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Deep Learning training (DLT): an important workload on clusters
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• Widely deployed in many areas
• Image Classification
• Object Detection
• Natural Language Processing
• Recommender Systems

• Data intensive
• ImageNet-1K:

• 1.28 million images

• Open Image:
• 9 million images

• Expensive accelerators, i.e., GPUs

Training the well-known ResNet-50 model on the ImageNet-1K dataset takes more 
than 30 hours in a cluster 
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• Widely deployed in many areas
• Image Classification
• Object Detection
• Natural Language Processing
• Recommender Systems

• Data intensive
• ImageNet-1K:

• 1.28 million images

• Open Image:
• 9 million images

• Expensive accelerators, i.e., GPUs

Training the well-known ResNet-50 model on the ImageNet-1K dataset takes more 
than 30 hours in a cluster 

How to reduce the total training time?



File size distribution and training time breakdown
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Image size and type distribution on a 
real-world production cluster:
• Most files are smaller than 128KB

The data access time takes a significant 
part in the total training time
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Image size and type distribution on a 
real-world production cluster:
• Most files are smaller than 128KB

The data access time takes a significant 
part in the total training time

Reduce the data access time!



File access procedure in DLT tasks on computer clusters
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Three problems in existing storage and caching systems
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P1: Large number of small 
files

Metadata access is not scalable on 
existing systems

P2: Node failure in global 
cache

Affects all DLT tasks on a cluster & 
slow to recover

P3: Shuffled file access pattern Slow read speed



Problem 1: metadata access does not scale on existing systems
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Storage
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(e.g., Lustre, GFS)

Distribute metadata and data on 
all storage servers

(e.g., Ceph, GlusterFS)

• Existing storage systems have poor scalability on metadata access

Metadata access (e.g., list names)

Metadata access (e.g., get size)
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Problem 2: global caching systems are vulnerable to node failures
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• Task 1 works on dataset 1
• Task 2 works on dataset 2

• A node failure in task 1 will affect both task 1 and task 2!
• The cache node recovery takes a long time due to small file reads!



Problem 3: shuffled access of small files is slow
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• The shuffled access pattern on small files hurts the read performance a lot

file access pattern in DLT tasks

~25x

read speed comparison on different read unit size



Proposed solutions in DIESEL
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P1: Large number of 
small files

Metadata access is not 
scalable on existing systems

P2: Node failure in global 
cache

Affects all DLT tasks 
& slow to recover

P3: Shuffled file access 
pattern

Slow read speed

Distributed in-memory 
metadata server & 
metadata snapshot
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DIESEL overview

15

• Distributed in-
memory key/value 
server as metadata 
server

• Metadata snapshot

• Task-grained 
distributed cache

• POSIX-compliant 
interface



The first step: write files into DIESEL
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• Files are merged into large chunks

• Metadata is saved in the head of each chunk as well as in an in-memory key/value server



Metadata storage in DIESEL
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Why need to store metadata with data chunks?



Metadata storage in DIESEL
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Why need to store metadata with data chunks?
The in-memory key/value server may fail:



Metadata storage in DIESEL
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Why need to store metadata with data chunks?
The in-memory key/value server may fail:
• Lost recently written entries
• Lost all entries due to power failure



Reconstruct key/value pairs from data chunks
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Reconstruct key/value pairs from data chunks



Metadata snapshot – download from DIESEL
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Metadata snapshot – load from disks
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Distributed Storage (e.g., Lustre)
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• Load metadata from 
disk file
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timestamp



Metadata snapshot – bypass the metadata server to retrieve files
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Distributed Storage (e.g., Lustre)
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File access
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DIESEL 
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• Lookup metadata 
locally, bypass the 
metadata server

• Read data chunks



Task-grained distributed caching system
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DIESEL deploys a task-grained distributed 
cache across the GPU nodes of a DLT task:

• Isolate node failure
• Reduce # of network connections
• Lifetime follows the DLT task



Chunk-based shuffle method
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• In DLT tasks, the file access order 
does not matter, as long as it is 
random

• DIESEL generates a shuffled file list
• Convert individual file reads into 

large chunk reads
• Small memory footprint 

Cache miss only on 
the first three files

Cache miss only on 
the first three files



Experimental Setup
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Dataset:
• ImageNet-1K  (1.28million 

images, ~150GB)

Framework:
• PyTorch

Models:
• AlexNet
• VGG-11
• ResNet-18
• ResNet-50



Evaluation on file writing
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• DIESEL is faster than the Lustre 
and Memcached on file writing

• On 4KB file size, DIESEL is about 
200x and 360x faster than the 
Memcached and Lustre, 
respectively

• On 128KB file size, DIESEL is about 
17x and 120x faster than the 
Memcached and Lustre, 
respectively



Evaluation on metadata access and metadata snapshot

28

• Increasing the number of DIESEL 
server will increase the metadata 
access performance when the 
metadata snapshot is disabled

• With the metadata snapshot 
enabled, the metadata access 
throughput increases linearly with 
the number of workers

• DIESEL is faster than Lustre and 
XFS-NVME on metadata query 
response time



Evaluation on task-grained distributed cache
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• Task-grained distributed cache 
achieves better performance than 
existing global in-memory caching 
system

• The task-grained distributed 
cache’s “Cold-booting” time is 
shorter than Memcached’s node 
recovery time



Evaluation on chunk-based shuffle method
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• Chunk-based shuffle method has 
higher read bandwidth than the 
Lustre filesystem

• On 4KB file reads, DIESEL is more 
than 50x faster than the Lustre

• On 128KB file reads, DIESEL is 
more than 4x faster than the 
Lustre



Evaluation on real-world DLT tasks
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• DIESEL reduces about 15%-27% 
time in end-to-end training tasks



Summary
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DIESEL is a storage and caching system co-designed for DLT tasks:

• Efficient metadata management
• Distributed in-memory key/value database
• Metadata snapshot mechanism

• Task-grained distributed caching system isolates node failures
• Chunk-based shuffle method converts shuffled small file reads into large chunk reads
• Demonstrated efficiency in real-word DLT tasks



Q & A
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Our Research Group：Rapids@HKUST

https://github.com/RapidsAtHKUST

https://github.com/RapidsAtHKUST

