
GraBi:
Communication-Efficient and Workload-Balanced

Partitioning for Bipartite Graphs

1Huazhong University of Science and Technology

2University of Texas at Arlington

17-20 August 2020, Edmonton, AB, Canada

The 49th International Conference on Parallel Processing (ICPP’20)

1Feng Sheng, 1Qiang Cao, 2Hong Jiang, and 1Jie Yao

Outline

 Background

 Motivation

 Design of GraBi

➢ Vertical Partitioning: Vertex-vector Chunking

➢ Horizontal Partitioning: Vertex-chunk Assignment

 Evaluation

 Conclusion



GraBi: Communication-Efficient and Workload-Balanced Partitioning for Bipartite Graphs

Feng Sheng, Qiang Cao, Hong Jiang, and Jie Yao

Graph Partitioning

Background ·Motivation ·Design ·Evaluation ·Conclusion

Graph partitioning distributes vertices and edges over computing nodes.

Graph partitioning distributes vertices and edges over computing nodes.

2

3

1

4

2

3

1

4

21

4

34

(a) Edge-cut

2

3

1

4

(b) Vertex-cut

34

24

21

Node 1 Node 2

Node 3

Node 1

Node 2

Node 3

Vertex Master Vertex Replica

➢ Edge-cut equally distributes vertices among nodes.
➢ Vertex-cut equally distributes edges among nodes.

Graph Partitioning

Background ·Motivation ·Design ·Evaluation ·Conclusion

Graph partitioning distributes vertices and edges over computing nodes.

2

3

1

4

2

3

1

4

21

4

34

(a) Edge-cut

2

3

1

4

(b) Vertex-cut

34

24

21

Node 1 Node 2

Node 3

Node 1

Node 2

Node 3

Vertex Master Vertex Replica

➢ Edge-cut equally distributes vertices among nodes.
➢ Vertex-cut equally distributes edges among nodes.

➢ replication factor (𝜆): the average number of replicas per vertex.

Graph Partitioning

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Vertices are separated into two disjoint subsets.
➢ Every edge connects one vertex each from the two subsets.

• Bipartite graphs

Bipartite graphs & MLDM algorithms

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Vertices are separated into two disjoint subsets.
➢ Every edge connects one vertex each from the two subsets.

• Bipartite graphs

• Machine Learning and Data Mining (MLDM) algorithms

➢ Bipartite graphs have been widely used in MLDM applications .

Bipartite graphs & MLDM algorithms

Background ·Motivation ·Design ·Evaluation ·Conclusion

X
 #

 o
f

u
se

rs

Y # of items

R ≈

D

x DP Q𝑇

1

2

X

1

2

Y

p1

p2

pX

q1

q2

qY

..
. ..
.

(a) View of Matrix (b) View of Graph

R(u,v)

➢ Vertices are separated into two disjoint subsets.
➢ Every edge connects one vertex each from the two subsets.

R(u,v) Pu

Qv

• Bipartite graphs

• Machine Learning and Data Mining (MLDM) algorithms

➢ Bipartite graphs have been widely used in MLDM applications.

Bipartite graphs & MLDM algorithms

Background ·Motivation ·Design ·Evaluation ·Conclusion

• Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

Observations

Background ·Motivation ·Design ·Evaluation ·Conclusion

• Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

➢ The authors of 𝐶𝑈𝐵𝐸[1] associate each vertex with a vector of up to 128 elements.

➢ The users of 𝑃𝑜𝑤𝑒𝑟𝐺𝑟𝑎𝑝ℎ[2] can configure each vertex value as a vector of
thousands of elements

[1] M. Zhang, Y. Wu, K. Chen, et al. Exploring the Hidden Dimension in Graph Processing. In OSDI 2016.
[2] J. E. Gonzalez, Y. Low, H. Gu, et al. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In OSDI 2012.

Observations

Background ·Motivation ·Design ·Evaluation ·Conclusion

• Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

➢ The authors of 𝐶𝑈𝐵𝐸[1] associate each vertex with a vector of up to 128 elements.

➢ The users of 𝑃𝑜𝑤𝑒𝑟𝐺𝑟𝑎𝑝ℎ[2] can configure each vertex value as a vector of
thousands of elements

• Observation 2: The sizes of two vertex-subsets in a bipartite graph can be
highly lopsided.

