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Data Caching is Important

* There are varied accesses frequencies for applications
data.

— Many real applications follow power-law distribution for
their data accesses.

— Put hot data in cache can speedup the performance.
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Fig. 4. Video popularity distributions of YouTube and Daum videos follow a power-law distribution in the waist with exponents between 1.5 and 2.5. YouTube
Sci and Daum Food exhibit decays in the tail of their distributions, which represents the most frequently viewed content.

Cha et al. Analyzing the Video Popularity Characteristics of Large-Scale User Generated Content Systems, TON’09. 3



Cache Sharing is a Trend

* Cache sharing can improve the cache efficiency.

— Allow overload users to use the idle cache resources from
underloaded users for maximum cache utilization.

— Keep only one copy of shared data for multiple users.

— Enable global efficiency optimization across multiple
users.

— Supported by many existing cache systems for caching

data in DRAM for fast data access.
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The capacity of DRAM is limited for big data caching 4




Semi-External Memory (SEM) Cache
Model

* Overcome the capacity limitation of DRAMs by
adding SSDs.
— Data can be cached either in DRAMs or SSDs.
— The latency of DRAMs is much smaller than SSDs.
— Cache Hit: an access to DRAMs or SSDs

— Cache Miss: an access to HDDs.
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Cache Resource Allocation

* Integrate DRAMs and SSDs of SEM with the

awareness of their different data access latencies.

— If latency ratio of DRAM to SSDs is 1:6, then 1GB DRAM
can trade for 6GB SSD.

— Users care about the total allocated cache resources of
all storage devices in SEM, rather than separately.

* Different allocation policies can have different
allocation results on Fairness and Efficiency.

— Global Sharing Policy (e.g., LFU)
— Separate Max-min Fairness Policy
— Global Max-min Fairness Policy



Motivating Example

* Consider a SEM consisting of 100 GB DRAM and 300 GB SSD, where the
latency ratio of DRAM to SSD is 1/6. It is shared by two users 1 and 2
equally. User 1 contains two data d, ; (size: 300 GB, access frequency:
60 times/sec) and d, , (size: 100 GB, access frequency: 100 times/sec).
User 2 has two data d, ; (size: 100 GB, access frequency: 15 times/sec)
and d, , (size: 200 GB, access frequency: 18 times/sec).

Capacitya
(GB)
300 +——————-
5 User1'sdq:
Q <300GB, 60 times/sec>
/4 Usert’'sdq,:
4 <100GB, 100 times/sec>
[I]]] User2's da; :
100 <100GB, 15 times/sec>
User2's d,;:
<200GB, 18 times/sec>

DRAM SSD Devices



Global Sharing Policy (e.g., LFU)

* Consider a SEM consisting of 100 GB DRAM and 300 GB SSD, where the
latency ratio of DRAM to SSD is 1/6. It is shared by two users 1 and 2
equally. User 1 contains two data d, ; (size: 300 GB, access frequency:
60 times/sec) and d, , (size: 100 GB, access frequency: 100 times/sec).
User 2 has two data d, ; (size: 100 GB, access frequency: 15 times/sec)

and d, , (size: 200 GB, access frequency: 18 times/sec).
Capacitya

. (GB)

e Allocation results L

— User1’s Allocation:150=100/1+300/6
— User1’s Efficiency: 13000=100*100/1

Q} User1’s dq 4 :

[ <300GB, 60 times/sec>

/4 Userl'sdq,:
é <100GB, 100 times/sec>

7 /
7

+60*300/6 ﬂ]]] User2'sd,q :
— User2’s Allocation: 0 1001 <100GB, 15 times/sec>
— User2’s Efficiency: 0 / User2's dy, :
— Total efficiency: 13000 7 OB b imesisec”

DRAM SSD Devices

Unfairness Degree: [150/75 - 0/75]| = 2, SEM efficiency:13000 .
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Separate Max-min Fairness Policy

Consider a SEM consisting of 100 GB DRAM and 300 GB SSD, where the
latency ratio of DRAM to SSD is 1/6. It is shared by two users 1 and 2
equally. User 1 contains two data d, ; (size: 300 GB, access frequency:
60 times/sec) and d, , (size: 100 GB, access frequency: 100 times/sec).
User 2 has two data d, ; (size: 100 GB, access frequency: 15 times/sec)
and d, , (size: 200 GB, access frequency: 18 times/sec).

