to update the RHS
= Use batched GEMV to update all solutions
in parallel with a single kernel launch

end for update with single gemv
0.end for with gather/scatter of x

(b) Push (col-major/left-look).

= Apply the inverse of the diagonal blocks to the corresponding off-diagonal blocks
to merge these two batched GEMV calls into one
= Partitioned inverse [Alvardo, Pothen, Schreiber,93] based on level-set partition of supernodes
= |t transforms SpTrsv into a sequence of SpMVs

1= ﬁLe_l’
(=1

= |nstead of batched GEMVs, we can use a single SpMV call

= no operation with explicit zeros, but lose block structure
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Implementation
=  Kokkos & Kokkos-kernels

a
= Portable to different manycore architectures
=  Some more details in the paper 2 |bjd
3 f
= Data structure ar
= CSR/CSC, with explicit zeros to form supernodal 4
blocks for dense operations, e.g., TRSM+GEMV 51¢|0 )
. 0| e 0] 1l
= Interfaced with SuperLU & Cholmod packages 3 5 0
i |k m

colptr: 158 11 13 16 18 19
values: abec 0 d 0 e f g0OhijOklOm

Experiment setups owind: 1256 2 5 6 3474756767 7
* SuperLU to factor the matrix with METIS ordering

=  Performance on an NVIDIA V100 and P100 GPU
= gcc compiler version 6.40 or 5.40 and nvcc 10.1 or 10.0

= Performance comparison with NVIDIA’s CuSPARSE, cusparseDcsrsv2 solve

" Use level-set scheduling cusparsebcsrsv2 analysis with CUSPARSE SOLVE POLICY USE LEVEL
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SIERRA-SD matrix (n=27k)

before merge
T T

3000 | —-Number of rows
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= Lots of small blocks in the beginning and a fewer larger blocks at the end
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=  Merging block columns with the same sparsity pattern reduce the number of levels and

increase the compute intensity per level
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Performance results with SIERRA-SD on V100
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8r i
'0; a i L-solve U-solve
g symbolic | compute CSC CSR CSC fill-ratio
] 61 | CuSparse 0.0487 0.2587 0.0087 | 0.0167 0.0185 13.7
© Default 0.3000 0.2712 0.0888 | 0.0918 0.1343 28.9
g Team 0.2921 0.3067 0.0038 | 0.0111 0.0051 28.9
(% 5r 7 Merge 0.5611 0.6444 0.0031 | 0.0083 0.0037 35.4
8 InvertDiag 0.5575 1.2576 0.0016 | 0.0076 0.0024 35.4
= 4 4 InvertOff 0.7067 7.2798 0.0015 — 0.0023 35.4
% Stream(5) 0.7063 7.3001 0.0013 — 0.0020 35.4
23 8 (a) batched gemv based implementation.
]
@
:;).)-2 - 1 | symbolic | compute | L-solve U-solve || fill-ratio

InvertDiag 0.6939 1.6820 0.0021 0.0018 14.7
1h | InvertOff 0.6912 7.8646 0.0010 0.0012 15.5
(b) spmv based implementation.
CuSparse Def Team Merge inv(Dj) inv(Lj) Stream SpMV

= Default uses a standard device-level kernel (e.g., CuBLAS) on each block

= Speedups using team-level or batched kernels

= Further speedup with inversion (up to 8.7x)

= Same solution accuracy using all the approaches 710
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Performance results with SIERRA-SD on P100

14 . . . . .
% (O gemv-based
X spmv-based
O O
()} 12 B
»
a s
3 %
o 10 5 0
) O
3 O O O
2 s x xU
§ X X X O
3 . : x
6 X v 2+ Il batched gemv |-
X [ device gemv
X Ar I data copy
4 1 1 1 1 1 1 - kern6|-|aunch
2.5 3 3.5 4 45 5 55 6 1 23456 7 8 910111213 14 15 16
MatrIX Slize X104 MatriX ID

= Varying, but significant, speedups for different sizes of matrices
= Kernel-launch time can become significant
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Performance results with SuiteSparse matrices

P100 V100

14r I gemv || 71 I gemv |-
1371 T spmv | [ spmv
12} | 6l
811} 1 3
@ ©
c%- 1 0 [ 7 (,Q). 5 L
3 |3
— 8r ) 9 4+
2 7 T
(o] o
Q = -
.8 6 %3 L
2 o I
UQ)- 4 r 7 Q_2 L
3l | o
2| : 1
1
0 0
3 4 5 6 1 2 3 4 5 6
Matrix ID Matrix ID
id | name type n nnz ny  error
1 ACTIVSg70K power system grid 69,999 12.6 83  0.003
2 dawsonb structural problem 51,5637 770.4 1277 3.512
3 qa8fk acoustic problem 66,127 653.3 22 0.006 -
4 FEM3Dtherm thermal problem 17,880 324.6 15 0.008 _
5 thermall thermal problem 82,654 58.7 27  0.002
- P f d d 6 apachel 3D finite difference 80,800 240.2 25  0.002
7 apache2 3D finite difference 715,176 53.6 32  0.001
e r O rm a n Ce e pe n S O n 8 helm2d03 2D problem 392,257 14.9 109 0.018
number of levels and sizes of supernodes
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Final remarks

=  SpTRSV is an important kernel in many applications, but a challenge to parallelize

=  We studied two algorithmic variants where sparse direct factorization is used
= Supernode/block based SpTRSV exploits hierarchical parallelism
= Partitioned inverse transforms SpTRSV into a sequence of SpMV

=  We implemented using Kokkos and Kokkos-kernels

= Portable to different manycore architectures
= Some performance results on CPUs in the paper

=  We show performance results with SIERRA-SD (C. Dohrmann)
= Up to 8.3x speedup over CuSPARSE on V100, and 17.5x using partitioned inverse

=  Further extensions
= Performance improvements (reducing setup time, improving kernel performance, reducing kernel launch costs)

= |nterface with other packages including ILU

= |tis available from Kokkos-kernels and Trilinos packages

= https://github.com/kokkos/kokkos-kernels
= https://github.com/trilinos/Trilinos
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