
Prune the Unnecessary:
Parallel Pull-Push Louvain Algorithms
with Automatic Edge Pruning

Jesmin Jahan Tithi ♥

Andrzej Stasiak *

Sriram Aananthakrishnan*

Fabrizio Petrini ♥

♥Parallel Computing Labs, Intel,
*Data Center Group, Intel.

What is community?

What is Community?

Protein-Protein Interaction Network

Image source: Google Image

World Wide Web

community

 Sets of vertices that have dense intra-connections, but sparse inter-connections

 Uncover hidden structures inside a graph in a form of coherent modules of vertices

 Strongly correlated to functional and structural properties

What is community detection?

What is Community Detection?

 Algorithms to identify communities in a network

 Applications: network analysis to retrieve information or patterns of the network

Virality Prediction and Community Structure in Social Networks
http://senseable.mit.edu
/community_detection/Nodus Labs Against Putin Facebook protest group visualization, December 2011

How to measure the quality of
the detected communities?

A Measure of Solution Quality

� ��� = � ��,� , ��� ��� �, � ∈ �

 � ���� = � ��,� , ��� ��� � ∈ � �� � ∈ �

� = ∑ ��,��(�,�)

����������, � = �
∑ ���

2�
−

∑����
�

4��

�∈�

Max Value of Q = 1

 |Q| ∈ (0, 1], and the higher the better

 Community detection algorithm identifies communities in a way that maximizes modularity

 Modularity: A measure of interconnectedness of the communities

How do we maximize
modularity?

A Recipe of Modularity Optimization

����������, � = ∑
∑ ���

��
−

∑����
�

���
 �∈� Max Value of Q = 1

 Large values of � correlate with high ∑ ��� and low ∑����

- Communities that are dense within their structure and weakly coupled among each other

 To get high ∑ ���, the highest possible number of edges should fall in each community

 Modularity: A measure of interconnectedness of the communities

A Recipe of Modularity Optimization

����������, � = ∑
∑ ���

��
−

∑����
�

���
 �∈� Max Value of Q = 1

 Large values of � correlate with high ∑ ��� and low ∑����

- Communities that are dense within their structure and weakly coupled among each other

 To decrease ∑����, divide the network into several communities with small total degrees

 Modularity: A measure of interconnectedness of the communities

NP-hardness of Modularity Optimization

Challenge: Finding communities with optimal modularity is “NP-hard”

 Modularity: A measure of interconnectedness of the communities

����������, � = ∑
∑ ���

��
−

∑����
�

���
 �∈� Max Value of Q = 1

Louvain
Maximizes modularity following a greedy algorithm

V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, "Fast
unfolding of communities in large networks," J. Stat. Mech. (2008)
P10008, p. 12, 2008

Louvain: Algorithm Steps

 Outer Loop: Traverse the graph in several passes to incrementally build communities

Louvain: Algorithm Steps

 Outer Loop: Traverse the graph in several passes to incrementally build communities

 Phase 1: Modularity Optimization/Inner loop

V. D. Blondel, J.-L. Guillaume, R. Lambiotte
and E. Lefebvre, "Fast unfolding of
communities in large networks," J. Stat.
Mech. (2008) P10008, p. 12, 2008

Louvain: Algorithm Steps

 Outer Loop: Traverse the graph in several passes to incrementally build communities

 Phase 2: Community Aggregation and Graph Reconstruction

V. D. Blondel, J.-L. Guillaume, R. Lambiotte
and E. Lefebvre, "Fast unfolding of
communities in large networks," J. Stat.
Mech. (2008) P10008, p. 12, 2008

Louvain: Algorithm Steps

 Outer Loop: Traverse the graph in several passes to incrementally build communities

 Phase 1: Modularity Optimization/Inner loop - � � � + �

 Phase 2: Community Aggregation and Graph Reconstruction - � � + �

A key data structure to decide
pull or push

2
3

1
6

5

4

c=1

c=4

c=7

Hash map NCW– ⟨ community_id, Some of edge weights ⟩

A hash map with ⟨key = neighboring community, val = sum of edge weights to that community⟩

����=[⟨ c=1, ��→�=2 ⟩, ⟨c=7, ��→�=1⟩]

⟨ �ommunity_id, Some of edge weights ⟩

Vertex 1 is neighbor to 2, 3 (members of community 1) => sum of edges weights=2

Vertex 1 is neighbor to 7 (member of community 7) => sum of edge weight = 1

Hash map NCW– ⟨ community_id, Some of edge weights ⟩

A hash map with ⟨key = neighboring community, val = sum of edge weights to that community⟩

