| INTERNATIONAL
CONFERENCE ON /
| PARALLEL

PROCESSING |

ICPP/2020/EDMONTON/CANADA

AUGUST 17-20, 20280

An Adaptive Erasure-Coded Storage Scheme with
an Efficient Code-Switching Algorithm

Zizhong Wang, Haixia Wang, Airan Shao, and Dongsheng Wang
Isinghua University

Really Big Data - Present and Future

Figure 1 - Annual Size of the Global Datasphere

Annual Size of the Global Datasphere 175 ZB

180
160
140
120

Zetabytes

100
80
60
40
20

0

1/B=1,180,591,620,717,411,303,424 B
175 ZB = 206,603,533,625,546,973,099,200 B

https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

Distributed Storage Systems

* How to guarantee reliability and availability?

* N-way replication
* GFS (3-way)
* N X storage cost to tolerate any (N-1) faults
* Too expensive, especially when data amount grows fast

* Simple, still the default setting in HDFS, Ceph

* Erasure coding
* HDFS (since 3.0.0), Azure, Ceph
* A (k,m) code can tolerate any m faults at a (1+m/k)X storage cost
* Can save much storage space

An Example of Erasure Coding

« 3-way replication vs a (2,2) code, original data: | a@ | b
* 3-way replication:

a|b

NODE 2

DE 1 DE 3

* a(2,2) code:
a+ 2b

% NODE 2 !i!Efﬂ NODE 4

* They both can tolerate any 2 faults, but 3-way replication costs
3X storage space while the (2,2) code costs only 2 X

Erasure Coding — What do We Concern?

* Storage cost
* In a (k,m) code: (1+m/k)x

* Fault tolerance abillity
* Ina(k,m) code: m

* Recovery cost
* Discuss later

* Write performance
* Correlated with storage cost

* Update performance

Major Concern: Recovery Cost

* 3-way replication:

a|b a|b
“KODE 1 NODE 2 NODE 3
*a(2,2) code:
b a-+b a-+ 2b
DE 1 NODE 2 NODE 3 NODE 4

* Conclusion: k times recovery cost in (k,m) code

Degraded Read

* >90% data center errors are temporary errors (osoi 1] Ford et al)
* No data are permanently lost
* Solved by degraded reads

* Read from other nodes and then decode

* Our goal: reduce degraded read cost

(e A
i Degraded Read Cost I

Trade—OffS e)

* Different code families _ _ _ _. . _ . _ _. N i N
* MDS/non-MDs, locality, - | Storage Cost | . Fault Tolerance Ability |

° leferent parameters — J e e e e e — J
* small k + small m/k

* low degraded read cost and storage cost, but low fault
tolerance ability

* small k + bigm

* low degraded read cost, high fault tolerance ability, but high
storage cost

* small m/k + big m

* low storage cost, high fault tolerance ability, but high degrade
read cost

Data Access Skew

100,000 ===CC1
10,000
1,000

File access frequency

1 100 10,000 1,000,000
File rank by decreasing access frequency

Data access frequency Is Zipt distribution

About 80% data accesses are applied in 10% data volume
[VLDB '12] Chen et al.

Divide and Conquer

* Premise: guaranteed fault tolerance ability
* Hot data — degraded read cost I1Is most important
* Cold data — storage cost Is most important

* Data with different properties should be stored by different codes

* A fast code for hot data
* Low degraded read cost and high enough fault tolerance ability

* High storage cost is acceptable

* A compact code for cold data
* Low storage cost and high enough fault tolerance ability
* High degraded read cost is acceptable

Code-Switching Problem

* According to temporal locality, hot data will become cold
* Cold data may become hot In some cases

* Problem: code-switching from one code to another code

a;|a| az| as|as|ae| f1(a) | f(a)

a;|ay| az| as| as|ag| f3(a) | fa(a)

* To compute f3(a) and fi(a), a should be collected first
* Bandwidth-consuming

Alleviate the Problem

* HACFES ([FAST '15] Xia et al.)

