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What is community?



What is Community?

Protein-Protein Interaction Network

Image source: Google Image

World Wide Web 

community

 Sets of  vertices that have dense intra-connections, but sparse inter-connections 

 Uncover hidden structures inside a graph in a form of  coherent modules of  vertices

 Strongly correlated to functional and structural properties



What is community detection?



What is Community Detection?

 Algorithms to identify communities in a network 

 Applications: network analysis to retrieve information or patterns of  the network

Virality Prediction and Community Structure in Social Networks
http://senseable.mit.edu
/community_detection/Nodus Labs Against Putin Facebook protest group visualization, December 2011



How to measure the quality of  
the detected communities?



A Measure of  Solution Quality
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 |Q| ∈ (0, 1], and the higher the better

 Community detection algorithm identifies communities in a way that maximizes modularity

 Modularity: A measure of  interconnectedness of  the communities



How do we maximize 
modularity?



A Recipe of  Modularity Optimization
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 Large values of  � correlate with high ∑ ���  and low ∑���� 

- Communities that are dense within their structure and weakly coupled among each other 

 To get high ∑ ���, the highest possible number of  edges should fall in each community

 Modularity: A measure of  interconnectedness of  the communities



A Recipe of  Modularity Optimization
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 Large values of  � correlate with high ∑ ���  and low ∑���� 

- Communities that are dense within their structure and weakly coupled among each other

 To decrease ∑����, divide the network into several communities with small total degrees

 Modularity: A measure of  interconnectedness of  the communities



NP-hardness of  Modularity Optimization

Challenge: Finding communities with optimal modularity is “NP-hard”

 Modularity: A measure of  interconnectedness of  the communities
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Louvain
Maximizes modularity following a greedy algorithm

V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, "Fast 
unfolding of communities in large networks," J. Stat. Mech. (2008) 
P10008, p. 12, 2008



Louvain: Algorithm Steps

 Outer Loop: Traverse the graph in several passes to incrementally build communities



Louvain: Algorithm Steps

 Outer Loop: Traverse the graph in several passes to incrementally build communities

 Phase 1: Modularity Optimization/Inner loop

V. D. Blondel, J.-L. Guillaume, R. Lambiotte
and E. Lefebvre, "Fast unfolding of 
communities in large networks," J. Stat. 
Mech. (2008) P10008, p. 12, 2008



Louvain: Algorithm Steps

 Outer Loop: Traverse the graph in several passes to incrementally build communities

 Phase 2: Community Aggregation and Graph Reconstruction 

V. D. Blondel, J.-L. Guillaume, R. Lambiotte
and E. Lefebvre, "Fast unfolding of 
communities in large networks," J. Stat. 
Mech. (2008) P10008, p. 12, 2008



Louvain: Algorithm Steps

 Outer Loop: Traverse the graph in several passes to incrementally build communities

 Phase 1: Modularity Optimization/Inner loop - � � � + �

 Phase 2: Community Aggregation and Graph Reconstruction - � � + �



A key data structure to decide 
pull or push
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Hash map NCW– ⟨ community_id, Some of  edge weights ⟩

A hash map with ⟨key = neighboring community, val = sum of  edge weights to that community⟩

����=[⟨ c=1, ��→�=2 ⟩, ⟨c=7, ��→�=1⟩]

⟨ �ommunity_id, Some of edge weights ⟩

Vertex 1 is neighbor to 2, 3 (members of  community 1) => sum of  edges weights=2 

Vertex 1 is neighbor to 7 (member of  community 7) => sum of  edge weight = 1 



Hash map NCW– ⟨ community_id, Some of  edge weights ⟩

A hash map with ⟨key = neighboring community, val = sum of  edge weights to that community⟩

����=[⟨ c=1, ��→�=2 ⟩, ⟨c=7, ��→�=1⟩]

⟨ �ommunity_id, Some of edge weights ⟩
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Vertex 1 is neighbor to 2, 3 (members of  community 1) => sum of  edges weights=2 

