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Huffman coding
• Lossless data compression scheme

• Used in many data compression formats:
• gzip, zip, png, jpg, etc.

• Uses a codebook: mapping of fixed-length (usually 8-bit) symbols 
into codewords bits.

• Entropy coding: Symbols appear more frequently are assigned 
codewords with fewer bits.

• Prefix code: Every codeword is not a prefix of the other codewords. 

• Huffman Encoding can be done by converting each symbol to the 
corresponding codeword: parallel encoding is easy.

• Huffman Decoding can be done by reading the codeword 
sequence from the beginning 

1. identifying each codeword
2. converting it into the corresponding codeword

• Parallel Huffman decoding is hard:
• codeword sequence has no separator to identify codewords
• It is not possible to start decoding from the middle of the 

codeword sequence. 
• Parallel divide-and-conquer approaches that perform 

decoding for every equal-sized partitioned segment do not 
decode correctly: a codeword may be incomplete and 
separated into two segments
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Parallel GPU decoding by self-synchronization
• Self-synchronization of Huffman decoding [3]

• Decoding from a middle bit will synchronize. 
• Decoding is correct after synchronization.
• The expected length for self-synchronization is 73 [16]
• Decoding may never synchronize in the worst case.

• Parallel GPU decoding by self-synchronization [29,30]

• The codeword sequence is partitioned into equal-sized segments.

• Each thread is assigned to a segment and starts decoding from it.

• It continues decoding of following segments until it finds synchronization.

• Drawbacks
• Every segment is decoded by two times or more.
• In the worst case, thread 0 must decode all segments.
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IEEE Trans. on Information Theory 30, 4 (July 1984), 687 – 693.
[16] S. T. Klein and Y. Wiseman. 2003. Parallel Huffman Decoding with 
Applications to JPEG Files. Comput. J. 46, 5 (Jan. 2003), 487 – 497.

[29] André Weissenberger. 2018. CUHD - A Massively Parallel Huffman Decoder.
https://github.com/weissenberger/gpuhd.
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Decoding on GPUs. In Proc. of International Conference on Parallel Processing. 1–10.
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Our contribution
• First contribution: Present a gap array, a new data structure for 

accelerating parallel decoding
• the bit position of the first complete codeword in each segment
• Computed and attached to a codeword sequence when encoding is 

performed

• Gap array is very small: array of 4 bits
• the size overhead is less than 1.5% for 256-bit segments
• the time overhead for GPU encoding is less than 20%.

• Gap array accelerate GPU decoding
• 1.67x− 6450x faster

• Second contribution: Develop several acceleration techniques for Huffman 
encoding/decoding

1. Single Kernel Soft Synchronization(SKSS) technique [9]
• Only one kernel call is performed.
• Kernel call and global memory access overhead can be reduced

2. Wordwise global memory access
• four 8-bit symbols (32 bits) are read/write by one instruction.

3. Compact codebook: new data structure for codebooks of Huffman coding
• Codebook size can be 64Kbytes : too large to store it in the GPU 

shared memory
• The size is reduced to less than 3 Kbytes: enough small to store it in 

the GPU shared memory

• Experimental results for a data set of 10 files
• Our GPU encoding/decoding is 2.87x-7.70x and 1.26-2.63x faster 

than previous presented GPU implementations.
• If a gap array is available, our GPU decoding is 1.67x-6450x times 

faster.
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Synchronization Technique for Task Arrays on CUDA-enabled GPUs, with Applications. 
In Proc. International Symposium on Networking and Computing. pp.11–20.



GPU Huffman encoding with a gap array 
• Naive Parallel GPU encoding

• Kernel 1: The prefix-sums of codeword bits are computed.
• The bit position of the codeword corresponding to each symbol can 

be determined from the prefix-sums.

• Kernel 2: The codeword of corresponding to each symbol is written.
• Gap arrays can be written if necessary.

• Both Kernels 1 and 2 perform global memory access.