* Use two codes In the same code family with different parameters

* Alleviate the code-switching problem by using the similarity in one code
family

* Cannot take advantage of the trade-off in different code families

* Cannot get rid of the code family’s inherent defects
* Impossible to set an MDS compact code

* Our Scheme
* We present an efficient code-switching algorithm

Our Scheme

* We choose Local Reconstruction Code (LRC) as fast code,
Hitchhiker (HH) as compact code
* (k,m-1,m)-LRC and (k,m)-HH

* Reasons

1. LRC has good fast code properties
* Good locality

2. HH has good compact code properties
* MDS

3. Common. Been implemented in HDFS or Ceph
4. They are similar. Both based on RS; data chunks be grouped

LRC

* Fast code

* An example of (6,2,3)-LRC

a{| a,| az| as| ag| ag
by| b,| by | by| bs| bg
fila) | f2(a) | f3(a) | a1 D a, D a3 | a,D asD ag
fi(b) | f2(b) | f3(b) | b1 b, b3 | by® bs€D bg

HH

* Compact code

* An example of (6,3)-HH

1| Ay 3| Ay | s | Ug

bi| by | b3 | by| bs | bg

fi(a) f2(a) f3(a)

f1(b) | fo(b) @ a;®D a,D as | f3(b) D a,D asD ae

a| a,| as| a,| as| ag Scheme |
by| b,| bs| by| b | bg LRC = HH
fita) | f2(a) | f3(a) | a1, D a,D a3 | a,D asD ae
f1b) | f2b) | f3(b) | by@® b, b3 | by bsD b
1| Az| A3 | Uy | s | Ug

by| b, | bg| by | bs | bg

fi(a) f2(a) f3(a)

f1(b) | f2(b) ® a,D a,®D a3 | f3(b) D a,D asD ag

a; D a,®D as a,®D as®D ag
b1 D b, D b3 b, D bsD bg
f2(a) f3(a)
fi(b) | f2(b) © a,D a, D a3 | f3(b) D a,D a;D a,
a,| a,| as| a,| as| ag Scheme |
by| b, | bs| ba| b by HH = LRC
fila) | f2(a) | f3(a) | a, D a,® a3 | a,D asD ae
fi(b) | f2(b) | f3(b) | b1 D b, D bs | by bs€D b

A New Scheme

* When HH uses XOR sum of data chunks as the first parity chunk, a
global parity chunk of LRC can be saved
* (km-1,m-1)-LRC and (k,m)-HH

1| Az| A3z| Ag| As5| Qg a,| a| az|las| as| ag| a1 D a, D az; D a,D asD aq
bi| by | bz | by| bs| bg bi| by| bs| by| bs| bg| b1 @D b, D b3® b, ® b-D b,
f2(@) | f3(a)| a1 a, D az | a,D asD ag fo(a) fz(a)

fz(b) fg(b) b1€B bz@ b3 b4@b5@b6 fz(b)@%@ a2€D as fg(b)@a4® as@ Ag

(6.2,2)-LRC (6.3)-HH

s

Ug

bs

be

hemeHII_II
Sc "
LRC

D Ug
Us

D az;Ha, D

D a,

aq

be
b D

b3 Db, D

b, P

b1 @

s

Ug

D Ueg
Us

D azD a,D

D a,

25

bs

be

be
bs D

D b3 D by D

b,

bl@

f2(a)

f3(a)

D as
) D a, D a,

b

f2(

D ae
) D a,D as

b

f3(

a,; D a,D as a,D asD ag
b1 b, D bs b, D bsD bg

f2(a) f3(a)
f2(b) © a1 a,D asz | f3(b) D a,D asD a;

a,| a,| as| a,| as| ag Scheme II
by| b,| by by| be | by HH = LRC

fo(a) | f3(a) | a1 a, D az | a,D asD ag
f2(b) | f3(b) | b1 by b3 | by bsD bg

Performance Analysis

Table 3: Different Schemes’ Degraded Read Cost and MTTF

Scheme Degraded read cost MTTF (years)
Scheme I 4.44 1.0 x 104
Scheme II 4.3 1.0 x 1014

