
DIESEL: A Dataset-Based Distributed

Storage and Caching System for Large-Scale

Deep Learning Training

Lipeng Wang1, Songgao Ye2, Baichen Yang1, Youyou Lu3, Hequan Zhang2, Shengen

Yan2, and Qiong Luo1

1Hong Kong University of Science and Technology
2SenseTime Research
3Tsinghua University

Deep Learning training (DLT): an important workload on clusters

2

• Widely deployed in many areas
• Image Classification
• Object Detection
• Natural Language Processing
• Recommender Systems

• Data intensive
• ImageNet-1K:

• 1.28 million images

• Open Image:
• 9 million images

• Expensive accelerators, i.e., GPUs

Training the well-known ResNet-50 model on the ImageNet-1K dataset takes more
than 30 hours in a cluster

Deep Learning training (DLT): an important workload on clusters

3

• Widely deployed in many areas
• Image Classification
• Object Detection
• Natural Language Processing
• Recommender Systems

• Data intensive
• ImageNet-1K:

• 1.28 million images

• Open Image:
• 9 million images

• Expensive accelerators, i.e., GPUs

Training the well-known ResNet-50 model on the ImageNet-1K dataset takes more
than 30 hours in a cluster

How to reduce the total training time?

File size distribution and training time breakdown

4

Image size and type distribution on a
real-world production cluster:
• Most files are smaller than 128KB

The data access time takes a significant
part in the total training time

File size distribution and training time breakdown

5

Image size and type distribution on a
real-world production cluster:
• Most files are smaller than 128KB

The data access time takes a significant
part in the total training time

Reduce the data access time!

File access procedure in DLT tasks on computer clusters

6

Distributed
storage and cache

time

Training
framework

epoch

Get file list of a dataset

Shuffle the file list

Read a batch of shuffled files

Read a batch of shuffled files

...

Shuffle the file list

Image processing:
Crop, flip, etc.

backward propagation

forward pass

Car?
House?
Cat?
Horse?

File access procedure in DLT tasks on computer clusters

7

Distributed
storage and cache

time

Training
framework

epoch

Get file list of a dataset

Shuffle the file list

Read a batch of shuffled files

Read a batch of shuffled files

...

Shuffle the file list

Image processing:
Crop, flip, etc.

backward propagation

forward pass

Car?
House?
Cat?
Horse?

12

Three problems in existing storage and caching systems

8

P1: Large number of small
files

Metadata access is not scalable on
existing systems

P2: Node failure in global
cache

Affects all DLT tasks on a cluster &
slow to recover

P3: Shuffled file access pattern Slow read speed

Problem 1: metadata access does not scale on existing systems

9

Metadata
servers

Data
servers

...

GPU Nodes Distributed
Storage

Separated metadata servers and
data servers

(e.g., Lustre, GFS)

Distribute metadata and data on
all storage servers

(e.g., Ceph, GlusterFS)

• Existing storage systems have poor scalability on metadata access

Metadata access (e.g., list names)

Metadata access (e.g., get size)

Alternative 1 Alternative 2

Metadata
&
Data
servers

...

GPU Nodes Distributed
Storage

Problem 2: global caching systems are vulnerable to node failures

10

F1
F5

F9

F2

F6

F3
F7

F4
F8

Dataset 1

a

e

i

b

f
j

c

task 1

task 2

• Task 1 works on dataset 1
• Task 2 works on dataset 2

g

d

h

cache in

cache in

cache in

cache in

Dataset 2

Problem 2: global caching systems are vulnerable to node failures

11

F1
F5

F9

F2

F6

F3
F7

F4
F8

Dataset 1

a

e

i

b

f
j

c

task 1

task 2 g

d

h

cache in

cache in

cache in

cache in

Dataset 2

• Task 1 works on dataset 1
• Task 2 works on dataset 2

• A node failure in task 1 will affect both task 1 and task 2!

Cache miss
on F2, F6

Cache miss
on b, f, j

Cache miss
on b, f, j

Problem 2: global caching systems are vulnerable to node failures

12

F1
F5

F9

F2

F6

F3
F7

F4
F8

Dataset 1

a

e

i

b

f
j

c

task 1

task 2 g

d

h

cache in

cache in

cache in

cache in

Dataset 2

Cache miss
on F2, F6

Cache miss
on b, f, j

Cache miss
on b, f, j

• Task 1 works on dataset 1
• Task 2 works on dataset 2

• A node failure in task 1 will affect both task 1 and task 2!
• The cache node recovery takes a long time due to small file reads!

