
Huffman Coding with Gap
Arrays for GPU Acceleration

Naoya Yamamoto, Koji Nakano, Yasuaki Ito, Daisuke Takafuji
Hiroshima University

Akihiko Kasagi, Tsuguchika Tabaru
Fujitsu Laboratories

ICPP2020: Huffman Coding with Gap Arrays for GPU Acceleration 1

Huffman coding
• Lossless data compression scheme

• Used in many data compression formats:
• gzip, zip, png, jpg, etc.

• Uses a codebook: mapping of fixed-length (usually 8-bit) symbols
into codewords bits.

• Entropy coding: Symbols appear more frequently are assigned
codewords with fewer bits.

• Prefix code: Every codeword is not a prefix of the other codewords.

• Huffman Encoding can be done by converting each symbol to the
corresponding codeword: parallel encoding is easy.

• Huffman Decoding can be done by reading the codeword
sequence from the beginning

1. identifying each codeword
2. converting it into the corresponding codeword

• Parallel Huffman decoding is hard:
• codeword sequence has no separator to identify codewords
• It is not possible to start decoding from the middle of the

codeword sequence.
• Parallel divide-and-conquer approaches that perform

decoding for every equal-sized partitioned segment do not
decode correctly: a codeword may be incomplete and
separated into two segments

ICPP2020: Huffman Coding with Gap Arrays for GPU Acceleration 2

symbols A B C D E
codeword bits 00 01 10 110 111

CA B

D E

0

0 0

0

1

1

1

1

000111011100011101001100111010111

A B D E A B D C B C B D C E

encode decode

symbol sequence

codeword sequence

codebook

Parallel GPU decoding by self-synchronization
• Self-synchronization of Huffman decoding [3]

• Decoding from a middle bit will synchronize.
• Decoding is correct after synchronization.
• The expected length for self-synchronization is 73 [16]
• Decoding may never synchronize in the worst case.

• Parallel GPU decoding by self-synchronization [29,30]

• The codeword sequence is partitioned into equal-sized segments.

• Each thread is assigned to a segment and starts decoding from it.

• It continues decoding of following segments until it finds synchronization.

• Drawbacks
• Every segment is decoded by two times or more.
• In the worst case, thread 0 must decode all segments.

ICPP2020: Huffman Coding with Gap Arrays for GPU Acceleration 3

00011101 110001110100110 0111010111

110001110100110 0111010111

A B D E A B D C B C B D C E

D A E B A D B D C E

decoding from the beginning

decoding from the 8th bit

[3] T. Ferguson and J. Rabinowitz. 1984. Self-synchronizing Huffman codes.
IEEE Trans. on Information Theory 30, 4 (July 1984), 687 – 693.
[16] S. T. Klein and Y. Wiseman. 2003. Parallel Huffman Decoding with
Applications to JPEG Files. Comput. J. 46, 5 (Jan. 2003), 487 – 497.

[29] André Weissenberger. 2018. CUHD - A Massively Parallel Huffman Decoder.
https://github.com/weissenberger/gpuhd.
[30] André Weissenberger and Bertil Schmidt. 2018. Massively Parallel Huffman
Decoding on GPUs. In Proc. of International Conference on Parallel Processing. 1–10.

synchronization point

00011101 0110001 11

0110001 11001110 10011011 1

11001110 10011011 11100001

A B D C D A E A E B A D E D A B

thread 0

thread 1

thread 2

segment 0 segment 1 segment 2 segment 3 segment 4

Our contribution
• First contribution: Present a gap array, a new data structure for

accelerating parallel decoding
• the bit position of the first complete codeword in each segment
• Computed and attached to a codeword sequence when encoding is

performed

• Gap array is very small: array of 4 bits
• the size overhead is less than 1.5% for 256-bit segments
• the time overhead for GPU encoding is less than 20%.