[1] M. Zhang, Y. Wu, K. Chen, et al. Exploring the Hidden Dimension in Graph Processing. In OSDI 2016.
[2] J. E. Gonzalez, Y. Low, H. Gu, et al. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In OSDI 2012.

Observations

Background ·Motivation ·Design ·Evaluation ·Conclusion

• Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

➢ The authors of 𝐶𝑈𝐵𝐸[1] associate each vertex with a vector of up to 128 elements.

➢ The users of 𝑃𝑜𝑤𝑒𝑟𝐺𝑟𝑎𝑝ℎ[2] can configure each vertex value as a vector of
thousands of elements

• Observation 2: The sizes of two vertex-subsets in a bipartite graph can be
highly lopsided.

➢ In 𝑁𝑒𝑡𝑓𝑙𝑖𝑥[3], the number of users is about 27x that of movies.

➢ In 𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝑊𝑖𝑘𝑖𝑝𝑒𝑑𝑖𝑎[4], the number of articles is about 98x that of words.

[1] M. Zhang, Y. Wu, K. Chen, et al. Exploring the Hidden Dimension in Graph Processing. In OSDI 2016.
[2] J. E. Gonzalez, Y. Low, H. Gu, et al. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In OSDI 2012.
[3] http://www.netflixprize.com/community/viewtopic.php?pid=9857
[4] https://dumps.wikimedia.org/

Observations

Background ·Motivation ·Design ·Evaluation ·Conclusion

• Observation 3: Within a vertex-subset, the vertices usually exhibit power-law
degree distribution

Observations

Background ·Motivation ·Design ·Evaluation ·Conclusion

• Observation 3: Within a vertex-subset, the vertices usually exhibit power-law
degree distribution

(a) Author Degree Distribution (b) Publication Degree Distribution

➢ Both the two vertex-subsets in 𝐷𝐵𝐿𝑃[1] exhibit power-law degree distribution.

[1] https://dumps.wikimedia.org/

Observations

Background ·Motivation ·Design ·Evaluation ·Conclusion

• Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

Each vertex vector can be divided into multiple sub-vectors.

Opportunities

Background ·Motivation ·Design ·Evaluation ·Conclusion

• Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

Each vertex vector can be divided into multiple sub-vectors.

• Observation 2: The sizes of two vertex-subsets in a bipartite graph can be
highly lopsided

The two vertex-subsets can be processed with different priorities.

Opportunities

Background ·Motivation ·Design ·Evaluation ·Conclusion

• Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

Each vertex vector can be divided into multiple sub-vectors.

• Observation 2: The sizes of two vertex-subsets in a bipartite graph can be
highly lopsided

The two vertex-subsets can be processed with different priorities.

• Observation 3: Within a vertex-subset, the vertices usually exhibit power-law
degree distribution

The vertices of different degrees should be distinguished.

Opportunities

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ GraBi is a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

Overview of GraBi

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ GraBi is a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

➢ GraBi comprehensively exploits the above three observations of bipartite
graphs and MLDM algorithms.

Overview of GraBi

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ GraBi is a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

➢ GraBi comprehensively exploits the above three features of bipartite
graphs and MLDM algorithms.

➢ GraBi partitions a bipartite graph first vertically, and then horizontally,
to realize high-quality partitioning.

Overview of GraBi

Background ·Motivation ·Design ·Evaluation ·Conclusion

Vertex 1

Node 2

Vertex 2

Vertex 3

Vertex 1

Replica 1 Vertex 2

Replica 2 Vertex 3

Node 3

Node 1
Replica 3

Vertical Partitioning: Vertex-vector Chunking

Background ·Motivation ·Design ·Evaluation ·Conclusion

Vertex Master Vertex Replica Intra-vertex Comm.inter-vertex Comm.

Horizontal
Partitioning

Vertex 1

Node 2

Vertex 2

Vertex 3

Vertex 1

Replica 1 Vertex 2

Replica 2 Vertex 3

Node 3

Node 1
Replica 3

Vertical Partitioning: Vertex-vector Chunking

Background ·Motivation ·Design ·Evaluation ·Conclusion

Vertex Master Vertex Replica Intra-vertex Comm.inter-vertex Comm.

Horizontal
Partitioning

The whole vector of a vertex
is assigned to a computing node.