(10, 4)-RS code 10 6.7 x 1013
(10,4)-HH code 6.7 9.3 x 10%°
(12,2,3)-LRC 6 6.3 x 1013

~ 3-replication 3.5%x10°

4-replication 7.7 x 1013

Code-Switching Efficiency

Table 4: Ratio I and Ratio II in Different Schemes

* Ratio I:

the amount of data transterred Different schemes Ratiol RatioIl
auring code-switching (12,3,4)-LRC + (12.4)-HH code

f with 0.790 2.125
O

the re-encoding algorithm

the amount of data transferred ~ (12.3.3)-LRC *r‘E}lfﬂ)‘HH code Tsso o6
during encoding i T

the re-encoding algorithm

3-replication + (12,4)-HH code 0.361 3.063

HACFS-PC 0.333 1.714
HACES-LRC 0.300 1.625
Scheme | 0.079 1.281

Scheme 11 0.194 1.344

Code-Switching Efficiency

Table 4: Ratio I and Ratio II in Different Schemes

* Ratio II:

the total amount of data Different schemes Ratio I Ratio II
transterred during encoding to (12,3,4)-LRC + (12, 4)-HH code

hot data form and switching into with 0.790 2.125

the re-encoding algorithm

cold aata form "(123.3)IRC: 1z HHcede ~ 777
to with 0.889 2.063

the re-encoding algorithm

the amount of data transferred - 3-teplication + (12.4)-HH code . 0361~ 3.063

0.361 3.063
when directly encoding into cold HACFS-PC 0333 1.714
aata rorm HACFS-LRC 0.300 1.625

Scheme | 0.079 1.281

Scheme 11 0.194 1.344

Experiment Setup

* (k,m)=(12,4)
* (12,3,4)-LRC and (12,4)-HH (Scheme)
* (12,3,3)-LRC and (12,4)-HH (Scheme II)

* Storage overhead set to 1.4X
* Schemes implemented upon Ceph

* Workload generated randomly, data access frequency set to be
Zipt distributed

Recovery Cost

80 68.8 68.8

;:: N
55.5 S 55.1
60 — 51.5 ;g 497 483
. AT whaf 5

o o 2 o 40.9 22,

40 30470 29.55% o B =
i g i i HaE

20 i P - i o
e e o B

.J:i.n'! :.n‘ .J: .-:.»-1 El".- = "ﬁ‘n" E .J:‘.n--.

0 e G B e i

SchemeI SchemeIl (10.4)-RS (10.4)-HH (12.2.3)-LRC

® Degraded read latency (ms) % Reconstruction time (ms)

Figure 10: Time usage for different schemes to recover 1 MB
data.

Code-Switching Time

(12.3.4)-LRC to (12.4)-HH 5
(Scheme T) o mmg 24382

(12.4)-HH to (12.3.4)-LRC

(SChEIHE I) mm&%ﬁ&%ﬁ&%%%ﬁ%ﬁ% 2897
(12.3.3)-LRC to (12.4)-HH

(Scheme II) Wgﬁ%ﬁﬁWﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ? 2416.4

(12.4)-HH to (12.3.3)-LRC
(Scheme I R A B 2737 2

0 500 1000 1500 2000 2500 3000
Time (ms)

® Our efficient algorithm # Original re-encoding algorithm

Figure 11: Time usage for switching codes by different algo-
rithms.

Future Works

* More detailed evaluations
* Actual traces
* Implemented in Ceph

* More parameter choices
* Combining our scheme with HACFS-LRC

* More code family choices
* MSR and MBR?

| INTERNATIONAL
CONFERENCE ON /
| PARALLEL

PROCESSING |

ICPP/2020/EDMONTON/CANADA

AUGUST 17-20, 20280

An Adaptive Erasure-Coded Storage Scheme with
an Efficient Code-Switching Algorithm

Zizhong Wang, Haixia Wang, Airan Shao, and Dongsheng Wang
Isinghua University

Thank you!

wds@tsinghua.edu.cn
wangzizhongl3@tsinghua.org.cn

mailto:wds@tsinghua.edu.cn
mailto:wangzizhong13@tsinghua.org.cn