• Gap array accelerate GPU decoding
• 1.67x− 6450x faster

• Second contribution: Develop several acceleration techniques for Huffman
encoding/decoding

1. Single Kernel Soft Synchronization(SKSS) technique [9]
• Only one kernel call is performed.
• Kernel call and global memory access overhead can be reduced

2. Wordwise global memory access
• four 8-bit symbols (32 bits) are read/write by one instruction.

3. Compact codebook: new data structure for codebooks of Huffman coding
• Codebook size can be 64Kbytes : too large to store it in the GPU

shared memory
• The size is reduced to less than 3 Kbytes: enough small to store it in

the GPU shared memory

• Experimental results for a data set of 10 files
• Our GPU encoding/decoding is 2.87x-7.70x and 1.26-2.63x faster

than previous presented GPU implementations.
• If a gap array is available, our GPU decoding is 1.67x-6450x times

faster.

ICPP2020: Huffman Coding with Gap Arrays for GPU Acceleration 4

00011101 11000111 01001100 111010111
segment 0

A B D E A B D C B C B D C E

0 2 1 1gap array

symbol sequence

codeword sequence

segment 1 segment 2 segment 3

parallel decoding

[9] Shunji Funasaka, Koji Nakano, and Yasuaki Ito. 2017. Single Kernel Soft
Synchronization Technique for Task Arrays on CUDA-enabled GPUs, with Applications.
In Proc. International Symposium on Networking and Computing. pp.11–20.

GPU Huffman encoding with a gap array
• Naive Parallel GPU encoding

• Kernel 1: The prefix-sums of codeword bits are computed.
• The bit position of the codeword corresponding to each symbol can

be determined from the prefix-sums.

• Kernel 2: The codeword of corresponding to each symbol is written.
• Gap arrays can be written if necessary.

• Both Kernels 1 and 2 perform global memory access.

• GPU encoding by the Single Kernel Soft Synchronization (SKSS)
• Only one kernel call is performed.
• Reduce global memory access

• The codeword sequence are partitioned into equal-sized segments.

• Each CUDA block i (this number is assigned by a global counter) works
for encoding segment i

• The Prefix-sums for each segment i are computed by looking back
previous CUDA blocks

ICPP2020: Huffman Coding with Gap Arrays for GPU Acceleration 5

A B D E A B D C B C B D C E

2 2 3 3 2 2 3 2 2 2 2 3 2 3

symbol sequence

codeword bits

2 4 7 10 12 14 17 19 21 23 25 28 30 33prefix-sums

codeword sequence

0 2 1 1gap array

00011101 11000111 01001100 111010111

Kernel 1

Kernel 2

CUDA
block 0

A B D E A B D C B C B D

2 2 3 2 2 33 2 2 3 2 2

CUDA
block 1

CUDA
block 2

CUDA
block 3

7 7 7 7

21

21 23 25 28

000111011100011101001100111010111

GPU Huffman decoding with a gap array
• SKSS technique:

• The codeword sequence is partitioned into equal-sized segments
and the gap value of each segment is available.

• Each CUDA block i (this number is assigned by a global counter)
works for decoding a segment i

• Since the gap value is available, each CUDA block can start
decoding from the first complete codeword.

• Similarly to GPU Huffman decoding, the prefix-sums of the
number of symbols corresponding to segments are computed by
the SKSS.

• From the prefix-sums, each CUDA block can determine the
position in the symbol sequence where it writes the decoded
symbols.

• Compact codebook:
• A 64Kbyte codebook is separated into several small codebooks.
• Primary codebook: stores codewords with no more than 11 bits
• Secondary codebooks: store codewords with 11 bits or more
• The total size is less than 3 Kbytes.

• wordwise memory access
• 4 symbols are written as a 32-bit word.
• Global memory access throughput can be improved.