Vertex 1 is neighbor to 7 (member of  community 7) => sum of  edge weight = 1 



Repeat if  there is a change in community membership

Louvain Pseudocode



Initialize each vertex in its own community
Compute initial modularity

Louvain Pseudocode



Louvain Pseudocode

Phase 1/ inner loop starts



Louvain Pseudocode

For each vertex, build NCW by pulling community info 
from neighbors 



Louvain Pseudocode

Find the best community to move into by iterating 
though all entries of  NCW



Louvain Pseudocode

Move to the best community and update community info



Louvain Pseudocode

Once done for all vertices, compute new modularity
and repeat if  modularity increased by a threshold 
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Louvain Pseudocode

When modularity stabilizes, create a new graph by 
merging all vertices in same community into one

merged



We call the standard 
Louvain Algorithm a 
Pull-based Louvain 
Algorithm
To build ��� at each iteration, it pulls latest 
info from neighbors



Unnecessary work in Louvain



Observations



Number of  vertex moves drops significantly 
after the first few iterations of  phase1
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 For a particular outer loop, the number of  vertices that change communities 
drops drastically after the first few inner loop iterations (e.g., 5). 
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 The number of  vertices that change communities in the later inner loop iterations is minimal 

Number of  vertex moves drops significantly after 
the first few iterations of  phase1



Implications
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 Wasteful to scan all neighbors to compute ���, if  no change in neighborhood

 Wasteful to iterate over all vertices for each iteration of  phase 1, vertices do not move



Pruning Unnecessary Work in Louvain

Prune vertices that are unlikely to move

Prune unnecessary neighborhood exploration



Push-based Louvain 
Algorithm

Vertex does not pull, rather 
neighbors actively push any 
changes 



Push-based Louvain

The Push-based algorithm starts with an initialized 
���, assuming each vertex is in its own community



Push-based Louvain

During Phase 1, it never recreates ���



Push-based Louvain

If  there is a change in community membership



Push-based Louvain

Update ��� for the vertex itself, and push 
updates to all its neighbors



Pros and Cons of  Pull and Push 



Pull – Cons
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Does redundant memory read
by scanning all vertices and their neighbors to rebuild 
��� for each inner loop, 
even when the vertex’s neighborhood has not changed

Unnecessary neighborhood scan 
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Push – Pros

Scans through all neighbors of  a vertex only when a vertex 
changes its community to update ���

Avoids exploring edges unnecessarily



Implications

A push-based Louvain algorithm is likely to do fewer edge explorations compared to a pull-based
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in the later inner loop iterations 
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Push – Cons

Push does more writes to memory compared to a pull-based when there is a lot of  moves 

Push tends to update all neighbors’ NCW in those iterations
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Pull – Pros

Pull does fewer writes compared to a push-based algorithm when there is a lot of  moves 

Pull does fewer writes compared to a push-based



Implications

Using a push-based algorithm in the first few inner loop iterations might not be beneficial
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Take-home Message
Neither pull nor push performs best across all iteration space



Pull-Push/Hybrid Louvain Best of  both worlds



Pull-Push Louvain Algorithm

How it works

For a given outer loop

 Start with a pull-based

 Switch to a push-based after a given #of  iterations
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Pull-Push Louvain Algorithm

Benefits

 Explores a vertex’s neighborhood when there a change

 Automatically prunes a significant number of  edge-explorations 
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Automatic Edge Pruning of  Pull-Push Algorithm

Prunes 6-13 × edges compared to a standard (pull-based) Louvain

Algorithmic Improvement pull hybrid

Vertices
Visited 27.7M 27.7M

Reduction 1.00x 1.00x

Edges
Visited 2.82G 0.45G

Reduction 1.00x 6.20x

Algorithmic Improvement pull hybrid

Vertices
Visited 833M 833M

Reduction 1.00x 1.00x

Edges
Visited 2.34G 0.18G

Reduction 1.00x 12.82x

Graph: POKEC Graph: Hollywood 



Vertex Pruning



Vertex Pruning

 It is unnecessary to iterate over all vertices - number of  vertices changing community drops 
significantly after the first few inner loop iterations 