����=[⟨ c=1, ��→�=2 ⟩, ⟨c=7, ��→�=1⟩]

⟨ �ommunity_id, Some of edge weights ⟩

2
3

1
6

5

4

c=1

c=4

c=7

Vertex 1 is neighbor to 2, 3 (members of community 1) => sum of edges weights=2

Vertex 1 is neighbor to 7 (member of community 7) => sum of edge weight = 1

Repeat if there is a change in community membership

Louvain Pseudocode

Initialize each vertex in its own community
Compute initial modularity

Louvain Pseudocode

Louvain Pseudocode

Phase 1/ inner loop starts

Louvain Pseudocode

For each vertex, build NCW by pulling community info
from neighbors

Louvain Pseudocode

Find the best community to move into by iterating
though all entries of NCW

Louvain Pseudocode

Move to the best community and update community info

Louvain Pseudocode

Once done for all vertices, compute new modularity
and repeat if modularity increased by a threshold

2
3

1
6

5

4

c=1

c=4

c=7

1

3

3

2

31
1

Louvain Pseudocode

When modularity stabilizes, create a new graph by
merging all vertices in same community into one

merged

We call the standard
Louvain Algorithm a
Pull-based Louvain
Algorithm
To build ��� at each iteration, it pulls latest
info from neighbors

Unnecessary work in Louvain

Observations

Number of vertex moves drops significantly
after the first few iterations of phase1

0 5 10 15 20

0

1,000

2,000

3,000

4,000

5,000

6,000

inner loop iterations

ve
rt

ic
es

 m
o

ve
d

JohnsHopkins

outer loop 0 outer loop 1

0 10 20 30 40 50

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

inner loop iterations

V
er

ti
ce

s
m

o
ve

d

pokec

outer loop 0 outer loop 1

 For a particular outer loop, the number of vertices that change communities
drops drastically after the first few inner loop iterations (e.g., 5).

0 5 10 15 20

0

1,000

2,000

3,000

4,000

5,000

6,000

inner loop iterations

ve
rt

ic
es

 m
o

ve
d

JohnsHopkins

outer loop 0 outer loop 1

0 10 20 30 40 50

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

inner loop iterations

V
er

ti
ce

s
m

o
ve

d

pokec

outer loop 0 outer loop 1

 The number of vertices that change communities in the later inner loop iterations is minimal

Number of vertex moves drops significantly after
the first few iterations of phase1

Implications

0 5 10 15 20

0

1,000

2,000

3,000

4,000

5,000

6,000

inner loop iterations

ve
rt

ic
es

 m
o

ve
d

JohnsHopkins

outer loop 0 outer loop 1

0 10 20 30 40 50

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

inner loop iterations

V
er

ti
ce

s
m

o
ve

d

pokec

outer loop 0 outer loop 1

 Wasteful to scan all neighbors to compute ���, if no change in neighborhood

 Wasteful to iterate over all vertices for each iteration of phase 1, vertices do not move

Pruning Unnecessary Work in Louvain

Prune vertices that are unlikely to move

Prune unnecessary neighborhood exploration

Push-based Louvain
Algorithm

Vertex does not pull, rather
neighbors actively push any
changes

Push-based Louvain

The Push-based algorithm starts with an initialized
���, assuming each vertex is in its own community

Push-based Louvain

During Phase 1, it never recreates ���

Push-based Louvain

If there is a change in community membership

Push-based Louvain

Update ��� for the vertex itself, and push
updates to all its neighbors

Pros and Cons of Pull and Push

Pull – Cons

0 10 20 30 40 50

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

inner loop iterations

V
er

ti
ce

s
m

o
ve

d

pokec

outer loop 0 outer loop 1

Does redundant memory read
by scanning all vertices and their neighbors to rebuild
��� for each inner loop,
even when the vertex’s neighborhood has not changed

Unnecessary neighborhood scan

0 10 20 30 40 50

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

inner loop iterations

V
er

ti
ce

s
m

o
ve

d

pokec

outer loop 0 outer loop 1

Push – Pros

Scans through all neighbors of a vertex only when a vertex
changes its community to update ���

Avoids exploring edges unnecessarily

Implications

A push-based Louvain algorithm is likely to do fewer edge explorations compared to a pull-based