ICPP2020: Huffman Coding with Gap Arrays for GPU Acceleration 6

00011101 11000111 01001100 111010111

A B D E A B D C B C B D C E

0 2 1 1gap array

symbol sequence

segments

CUDA
block 0

CUDA
block 1

CUDA
block 2

CUDA
block 3

Primary codebook Secondary codebooks

Experimental results: Data set of 10 files

ICPP2020: Huffman Coding with Gap Arrays for GPU Acceleration 7

NOGAP: Original Huffman code with no gap array

Compression ratio= compressed size
uncompressed size

GAP: Huffman code with gap array for 256-bit segment

malicious: text that never self-synchronizes

11011011011111101010000000010010 010 01

D D D E E B B A A A A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B A

010 01

B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B32 bitsthread 0

Compression ratio

file type contents size(Mbyte) NOGAP GAP GAP Overhead
bible text Collection of sacred texts or scriptures 4.047 54.82% 55.67% +0.86%
enwiki xml Wikipedia dump file 1095.488 68.30% 69.37% +1.07%
mozilla exe Tarred executables of Mozilla 51.220 78.05% 79.27% +1.22%
mr image Medical magnetic resonance image 9.971 46.37% 47.10% +0.72%
nci database Chemical database of structures 33.553 30.47% 30.95% +0.48%
prime text 50th Mersenne number 23.714 44.12% 44.80% +0.69%
sao bin The SAO star catalog 7.252 94.37% 95.85% +1.47%
webster html The 1913 Webster Unabridged Dictionary 41.459 62.54% 63.52% +0.98%
linux src Linux kernel 5.2.4 871.352 70.23% 71.32% +1.10%
malicious text Never self-synchronizes until the end 1073.742 25.00% 25.39% +0.39%

NOGAP GAP

size overhead
+0.39% − +1.47%

thread 1

Experimental results: GPU Huffman encoding

ICPP2020: Huffman Coding with Gap Arrays for GPU Acceleration 8

[4] Antonio Fuentes-Alventosa, Juan Gomez-Luna ; JoseM Gonzalez-Linares, and Nicolas Guil. 2014. CUVLE: Variable-Length Encoding on CUDA.
In Proc. Con- ference on Design and Architectures for Signal and Image Processing. 1–6.
[25] Habibelahi Rahmani, Cihan Topal, and Cuneyt Akinlar. 2014. A parallel Huffman coder on the CUDA architecture. In Proc. of IEEE Visual
Communications and Image Processing Conference. 311–314.

Running time : Nvidia Tesla V100

with no gap array with gap arrays

file NAIVE
[25]

CUVLE
[4]

Our encoding
with no gap

array

Speedup over
NAIVE[25]

Speedup
over

CUVLE[4]

Our encoding
with gap

arrays

Gap
array

overhead
bible 0.747ms 0.180ms 0.0605ms 12.35x 2.98x 0.0716ms +18.35%
enwiki 70.8ms 37.7ms 6.53ms 10.84x 5.77x 7.05ms +7.96%
mozilla 4.55ms 1.97ms 0.451ms 10.09x 4.37x 0.495ms +9.76%
mr 1.11ms 0.407ms 0.119ms 9.33x 3.42x 0.134ms +12.61%
nci 2.00ms 1.31ms 0.339ms 5.90x 3.86x 0.365ms +7.67%
prime 1.52ms 0.926ms 0.175ms 8.69x 5.29x 0.193ms +10.29%
sao 1.21ms 0.307ms 0.107ms 11.31x 2.87x 0.123ms +14.95%
webster 3.27ms 1.62ms 0.303ms 10.79x 5.35x 0.332ms +9.57%
linux 55.0ms 30.0ms 5.59ms 9.84x 5.37x 6.05ms +8.23%
malicious 36.0ms 36.9ms 4.79ms 7.52x 7.70x 4.98ms +3.97%

NAIVE
[4] Our encoding

with no gap array

Speedup
5.90x − 12.35x

CUVLE
[25]

Our encoding
with gap arrays

Speedup
2.87x− 7.70x

Overhead
+3.97% − +18.35%

Experimental results: GPU Huffman decoding

ICPP2020: Huffman Coding with Gap Arrays for GPU Acceleration 9

[29] André Weissenberger. 2018. CUHD - A Massively Parallel Huffman Decoder. https://github.com/weissenberger/gpuhd.
[30] André Weissenberger and Bertil Schmidt. 2018. Massively Parallel Huffman Decoding on GPUs. In Proc. of International Conference on Parallel Processing. 1–10.