Capacitya
(GB)

Allocation results 300————————

— Userl’s Allocation:75=50/1+150/6
— User1’s Efficiency: 6833=50*100/1

+ (50*100+100*60)/6
— User2’s Allocation: 75=50/1+150/6 4,

7

7
— User2’s Efficiency: 1350=50*18/1 /

Q} User1’s dq 4 :

[ <300GB, 60 times/sec>
/4 Userl'sdq,:
é <100GB, 100 times/sec>

ﬂ]]] User2's da; :
<100GB, 15 times/sec>

User2's dy; :

<200GB, 18 times/sec>

50

+150*18/6

— Total efficiency: 8183=6833+1350

Unfairness Degree: |75/75 - 75/75| = 0, SEM efficiency:8183.

DRAM

SSD

—>
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Global Max-min Fairness Policy

* Consider a SEM consisting of 100 GB DRAM and 300 GB SSD, where the
latency ratio of DRAM to SSD is 1/6. It is shared by two users 1 and 2
equally. User 1 contains two data d, ; (size: 300 GB, access frequency:
60 times/sec) and d, , (size: 100 GB, access frequency: 100 times/sec).
User 2 has two data d, ; (size: 100 GB, access frequency: 15 times/sec)
and d, , (size: 200 GB, access frequency: 18 times/sec).

Capacitya
(GB)
* Allocation results U
_ \] User1’s dq 4 :
— User1’s Allocation:75=70/1+30/6 ) <300GB, 60 times/sec>
, .- _ _ 100 7 sdy,
— User1’s Efficiency: 7500=70*100/1 7 8188{)1GSB?1'00 .
*
+30 100/6 ﬂ]]] User2's da; :
— User2’s Allocation: 75=30/1+270/6 4, - <100GB, 15 times/sec>
— User2’s Efficiency: 1300=30%18/1 /// User2's dy
2 <200GB, 18 times/sec>
+(170*18+100*15)/6 EF=ss
DRAM SSD Devices

— Total efficiency: 8800=7500+1300
Unfairness Degree: |75/75 - 75/75| = 0, SEM efficiency:8800.
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Fairness VS Efficiency

* Tend to be a tradeoff between fairness and efficiency.

— Pursuing 100% fairness often results in poor efficiency, and
vice versa.

— Needs an allocation policy that can balance the two metrics
flexibly as users want.
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Elastic Semi-External Memory Allocation

* Basic Ideas: trade fairness for increasing cache
allocation efficiency with some degree of unfairness.

— Two terms: strict fairness and relaxed fairness.
e Strict fairness: 100% fairness between any two users.
» Relaxed fairness: |allocationOfUser1 - allocationOfUser2|< 6

— Maximize system efficiency while keep the relaxed fairness.

* ElasticSEM: A combination of two allocations.
— Fairness-stage allocation. (relaxed fairness guarantee)
— Efficiency-stage allocation. (efficiency maximization)

13



Elastic Semi-External Memory Allocation

Algorithm 1 Elastic Semi-external Memory Allocation (ElasticSEM).

Define a Knob o to balance s esnesev .

3:

the fairness and efficiency
allocation.

D2

FairnessNOTGuaranteedUserSet = {i € [1, n||H; <s; -o}.
FairnessGuaranteedUserSet = {i € [1, n||H; > s; - o}.
while -aoa T -aovai =57 0 ,
Choose User u from FairnessGuaranteedUserSet containing a cached data d of the
lowest priority in SEM.

6: if u € FaimessGuaranteedUserSet AND d.priority < d .priority then
DR : . 7 return CACHE ABORT
- Dlylde users into two sets: 8: elseif u=u andd .priority > d.priority then
fairnessGuaranteeUserset and o. return CACHE_ABORT

fairnessNotGuaranteeUserset 1
1

A user whose fairness is not 12:

satisfied always has the choice to!3
evict and cache data.

15:

else if u € FairnessNOTGuaranteedUserSet OR d.priority > d .prioritythen

1 ,. ocation = en
DRAM .availableSize+= d .size,

else if d, .location = SSD then,
SSD.availableSize+= d .size,

CACHEALLOCATION(u, d).

’
aDRAM _ '

a$SP= 4.

> Cache data d for user u.

— Priority can be frequency, last

access time.

Algorithm 2 Cache allocation function.

Detailed Description is
given in the paper.

|
2
3;
4:
=%
6
7

8:

: function CACHEALLOCATION(u, d)

A = DRAM.availableSize, D; =dPRAM
A, = SSD.availableSize,
if A > d.size then

A-=d.size, Dj+ =d.size.
elseif A < d.size then > Cache data d in both DRAM and SSD of SEM.
Split d into two parts d = {dj, dy } satisfying that d;.size = d.size — A, dy =

d-d.

A- =d.size,

D, =dSSD
i i 2
> Cache data d in DRAM of SEM.