• GPU encoding by the Single Kernel Soft Synchronization (SKSS)
• Only one kernel call is performed.
• Reduce global memory access

• The codeword sequence are partitioned into equal-sized segments.

• Each CUDA block i (this number is assigned by a global counter)  works 
for encoding segment i

• The Prefix-sums for each segment i are computed by looking back 
previous CUDA blocks 
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GPU Huffman decoding with a gap array
• SKSS technique:

• The codeword sequence is partitioned into equal-sized segments 
and the gap value of each segment is available.

• Each CUDA block i (this number is assigned by a global counter)  
works for decoding a segment i

• Since the gap value is available, each CUDA block can start 
decoding from the first complete codeword.

• Similarly to GPU Huffman decoding, the prefix-sums of the 
number of symbols corresponding to segments are computed by 
the SKSS.

• From the prefix-sums, each CUDA block can determine the 
position in the symbol sequence where it writes the decoded 
symbols.

• Compact codebook:
• A 64Kbyte codebook is separated into several small codebooks.
• Primary codebook: stores codewords with no more than 11 bits
• Secondary codebooks:  store codewords with 11 bits or more
• The total size is less than 3 Kbytes.

• wordwise memory access
• 4 symbols are written as a 32-bit word.
• Global memory access throughput can be improved.
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Experimental results: Data set of 10 files
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NOGAP: Original Huffman code with no gap array

Compression ratio= compressed size
uncompressed size

GAP: Huffman code with gap array for 256-bit segment
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file type contents size(Mbyte) NOGAP GAP GAP Overhead
bible text Collection of sacred texts or scriptures 4.047 54.82% 55.67% +0.86% 
enwiki xml Wikipedia dump file 1095.488 68.30% 69.37% +1.07% 
mozilla exe Tarred executables of Mozilla 51.220 78.05% 79.27% +1.22% 
mr image Medical magnetic resonance image 9.971 46.37% 47.10% +0.72% 
nci database Chemical database of structures 33.553 30.47% 30.95% +0.48% 
prime text 50th Mersenne number 23.714 44.12% 44.80% +0.69% 
sao bin The SAO star catalog 7.252 94.37% 95.85% +1.47% 
webster html The 1913 Webster Unabridged Dictionary 41.459 62.54% 63.52% +0.98% 
linux src Linux kernel 5.2.4 871.352 70.23% 71.32% +1.10% 
malicious text Never self-synchronizes until the end 1073.742 25.00% 25.39% +0.39% 

NOGAP GAP

size overhead
+0.39% − +1.47%

thread 1



Experimental results: GPU Huffman encoding
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[4] Antonio Fuentes-Alventosa, Juan Gomez-Luna ; JoseM Gonzalez-Linares, and Nicolas Guil. 2014. CUVLE: Variable-Length Encoding on CUDA. 
In Proc. Con- ference on Design and Architectures for Signal and Image Processing. 1–6.
[25] Habibelahi Rahmani, Cihan Topal, and Cuneyt Akinlar. 2014. A parallel Huffman coder on the CUDA architecture. In Proc. of IEEE Visual 
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overhead
bible 0.747ms 0.180ms 0.0605ms 12.35x 2.98x 0.0716ms +18.35%
enwiki 70.8ms 37.7ms 6.53ms 10.84x 5.77x 7.05ms +7.96%
mozilla 4.55ms 1.97ms 0.451ms 10.09x 4.37x 0.495ms +9.76%
mr 1.11ms 0.407ms 0.119ms 9.33x 3.42x 0.134ms +12.61%
nci 2.00ms 1.31ms 0.339ms 5.90x 3.86x 0.365ms +7.67%
prime 1.52ms 0.926ms 0.175ms 8.69x 5.29x 0.193ms +10.29%
sao 1.21ms 0.307ms 0.107ms 11.31x 2.87x 0.123ms +14.95%
webster 3.27ms 1.62ms 0.303ms 10.79x 5.35x 0.332ms +9.57%
linux 55.0ms 30.0ms 5.59ms 9.84x 5.37x 6.05ms +8.23%
malicious 36.0ms 36.9ms 4.79ms 7.52x 7.70x 4.98ms +3.97%