0 10 20 30 40 50

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

inner loop iterations

V
er

ti
ce

s
m

o
ve

d
pokec

outer loop 0 outer loop 1

in the later inner loop iterations

0 10 20 30 40 50

0

500,000

1,000,000

1,500,000

inner loop iterations

V
er

ti
ce

s
m

o
ve

d

pokec

outer loop 0 outer loop 1

Push – Cons

Push does more writes to memory compared to a pull-based when there is a lot of moves

Push tends to update all neighbors’ NCW in those iterations

0 10 20 30 40 50

0

500,000

1,000,000

1,500,000

inner loop iterations

V
er

ti
ce

s
m

o
ve

d

pokec

outer loop 0 outer loop 1

Pull – Pros

Pull does fewer writes compared to a push-based algorithm when there is a lot of moves

Pull does fewer writes compared to a push-based

Implications

Using a push-based algorithm in the first few inner loop iterations might not be beneficial

0 10 20 30 40 50

0

500,000

1,000,000

1,500,000

inner loop iterations

V
er

ti
ce

s
m

o
ve

d

pokec

outer loop 0 outer loop 1

Take-home Message
Neither pull nor push performs best across all iteration space

Pull-Push/Hybrid Louvain Best of both worlds

Pull-Push Louvain Algorithm

How it works

For a given outer loop

 Start with a pull-based

 Switch to a push-based after a given #of iterations

0 20 40 60

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

inner loop iterations

V
er

ti
ce

s
m

o
ve

d

pokec

outer loop 0

Push-based

Pull-Push Louvain Algorithm

Benefits

 Explores a vertex’s neighborhood when there a change

 Automatically prunes a significant number of edge-explorations

0 20 40 60

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

inner loop iterations

V
er

ti
ce

s
m

o
ve

d

pokec

outer loop 0

Push-based

Automatic Edge Pruning of Pull-Push Algorithm

Prunes 6-13 × edges compared to a standard (pull-based) Louvain

Algorithmic Improvement pull hybrid

Vertices
Visited 27.7M 27.7M

Reduction 1.00x 1.00x

Edges
Visited 2.82G 0.45G

Reduction 1.00x 6.20x

Algorithmic Improvement pull hybrid

Vertices
Visited 833M 833M

Reduction 1.00x 1.00x

Edges
Visited 2.34G 0.18G

Reduction 1.00x 12.82x

Graph: POKEC Graph: Hollywood

Vertex Pruning

Vertex Pruning

 It is unnecessary to iterate over all vertices - number of vertices changing community drops
significantly after the first few inner loop iterations

 We show analytical and intuitive derivation of the vertices that can be pruned with minimal sacrifice

0 10 20 30 40 50

0

500,000

1,000,000

1,500,000

inner loop iterations

V
er

ti
ce

s
m

o
ve

d

pokec

outer loop 0 outer loop 1

Most vertices do not
move

Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:

��→� =
��→�

��
−

∑ � ��
���

���
 =

�

��
��→� −

∑ � ��
���

�

Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:

��→� =
��→�

��
−

∑ � ��
���

���
 =

�

��
��→� −

∑ � ��
���

�

��→� = sum of edge weights from u to community c

∑�
��� = ∑ ��,� , ��� ��� � ∈ � �� � ∈ �, � = ∑ ��,��(�,�)

Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:

��→� =
��→�

��
−

∑ � ��
���

���
 =

�

��
��→� −

∑ � ��
���

�

Let, �� =
∑�

���

�
, �� = (0, 1⟩

Total community edge

Total graph edge

Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:

��→� =
��→�

��
−

∑ � ��
���

���
 =

�

��
��→� −

∑ � ��
���

�

��, �� = �� ∗ � � ⇒ ��→� ~ ��→� − ��

total edges of vertex u

Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:

Let, �� =
∑�

���

�
, �� = (0, 1⟩

�� = �� ∗ � � ⇒ ��→� ~ ��→� − ��

Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:

Cm does not play an important role in the
modularity gain

Let, �� =
∑�

���

�
, �� = (0, 1⟩

�� = �� ∗ � � ⇒ ��→� ~ ��→� − ��

Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:

After first few iterations, �� does not play an
important role in the modularity gain

Let, �� =
∑�

���

�
, �� = (0, 1⟩

�� = �� ∗ � � ⇒ ��→� ~ ��→� − ��

Vertex Pruning: Analytical Derivation

Modularity gain by moving a vertex u to a community c:

Let, �� =
∑�

���

�
, �� = (0, 1⟩

�� = �� ∗ � � ⇒ ��→� ~ ��→� − ��

Intuitive: Focus on the vertices whose w�→� decreases

Intuitive: Skip the vertices whose ∑ is�
��� impacted by a move

Impact on modularity is small if applied on the push-phases – later inner loop iterations

Vertex Pruning: Analytical Derivation

What to recompute? (Analytical Derivation in Paper)

If a vertex moves, only recompute for its first level neighbors that are *not* in its new community
=> recompute red neighbors, impacts on green and blue are minimal, no impact on white

Algorithms and Impact of Vertex & Edge Pruning
Algorithm name What is does
Pull Standard pull-based Louvain

Pull-prune Pull + vertex pruning in all iterations
Hybrid Switching between pull and push

Hybrid-prune Hybrid + vertex pruning in push phases only

Algorithmic Improvement pull pull prune hybrid hybrid prune

Vertices
Visited 27.7M 5.44M 27.7M 6.12M

Reduction 1.00x 5.09x 1.00x 4.52x

Edges
Visited 2.82G 0.95G 0.45G 0.45G

Reduction 1.00x 2.98x 6.20x 6.20x

Algorithmic Improvement pull pull prune hybrid hybrid prune

Vertices
Visited 833M 6.09M 833M 9.49M

Reduction 1.00x 13.68x 1.00x 8.78x

Edges
Visited 2.34G 0.3G 0.18G 0.182G

Reduction 1.00x 7.70x 12.82x 12.82x Graph: Hollywood

Graph: POKEC

Prune 4 to 12× vertices

Algorithms and Impact of Vertex & Edge Pruning
Algorithm name What is does
Pull Standard pull-based Louvain

Pull-prune Pull + vertex pruning in all iterations
Hybrid Switching between pull and push

Hybrid-prune Hybrid + vertex pruning in push phases only

Algorithmic Improvement pull pull prune hybrid hybrid prune

Vertices
Visited 27.7M 5.44M 27.7M 6.12M

Reduction 1.00x 5.09x 1.00x 4.52x

Edges
Visited 2.82G 0.95G 0.45G 0.45G

Reduction 1.00x 2.98x 6.20x 6.20x

Algorithmic Improvement pull pull prune hybrid hybrid prune

Vertices
Visited 833M 6.09M 833M 9.49M

Reduction 1.00x 13.68x 1.00x 8.78x

Edges
Visited 2.34G 0.3G 0.18G 0.182G

Reduction 1.00x 7.70x 12.82x 12.82x Graph: Hollywood

Graph: POKEC

Does not prune additional edges compared to hybrid

Performance Benefit using Single Thread

 Edge pruning : 1.3× – 3.9×

 Vertex pruning : 1.5× – 4 ×

 Vertex pruning on top of edge pruning: upto1.9×

Graphs Pull Hybrid Pull-Prune Hybrid-Prune

Q T Q T Q T Q T

Wikipedia 0.57 98.9 0.57 74.1 0.57 65.3 0.57 61.9

Hollywood 0.73 57.2 0.73 14.8 0.73 31.5 0.73 12.9

POKEC 0.68 19.3 0.68 11.1 0.68 4.82 0.68 5.7

Q= Modularity, T= Time (s)

Take-home Message

Even without any parallelization, edge and vertex pruning
gives up to 4x speedup over the standard Louvain algorithm.

Parallel
Pull, Push, Pull-Push Algorithms

Parallel Pull-based Louvain

Private hashmap for each thread

Parallel Pull-based Louvain

For each vertex in parallel

Parallel Pull-based Louvain

Change community membership atomically

Parallel Pull-based Louvain

Compute modularity using parallel reduction

Parallel Push-based
Shared hashmap of size O(E)