 We show analytical and intuitive derivation of  the vertices that can be pruned with minimal sacrifice
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Most vertices do not 
move



Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:
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Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:
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Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:
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Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:
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Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:

Let, �� =
∑�

���

� 
, �� = (0, 1⟩

�� = �� ∗ � � ⇒ ��→� ~ ��→� −  �� 



Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:

Cm does not play an important role in the 
modularity gain

Let, �� =
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Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:

After first few iterations, �� does not play an 
important role in the modularity gain

Let, �� =
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Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:

Let, �� =
∑�

���

� 
, �� = (0, 1⟩

�� = �� ∗ � � ⇒ ��→� ~ ��→� −  �� 

Intuitive: Focus on the vertices whose w�→� decreases 

Intuitive: Skip the vertices whose ∑  is�
��� impacted by a move

Impact on modularity is small if  applied on the push-phases – later inner loop iterations



Vertex Pruning: Analytical Derivation

What to recompute? (Analytical Derivation in Paper)

If  a vertex moves, only recompute for its first level neighbors that are *not* in its new community
=> recompute red neighbors, impacts on green and blue are minimal, no impact on white



Algorithms and Impact of  Vertex & Edge Pruning
Algorithm name What is does
Pull Standard pull-based Louvain

Pull-prune Pull + vertex pruning in all iterations
Hybrid Switching between pull and push

Hybrid-prune Hybrid + vertex pruning in push phases only

Algorithmic Improvement pull pull prune hybrid hybrid prune

Vertices
Visited 27.7M 5.44M 27.7M 6.12M

Reduction 1.00x 5.09x 1.00x 4.52x

Edges
Visited 2.82G 0.95G 0.45G 0.45G

Reduction 1.00x 2.98x 6.20x 6.20x

Algorithmic Improvement pull pull prune hybrid hybrid prune

Vertices
Visited 833M 6.09M 833M 9.49M

Reduction 1.00x 13.68x 1.00x 8.78x

Edges
Visited 2.34G 0.3G 0.18G 0.182G

Reduction 1.00x 7.70x 12.82x 12.82x Graph: Hollywood 

Graph: POKEC 

Prune 4 to 12× vertices



Algorithms and Impact of  Vertex & Edge Pruning
Algorithm name What is does
Pull Standard pull-based Louvain

Pull-prune Pull + vertex pruning in all iterations
Hybrid Switching between pull and push

Hybrid-prune Hybrid + vertex pruning in push phases only

Algorithmic Improvement pull pull prune hybrid hybrid prune

Vertices
Visited 27.7M 5.44M 27.7M 6.12M

Reduction 1.00x 5.09x 1.00x 4.52x

Edges
Visited 2.82G 0.95G 0.45G 0.45G

Reduction 1.00x 2.98x 6.20x 6.20x

Algorithmic Improvement pull pull prune hybrid hybrid prune

Vertices
Visited 833M 6.09M 833M 9.49M

Reduction 1.00x 13.68x 1.00x 8.78x

Edges
Visited 2.34G 0.3G 0.18G 0.182G

Reduction 1.00x 7.70x 12.82x 12.82x Graph: Hollywood 

Graph: POKEC 

Does not prune additional edges compared to hybrid



Performance Benefit using Single Thread

 Edge pruning : 1.3× – 3.9×

 Vertex pruning : 1.5× – 4 ×

 Vertex pruning on top of  edge pruning: upto1.9×

Graphs Pull Hybrid Pull-Prune Hybrid-Prune

Q T Q T Q T Q T

Wikipedia 0.57 98.9 0.57 74.1 0.57 65.3 0.57 61.9

Hollywood 0.73 57.2 0.73 14.8 0.73 31.5 0.73 12.9

POKEC 0.68 19.3 0.68 11.1 0.68 4.82 0.68 5.7

Q= Modularity, T= Time (s)



Take-home Message

Even without any parallelization, edge and vertex pruning 
gives up to 4x speedup over the standard Louvain algorithm.