Running time : Nvidia Tesla V100

with no gap array
by self-synchronization

with gap arrays

file CUHD
[29,30]

Our decoding
with no gap

array

Speedup
over CUHD

[29,30]

Our decoding
with gap

arrays

Speedup over
CUHD
[29,30]

Speedup over our
decoding with no

gap array
bible 0.331ms 0.205ms 1.61x 0.0682ms 4.85x 3.01x
enwiki 40.3ms 22.3ms 1.81x 10.5ms 3.84x 2.12x
mozilla 3.67ms 2.74ms 1.34x 0.674ms 5.45x 4.07x
mr 0.64ms 0.461ms 1.39x 0.261ms 2.45x 1.77x
nci 1.90ms 0.923ms 2.06x 0.552ms 3.44x 1.67x
prime 1.67ms 0.636ms 2.63x 0.280ms 5.96x 2.27x
sao 0.472ms 0.278ms 1.70x 0.120ms 3.93x 2.32x
webster 1.76ms 0.906ms 1.94x 0.488ms 3.61x 1.86x
linux 34.6ms 21.3ms 1.62x 9.04ms 3.83x 2.36x
malicious 106000ms 60000ms 1.77x 9.30ms 11400x 6450x

CUHD
[29,30]

Our decoding
with no gap array

Our decoding
with gap arrays1.34x− 2.63x

Speedup

9 files: 2.45x− 5.96x
malicious: 11400x

9 files: 1.67x− 4.07x
malicious: 6450x

wordwise global memory access
compact codebook

Huffman coding with gap arrays: CPU vs. GPU

ICPP2020: Huffman Coding with Gap Arrays for GPU Acceleration 10

00011101110001110

A B D E A B D

CPU encoding/decoding with no gap array

encode decode

CPU memory

00011101110001110

A B D E A B D

GPU encoding/decoding with gap arrays

0 2 1 1

CPU memory GPU global memory

00011101110001110

A B D E A B D

0 2 1 1

The time for all necessary operations are included:
• Computing symbol frequency by histogramming
• Codebook generation
• Data transfer time between CPU/GPU

CPU:Intel Xeon Silver 4112 (2.60GHz)
GPU:Nvidia Telsa V100

Huffman encoding Huffman decoding

file CPU GPU Speedup CPU GPU Speedup
bible 47.0ms 1.20ms 39.2x 25.9ms 0.598ms 43.3x
enwiki 3500ms 158ms 22.2x 5930ms 159ms 37.2x
mozilla 313ms 8.67ms 36.1x 308ms 7.95ms 38.7x
mr 67.0ms 2.05ms 32.7x 52.9ms 1.50ms 35.2x
nci 177ms 5.50ms 32.2x 170ms 4.48ms 37.9x
prime 80.0ms 4.27ms 18.7x 160ms 3.06ms 52.2x
sao 75.2ms 3.15ms 23.9x 49.3ms 1.28ms 38.4x
webster 174ms 7.31ms 23.8x 248ms 5.94ms 41.7x
linux 3130ms 128ms 24.5x 4890ms 128ms 38.3x
malicious 2250ms 117ms 19.2x 4500ms 119ms 37.8x

Running time

CPU with
no gap array

GPU with
gap array

Encoding: 18.7x− 39.2x

Decoding: 35.2x − 52.3x

Conclusion
• We have presented new data structure gap array for accelerating Huffman decoding on GPUs.
• We have also presented several acceleration techniques for Huffman encoding/decoding on GPUs.
• The size overhead of gap arrays is small: +0.39% − +1.47%
• The time overhead of gap arrays in GPU Huffman encoding is small: +3.97% − +18.35%
• GPU Huffman decoding is much faster if gap arrays are available:

• 9 files: 1.67x−4.07x
• malicious file : 6450x

• Including all operations for Huffman encoding/decoding and CPU-GPU data transfer, GPU can
accelerate Huffman encoding/decoding

• Encoding: 18.7x − 39.2x
• Decoding: 35.2x − 52.3x

• Gap arrays should be attached if Huffman encoding/decoding are performed using GPUs.

ICPP2020: Huffman Coding with Gap Arrays for GPU Acceleration 11

	Huffman Coding with Gap Arrays for GPU Acceleration
	Huffman coding
	Parallel GPU decoding by self-synchronization
	Our contribution
	GPU Huffman encoding with a gap array
	GPU Huffman decoding with a gap array
	Experimental results: Data set of 10 files
	Experimental results: GPU Huffman encoding
	Experimental results: GPU Huffman decoding
	Huffman coding with gap arrays: CPU vs. GPU
	Conclusion