Update hashmaps using Locks

Experimental Results

Input Graphs

Graphs V E Graphs V E

CA 1.08E+05 1.87E+05 CitationCiteseer 2.68E+05 2.31E+06

CaidaRouterLevel 1.92E+05 1.22E+06 CoAuthorsDBLP 2.99E+05 1.96E+06

POKEC 5.40E+05 3.05E+07 CoPapersCiteseer 4.34E+05 3.21E+07

Hollywood 1.14E+06 1.13E+08 Amazon 5.49E+05 1.85E+06

Wikipedia 3.97E+07 9.01E+07 As-Skitter 1.70E+06 2.22E+07

Uk-2005 1.68E+07 3.96E+08 Rgg_n_2_24_s0 1.68E+07 2.65E+08

Friendster 6.65E+07 1.89E+09 Webbase-2001 1.18E+08 1.02E+09

Performance Analysis Platform

Platform Metric Platform 1 Platform 2

Processor Intel(R) Xeon(R) Platinum 8180 Intel(R) Xeon(R) CPU E7-8880 v3

CPU Clock 2.50GHz 2.30GHz

Sockets 2 4

Cores 56 (each socket has 28) 72 (each socket with 18 cores)

L3 Cache 97 MB 46.1 MB

Memory Speed 2666 MHz 1200 MHz

Memory Size 196.7GB 1 TB

Compiler Intel ICC 18.0

Parallel Program C with OpenMP

Experimental Platforms

Algorithms

Algorithm name What is does

Pull Standard pull-based Louvain

Pull-prune Pull + vertex pruning in all iterations

Hybrid Switching between pull and push

Hybrid-prune Hybrid + vertex pruning in push phases only

Hybrid Pull-Push vs Pull Based Louvain

0.125

0.25

0.5

1

2

4

8

16

32

1 4 16 64

T
im

e
(s

)
[l

o
g

 s
ca

le
]

Cores [log scale]

Time (s)

pull hybrid pull-prune hybrid-prune

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 4 16 64

M
o

d
u

la
ri

ty

Cores [log scale]

Modularity

pull hybrid pull-prune hybrid-prune

0.5
1
2
4
8

16
32
64

128

1 4 16 64

T
1/

T
p

Cores [log scale]

Strong scaling wrt sequential pull

pull hybrid pull-prune hybrid-prune

On the 56 cores of Skylake
 Pull algorithm gets 19.8×
 Pull-prune gets 78×
 Hybrid gets 35×
 Hybrid-prune gets 63× speedup

Dataset: POKEC, Outer loop 0

POKEC 5.40E+05 3.05E+07

Graphs V E

Hybrid Pull-Push vs Pull Based Louvain

1

2

4

8

16

32

64

1 4 16 64

T
im

e
(s

)
[l

o
g

 s
ca

le
]

Cores [log scale]

Time (s)

hybrid pull-prune hybrid-prune pull

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 4 8 16 32 64

M
o

d
u

la
ri

ty

Cores [log scale]

Modularity

pull hybrid pull-prune hybrid-prune

1

2

4

8

16

32

64

1 2 4 8 16 32 64

T
1/

T
p

Cores [log scale]

Strong scaling wrt sequential pull

hybrid pull-prune hybrid-prune pull

Dataset: Hollywood, Outer loop 0

On the 56 cores of Skylake
 Pull algorithm gets 12×
 Pull-prune gets 26×
 Hybrid gets 21×
 Hybrid-prune gets 23× speedup

Hollywood 1.14E+06 1.13E+08

Graphs V E

Comparison with Prior State-of-the-art

The Louvain in Grappolo

Hao Lu, Mahantesh Halappanavar, and Ananth Kalyanaraman. 2015. Parallel
heuristics for scalable community detection. Parallel Comput. 47 (2015), 19–37

5-11 × faster than the Louvain in Grappolo

1
2
4
8

16
32
64

128
256

1 4 16 64

T
im

e
(s

)
[l

o
g

 s
ca

le
]

Cores [log scale]

Time (s)

pull-prune hybrid-prune Grappolo

0.6

0.63

0.66

0.69

0.72

0.75

1 4 16 64

M
o

d
u

la
ri

ty

Cores [log scale]

Modularity

pull-prune hybrid-prune Grappolo

0.25
0.5

1
2
4
8

16
32
64

1 4 16 64

T
1/

T
p

Cores [log scale]

Strong scaling wrt sequential pull

pull-prune hybrid-prune Grappolo

 Pull-prune 5-11 × faster
 Hybrid-prune 5-8 × faster, best modularity
 Modularity is higher in pull-prune and hybrid-prune

Dataset: Hollywood, Outer loop 0

Compared to Grappolo

Hollywood 1.14E+06 1.13E+08

Graphs V E

2-8 × faster than the Louvain in Grappolo

 Pull-prune is 2- 8 × faster
 Hybrid-prune is 2 - 8 × faster, provides best modularity