Parallel
Pull, Push, Pull-Push Algorithms



Parallel Pull-based Louvain

Private hashmap for each thread 



Parallel Pull-based Louvain

For each vertex in parallel



Parallel Pull-based Louvain

Change community membership atomically



Parallel Pull-based Louvain

Compute modularity using parallel reduction



Parallel Push-based
Shared hashmap of  size O(E)  

Update hashmaps using Locks



Experimental Results



Input Graphs

Graphs V E Graphs V E

CA 1.08E+05 1.87E+05 CitationCiteseer 2.68E+05 2.31E+06

CaidaRouterLevel 1.92E+05 1.22E+06 CoAuthorsDBLP 2.99E+05 1.96E+06

POKEC 5.40E+05 3.05E+07 CoPapersCiteseer 4.34E+05 3.21E+07

Hollywood 1.14E+06 1.13E+08 Amazon 5.49E+05 1.85E+06

Wikipedia 3.97E+07 9.01E+07 As-Skitter 1.70E+06 2.22E+07

Uk-2005 1.68E+07 3.96E+08 Rgg_n_2_24_s0 1.68E+07 2.65E+08

Friendster 6.65E+07 1.89E+09 Webbase-2001 1.18E+08 1.02E+09



Performance Analysis Platform

Platform Metric Platform 1 Platform 2

Processor Intel(R) Xeon(R) Platinum 8180 Intel(R) Xeon(R) CPU E7-8880 v3 

CPU Clock 2.50GHz 2.30GHz

Sockets 2 4

Cores 56 (each socket has 28) 72 (each socket with 18 cores)

L3 Cache 97 MB 46.1 MB 

Memory Speed 2666 MHz 1200 MHz

Memory Size 196.7GB 1 TB

Compiler Intel ICC 18.0

Parallel Program C with OpenMP

Experimental Platforms



Algorithms

Algorithm name What is does

Pull Standard pull-based Louvain

Pull-prune Pull + vertex pruning in all iterations

Hybrid Switching between pull and push

Hybrid-prune Hybrid + vertex pruning in push phases only



Hybrid Pull-Push vs Pull Based Louvain 
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On the 56 cores of  Skylake
 Pull algorithm gets 19.8×
 Pull-prune gets 78×
 Hybrid gets 35×
 Hybrid-prune gets 63× speedup 

Dataset: POKEC, Outer loop 0

POKEC 5.40E+05 3.05E+07

Graphs V E



Hybrid Pull-Push vs Pull Based Louvain 
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Dataset: Hollywood, Outer loop 0

On the 56 cores of  Skylake
 Pull algorithm gets 12×
 Pull-prune gets 26×
 Hybrid gets 21×
 Hybrid-prune gets 23× speedup 

Hollywood 1.14E+06 1.13E+08

Graphs V E



Comparison with Prior State-of-the-art

The Louvain in Grappolo

Hao Lu, Mahantesh Halappanavar, and Ananth Kalyanaraman. 2015. Parallel
heuristics for scalable community detection. Parallel Comput. 47 (2015), 19–37



5-11 × faster than the Louvain in Grappolo
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 Pull-prune 5-11 × faster 
 Hybrid-prune 5-8 × faster, best modularity
 Modularity is higher in pull-prune and hybrid-prune

Dataset: Hollywood, Outer loop 0

Compared to Grappolo

Hollywood 1.14E+06 1.13E+08

Graphs V E



2-8 × faster than the Louvain in Grappolo

 Pull-prune is 2- 8 × faster
 Hybrid-prune is 2 - 8 × faster, provides best modularity 