Problem 3: shuffled access of small files is slow

13

• The shuffled access pattern on small files hurts the read performance a lot

file access pattern in DLT tasks

~25x

read speed comparison on different read unit size

Proposed solutions in DIESEL

14

P1: Large number of
small files

Metadata access is not
scalable on existing systems

P2: Node failure in global
cache

Affects all DLT tasks
& slow to recover

P3: Shuffled file access
pattern

Slow read speed

Distributed in-memory
metadata server &
metadata snapshot

Task-grained caching
system

Chunk-based shuffle
method

1

2

3

DIESEL overview

15

• Distributed in-
memory key/value
server as metadata
server

• Metadata snapshot

• Task-grained
distributed cache

• POSIX-compliant
interface

The first step: write files into DIESEL

16

• Files are merged into large chunks

• Metadata is saved in the head of each chunk as well as in an in-memory key/value server

Metadata storage in DIESEL

17

Why need to store metadata with data chunks?

Metadata storage in DIESEL

18

Why need to store metadata with data chunks?
The in-memory key/value server may fail:

Metadata storage in DIESEL

19

Why need to store metadata with data chunks?
The in-memory key/value server may fail:
• Lost recently written entries
• Lost all entries due to power failure

Reconstruct key/value pairs from data chunks

20

Reconstruct key/value pairs from data chunks

Metadata snapshot – download from DIESEL

21

DIESEL
Server

Distributed Storage (e.g., Lustre)

1

Key/value pairs

Key/value in
Hashmaps

Key/value in disks

Dataset: update time, …
File: ChunkID, offset, length, …

K/V
server

• Get metadata of a
dataset

• Save metadata to a
disk file on
distributed storage

Metadata snapshot – load from disks

22

Distributed Storage (e.g., Lustre)

2

Key/value in Hashmaps

Key/value in disks

3

get update time,…

load metadata from disk file

DIESEL
Server

Key/value pairs

K/V
server

• Load metadata from
disk file

• Check the update
timestamp

Metadata snapshot – bypass the metadata server to retrieve files

23

Distributed Storage (e.g., Lustre)

4

File access

Look up metadata

ChunkID, offset, length,…

DIESEL
Server

Key/value pairs

K/V
server

• Lookup metadata
locally, bypass the
metadata server

• Read data chunks

Task-grained distributed caching system

24

Distributed Storage

Training task A

Caching server
A GPU Node

Training task B

Caching server

Caching server

Task A

Training task B

Caching server

Training task A

Training task B

Caching server

Training task B

Caching server

Task B

DIESEL deploys a task-grained distributed
cache across the GPU nodes of a DLT task:

• Isolate node failure
• Reduce # of network connections
• Lifetime follows the DLT task

Chunk-based shuffle method

25

• In DLT tasks, the file access order
does not matter, as long as it is
random

• DIESEL generates a shuffled file list
• Convert individual file reads into

large chunk reads
• Small memory footprint

Cache miss only on
the first three files

Cache miss only on
the first three files

Experimental Setup

26

Dataset:
• ImageNet-1K (1.28million

images, ~150GB)

Framework:
• PyTorch

Models:
• AlexNet
• VGG-11
• ResNet-18
• ResNet-50

Evaluation on file writing

27

• DIESEL is faster than the Lustre
and Memcached on file writing

• On 4KB file size, DIESEL is about
200x and 360x faster than the
Memcached and Lustre,
respectively

• On 128KB file size, DIESEL is about
17x and 120x faster than the
Memcached and Lustre,
respectively

Evaluation on metadata access and metadata snapshot

28

• Increasing the number of DIESEL
server will increase the metadata
access performance when the
metadata snapshot is disabled

• With the metadata snapshot
enabled, the metadata access
throughput increases linearly with
the number of workers

• DIESEL is faster than Lustre and
XFS-NVME on metadata query
response time

Evaluation on task-grained distributed cache

29

• Task-grained distributed cache
achieves better performance than
existing global in-memory caching
system

• The task-grained distributed
cache’s “Cold-booting” time is
shorter than Memcached’s node
recovery time

Evaluation on chunk-based shuffle method

30

• Chunk-based shuffle method has
higher read bandwidth than the
Lustre filesystem

• On 4KB file reads, DIESEL is more
than 50x faster than the Lustre

• On 128KB file reads, DIESEL is
more than 4x faster than the
Lustre

Evaluation on real-world DLT tasks

31

• DIESEL reduces about 15%-27%
time in end-to-end training tasks

Summary

32

DIESEL is a storage and caching system co-designed for DLT tasks:

• Efficient metadata management
• Distributed in-memory key/value database
• Metadata snapshot mechanism

• Task-grained distributed caching system isolates node failures
• Chunk-based shuffle method converts shuffled small file reads into large chunk reads
• Demonstrated efficiency in real-word DLT tasks

Q & A

33

Our Research Group：Rapids@HKUST

https://github.com/RapidsAtHKUST

https://github.com/RapidsAtHKUST