Graph
hybrid-prune pull-prune Grappolo

Grappolo vs
hybrid-prune

Q T Q T Q T Modularity Speedup

caidaRouterLevel 0.68 0.05 0.65 0.02 0.68 0.11 1.00 2.20

citationCiteeer 0.6 0.06 0.62 0.04 0.59 0.3 1.02 5.00

coPaperDBLP 0.77 0.41 0.77 0.11 0.71 0.85 1.08 2.07

coPaperCiteeer 0.84 0.37 0.84 0.12 0.8 0.85 1.05 2.30

as-Skitter 0.72 0.9 0.71 1.37 0.69 2.12 1.04 2.36

uk-2005 0.95 21.01 0.88 17.71 0.83 136.95 1.14 6.52

rgg_n_2_24_0 0.92 1.71 0.89 1.75 0.74 13.54 1.24 7.92

Compared to Grappolo (on 56 cores of Skylake)

Q= Modularity, T= Time (s)

4-16 × faster than the Louvain in Grappolo

skyLake
Core

Graph Grappolo Pull Hybrid Pull-
prune

Hybrid-
prune

Speedup

Q T Q T Q T Q T Q T

1 amazon 0.67 3.76 0.69 0.64 0.69 0.69 0.68 0.23 0.69 0.53 16.05

8 0.67 0.79 0.68 0.12 0.68 0.11 0.68 0.09 0.68 0.08 9.49

1 ca 0.54 0.30 0.56 0.10 0.56 0.09 0.56 0.04 0.56 0.07 4.22

8 0.54 0.08 0.56 0.02 0.56 0.01 0.56 0.01 0.56 0.01 8.21

 Hybrid-prune is 4-16 × faster
 Modularity is always higher or the same

Compared to Grappolo (on 56 cores of Skylake)

Q= Modularity, T= Time (s)

Quality: Normalized Mutual Information (NMI)

Algorithm Pull Pull_prune Hybrid Hybrid_prune Grappolo

Threads 1 56 1 56 1 56 1 56 1 56

NMI
Score

ca 1.000 0.995 1.000 0.995 0.999 0.995 1.000 0.995 0.996 0.980

amazon 1.000 0.991 0.999 0.990 0.998 0.991 0.999 0.990 0.991 0.946

Our algorithms are better in NMI score than Grappolo, baseline is sequential Louvain Algorithm

NMI score >0.8 is considered good

Louvain on Large Graphs

0

200

400

600

800

18 36 54 72

T
im

e
(s

)
#cores

Grappolo pull hybrid pull-prune hybrid-prune

 Pull-prune and Hybrid-prune is 2-4x faster
 Better Modularity

0.4

0.45

0.5

0.55

0.6

0.65

18 36 54 72

M
o

du
la

ri
ty

#cores

pull-prune hybrid hybrid-prune Grappolo

FRIENDSTER, V = 65,608,366 E = 3,612,134,270

Compared to Grappolo (on 72 cores of Haswell) Platform: 72 core Haswell machine

“Our MPI+OpenMP implementation yields about 7x speedup (on 4K processes) for soc-friendster network (1.8B
edges) over Grappolo on 64 threads on NERSC CORI system), without compromising output quality”

Comparison with Recent Distributed Memory Algorithm

2.3x

Sayan et. al. Distributed Louvain Algorithm for Graph Community Detection, IPDPS 2018

0

200

400

600

800

18 36 54 72

T
im

e
(s

)

#cores
Grappolo pull hybrid
pull-prune hybrid-prune

Sayan et. al. Distributed Louvain Algorithm for Graph Community Detection, IPDPS 2018

Quick math says our approach could
be 4 - 8x faster than this algorithm

Comparison with Recent Distributed Memory Algorithm

2.3x

“Our MPI+OpenMP implementation yields about 7x speedup (on 4K processes) for soc-friendster network (1.8B
edges) over Grappolo on 64 threads on NERSC CORI system), without compromising output quality”

Conclusion – a new state-of-art for Louvain

 Prune unnecessary edge and vertex exploration during community detection

 Edges pruned by 6 to 13× without sacrificing quality – up to 4x speedup

 Vertex pruned by 4 to 12× with minimal sacrifice quality – up to 4x speedup

 Parallel algorithms 2-16x faster than prior state-of-the-art without sacrificing quality

We will be happy to make the code public. Please contact: jesmin.jahan.tithi@intel.com