Graph
hybrid-prune pull-prune Grappolo

Grappolo vs 
hybrid-prune

Q T Q T Q T Modularity Speedup

caidaRouterLevel 0.68 0.05 0.65 0.02 0.68 0.11 1.00 2.20

citationCiteeer 0.6 0.06 0.62 0.04 0.59 0.3 1.02 5.00

coPaperDBLP 0.77 0.41 0.77 0.11 0.71 0.85 1.08 2.07

coPaperCiteeer 0.84 0.37 0.84 0.12 0.8 0.85 1.05 2.30

as-Skitter 0.72 0.9 0.71 1.37 0.69 2.12 1.04 2.36

uk-2005 0.95 21.01 0.88 17.71 0.83 136.95 1.14 6.52

rgg_n_2_24_0 0.92 1.71 0.89 1.75 0.74 13.54 1.24 7.92

Compared to Grappolo (on 56 cores of  Skylake)

Q= Modularity, T= Time (s)



4-16 × faster than the Louvain in Grappolo

skyLake
Core

Graph Grappolo Pull Hybrid Pull-
prune

Hybrid-
prune

Speedup 

Q T Q T Q T Q T Q T

1 amazon 0.67 3.76 0.69 0.64 0.69 0.69 0.68 0.23 0.69 0.53 16.05

8 0.67 0.79 0.68 0.12 0.68 0.11 0.68 0.09 0.68 0.08 9.49

1 ca 0.54 0.30 0.56 0.10 0.56 0.09 0.56 0.04 0.56 0.07 4.22

8 0.54 0.08 0.56 0.02 0.56 0.01 0.56 0.01 0.56 0.01 8.21

 Hybrid-prune is 4-16 × faster 
 Modularity is always higher or the same

Compared to Grappolo (on 56 cores of  Skylake)

Q= Modularity, T= Time (s)



Quality: Normalized Mutual Information (NMI)

Algorithm Pull Pull_prune Hybrid Hybrid_prune Grappolo

Threads 1 56 1 56 1 56 1 56 1 56

NMI 
Score

ca 1.000 0.995 1.000 0.995 0.999 0.995 1.000 0.995 0.996 0.980

amazon 1.000 0.991 0.999 0.990 0.998 0.991 0.999 0.990 0.991 0.946

Our algorithms are better in NMI score than Grappolo, baseline is sequential Louvain Algorithm

NMI score >0.8 is considered good



Louvain on Large Graphs
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 Pull-prune and Hybrid-prune is 2-4x faster
 Better Modularity
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FRIENDSTER, V = 65,608,366 E = 3,612,134,270 

Compared to Grappolo (on 72 cores of  Haswell) Platform: 72 core Haswell machine



“Our MPI+OpenMP implementation yields about 7x speedup (on 4K processes) for soc-friendster network (1.8B 
edges) over Grappolo on 64 threads on NERSC CORI system), without compromising output quality”

Comparison with Recent Distributed Memory Algorithm

2.3x

Sayan et. al. Distributed Louvain Algorithm for Graph Community Detection, IPDPS 2018
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Sayan et. al. Distributed Louvain Algorithm for Graph Community Detection, IPDPS 2018

Quick math says our approach could 
be 4 - 8x faster than this algorithm 

Comparison with Recent Distributed Memory Algorithm

2.3x

“Our MPI+OpenMP implementation yields about 7x speedup (on 4K processes) for soc-friendster network (1.8B 
edges) over Grappolo on 64 threads on NERSC CORI system), without compromising output quality”



Conclusion – a new state-of-art for Louvain

 Prune unnecessary edge and vertex exploration during community detection

 Edges pruned by 6 to 13× without sacrificing quality – up to 4x speedup

 Vertex pruned by 4 to 12× with minimal sacrifice quality – up to 4x speedup

 Parallel algorithms 2-16x faster than prior state-of-the-art without sacrificing quality 

We will be happy to make the code public. Please contact: jesmin.jahan.tithi@intel.com