A,—=d2.size, D+ =d;, D:.+:d2,

N




Cheating Problem for ElasticSEM

* Consider a SEM consisting of 100 GB DRAM and 300 GB SSD, where the
latency ratio of DRAM to SSD is 1/6. It is shared by two users 1 and 2
equally. User 1 contains two data d, ; (size: 300 GB, access frequency: 60
times/sec) and d , (size: 100 GB, access frequency: 100 times/sec). User 2
has two data d, ; (size: 100 GB, access frequency: 15 times/sec) and d, ,
(size: 200 GB, access frequency: 18 times/sec).

User1's di 1 :<300GB, 60 times/sec> ﬂ]m User2’s d; 1 :<100GB, 15 times/sec>
7
User1’s d;, :<100GB, 100 times/sec> E User2's d; 5 : <200GB, 18 times/sec>
Capacitya Capacity,
(GB) (GB)
300—------- \Q 300—f-—————- \Y
N
N
7
100 % 100 %
DRAM SSD Devices DRAM SSD Devices
(a) ElasticSEM with no cheating (b) ElasticSEM with cheating

Figure 3: ElasticSEM allocation for Example 1 with and without cheat-
ing, where the knob o = 0.5. In (b), user 2 makes spurious access to
dy,» such that its access frequency exceeds d ;, which makes it obtain
more resources in Figure 3 (b)(e.g., 100/1+75/6=112.5) than that in Fig-
ure 3 (a) (e.g., 25/6+200/6=37.5). 15



ElasticSEM with Cheating Detection and
Punishment Mechanism

Useri

accesses
(1) | data d;

No

d;; Cache
(3)
(2)]Yes

N3
cache hit

ElasticSEM

(4)

“ElasticSE
Fairness-stage
Allocation?

cache miss

(13)

Figure 4: ElasticSEM policy with cheating detection and punishment

mechanism.

Detailed Description
is given in the paper.
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Evaluation

e Alluxio Cluster
— 11 nodes, each with 8 CPU cores and 16GB memory.

— We configure 4GB memory as DRAM cache and use 8GB
memory to emulate SSD cache.

e Macro-Benchmarks

— Three different workloads including synthetic Facebook
workload, Purdue workload, TPC-H workload.

e Micro-Benchmarks

— Two users each with 40 files and equally share the SEM
cache resources.

Detailed setups are in the paper.
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Cheating and Punishment
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(a) Global resource sharing allocation (b) ElasticSEM allocation with Knob

with LFU. p=0.

Figure 5: The average response time measured for two users under
different allocation policies. User 1 starts cheating at the 400¢" acess.
User 2 started cheating at the 700" access.
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Fairness and Efficiency under

Different knobs

The system efficiency for User
1 and User 2 under different
knobs configurations. The
cache volume of SEM system
is set to 10GB for DRAM and
30GB for SSD, respectively.
We particularly show that the

sensitivity of knob

configuration on the tradeoff
between fairness and
efficiency is related to the
cached data distribution

and their sizes.
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(a) User 1 has 40 ﬁles of 1 GB each.
It has 5000 data accesses in total and
the data access complies with uni-
form distribution. User 2 has 40 files
of 1 GB each. It has 1000 data ac-
cesses in total and the data access
complies with Zipf distribution.
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(c¢) User 1 has 40 ﬁles of 1 GB each.
It has 5000 data accesses in total
and the data access complies with
uniform distribution. User 2 has 40
files of different sizes. It has 1000
data accesses in total and the data ac-
cess complies with Zipf distribution,
where we assume that its hot data are
of large data blocks.
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(b) User 1 has 40 files of 1 GB each.
It has 5000 data accesses in total and
the data access complies with Zipf dis-
tribution. User 2 has 40 files of 1 GB
each. It has 1000 data accesses in to-
tal and the data access complies with
uniform distribution.
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(d) User 1 has 40 files of different
Sizes. It has 5000 data accesses in to-
tal and the data access complies with
Zipf distribution, where we assume
that its hot data are of large data
blocks. User 2 has 40 files of 1 GB
each. It has 1000 data accesses in to-
tal and the data access complies with
uniform distribution.



Performance Comparison
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Figure 7: The CDF of average response time for various cache alloca-
tion policies.
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Conclusions

* There is a tradeoff between fairness and efficiency
for resource allocation in SEM cache system.

 We argue that it should integrate DRAMs and SSDs
of SEM as a whole when considering fairness
/efficiency optimization in resource allocation.

* We propose a knob-based fairness-efficiency cache
allocation policy called ElasticSEM for SEM.

* We experimentally show that ElasticSEM can allow
users to balance the tradeoff between fairness and
efficiency while addressing the cheating problem.
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