NAIVE
[4] Our encoding

with no gap array

Speedup
5.90x − 12.35x

CUVLE
[25]

Our encoding
with gap arrays

Speedup
2.87x− 7.70x

Overhead
+3.97% − +18.35%



Experimental results: GPU Huffman decoding
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Speedup over our 
decoding with no 

gap array
bible 0.331ms 0.205ms 1.61x 0.0682ms 4.85x 3.01x 
enwiki 40.3ms 22.3ms 1.81x 10.5ms 3.84x 2.12x 
mozilla 3.67ms 2.74ms 1.34x 0.674ms 5.45x 4.07x 
mr 0.64ms 0.461ms 1.39x 0.261ms 2.45x 1.77x 
nci 1.90ms 0.923ms 2.06x 0.552ms 3.44x 1.67x 
prime 1.67ms 0.636ms 2.63x 0.280ms 5.96x 2.27x 
sao 0.472ms 0.278ms 1.70x 0.120ms 3.93x 2.32x 
webster 1.76ms 0.906ms 1.94x 0.488ms 3.61x 1.86x 
linux 34.6ms 21.3ms 1.62x 9.04ms 3.83x 2.36x 
malicious 106000ms 60000ms 1.77x 9.30ms 11400x 6450x 

CUHD
[29,30]

Our decoding
with no gap array

Our decoding
with gap arrays1.34x− 2.63x

Speedup

9 files: 2.45x− 5.96x
malicious: 11400x

9 files: 1.67x− 4.07x
malicious: 6450x

wordwise global memory access
compact codebook



Huffman coding with gap arrays: CPU vs. GPU
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The time for all necessary operations are included:
• Computing symbol frequency by histogramming
• Codebook generation
• Data transfer time between CPU/GPU

CPU:Intel Xeon Silver 4112 (2.60GHz)
GPU:Nvidia Telsa V100

Huffman encoding Huffman decoding

file CPU GPU Speedup CPU GPU Speedup
bible 47.0ms 1.20ms 39.2x 25.9ms 0.598ms 43.3x
enwiki 3500ms 158ms 22.2x 5930ms 159ms 37.2x
mozilla 313ms 8.67ms 36.1x 308ms 7.95ms 38.7x
mr 67.0ms 2.05ms 32.7x 52.9ms 1.50ms 35.2x
nci 177ms 5.50ms 32.2x 170ms 4.48ms 37.9x
prime 80.0ms 4.27ms 18.7x 160ms 3.06ms 52.2x
sao 75.2ms 3.15ms 23.9x 49.3ms 1.28ms 38.4x
webster 174ms 7.31ms 23.8x 248ms 5.94ms 41.7x
linux 3130ms 128ms 24.5x 4890ms 128ms 38.3x
malicious 2250ms 117ms 19.2x 4500ms 119ms 37.8x

Running time

CPU with 
no gap array 

GPU with 
gap array 

Encoding: 18.7x− 39.2x

Decoding: 35.2x − 52.3x



Conclusion
• We have presented new data structure gap array for accelerating Huffman decoding on GPUs.
• We have also presented several acceleration techniques for Huffman encoding/decoding on GPUs.
• The size overhead of gap arrays is small: +0.39% − +1.47%
• The time overhead of gap arrays in GPU Huffman encoding is small: +3.97% − +18.35%
• GPU Huffman decoding is much faster if gap arrays are available: 

• 9 files: 1.67x−4.07x
• malicious file : 6450x

• Including all operations for Huffman encoding/decoding and CPU-GPU data transfer, GPU can 
accelerate Huffman encoding/decoding

• Encoding: 18.7x − 39.2x
• Decoding: 35.2x − 52.3x

• Gap arrays should be attached if Huffman encoding/decoding are performed using GPUs.
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