Vertex 1

Node 2

Vertex 2

Vertex 3

Vertex 1

Replica 1 Vertex 2

Replica 2 Vertex 3

Node 3

Node 1
Replica 3

Vertical Partitioning: Vertex-vector Chunking

Background ·Motivation ·Design ·Evaluation ·Conclusion

Vertex Master Vertex Replica Intra-vertex Comm.inter-vertex Comm.

Horizontal
Partitioning

The whole vector of a vertex
is assigned to a computing node.

• Inter-vertex Communication happens between computing nodes

• Intra-vertex Communication happens within a computing node

Vertex 1

Vertex 2

Vertex 3

Vertical Partitioning: Vertex-vector Chunking

Background ·Motivation ·Design ·Evaluation ·Conclusion

Vertex Master Vertex Replica Intra-vertex Comm.inter-vertex Comm.

Vertical
Partitioning

Chunk 3 (2)

Chunk 1 (2)

Chunk 2 (2)

Node 1

Chunk 1 (1)

Chunk 3 (1)

Chunk 1 (3)
Chunk2 (3)

Chunk 3 (3)

Node 2

Node 3

Vertex 1

Vertex 2

Vertex 3

Vertical Partitioning: Vertex-vector Chunking

Background ·Motivation ·Design ·Evaluation ·Conclusion

Vertex Master Vertex Replica Intra-vertex Comm.inter-vertex Comm.

The whole vector of a vertex is
divided into vertex-chunks.

Chunk 3 (2)

Chunk 1 (2)

Chunk 2 (2)

Node 1

Chunk 1 (1)

Chunk 3 (1)

Chunk 1 (3)
Chunk2 (3)

Chunk 3 (3)

Node 2

Node 3

Vertical
Partitioning

Vertex 1

Vertex 2

Vertex 3

Vertical Partitioning: Vertex-vector Chunking

Background ·Motivation ·Design ·Evaluation ·Conclusion

Vertex Master Vertex Replica Intra-vertex Comm.inter-vertex Comm.

The whole vector of a vertex is
divided into vertex-chunks.

• Inter-vertex Communication happens within a computing node

• Intra-vertex Communication happens between computing nodes

Chunk 3 (2)

Chunk 1 (2)

Chunk 2 (2)

Node 1

Chunk 1 (1)

Chunk 3 (1)

Chunk 1 (3)
Chunk2 (3)

Chunk 3 (3)

Node 2

Node 3

Vertical
Partitioning

Vertical Partitioning: Vertex-vector Chunking

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Number of Layers L

• L=1, horizontal partitioning, inter-vertex communication dominates

• L=N, vertical partitioning, intra-vertex communication dominates

→ 𝑳 = 1, 2, … ,N

Vertical Partitioning: Vertex-vector Chunking

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Number of Layers L

𝐿 is set as the Greatest Common Divisor (GCD) of 𝐷 and 𝑁
D is the number of elements in each vector, N is the number of computing nodes.

→ Each vertex-chunk consists of 𝐷/𝐿 elements, Each layer is assigned to 𝑁 /𝐿 nodes.

• L=1, horizontal partitioning, inter-vertex communication dominates

• L=N, vertical partitioning, intra-vertex communication dominates

→ 𝑳 = 1, 2, … ,N

Vertical Partitioning: Vertex-vector Chunking

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Number of Layers L

𝐿 is set as the Greatest Common Divisor (GCD) of 𝐷 and 𝑁
D is the number of elements in each vector, N is the number of computing nodes.

→ Each vertex-chunk consists of 𝐷/𝐿 elements, Each layer is assigned to 𝑁 /𝐿 nodes.

The vertical partitioning stage, Vertex-vector Chunking, is simple
element-grouping for every vectored vertex.

• L=1, horizontal partitioning, inter-vertex communication dominates

• L=N, vertical partitioning, intra-vertex communication dominates

→ 𝑳 = 1, 2, … ,N

Horizontal Partitioning: Vertex-chunk Assignment

Background ·Motivation ·Design ·Evaluation ·Conclusion

1 2 3 4

5 6 7 8 9 10 11 12

Master

Replica

Horizontal Partitioning: Vertex-chunk Assignment

Background ·Motivation ·Design ·Evaluation ·Conclusion

1 2 3 4

5 6 7 8 9 10 11 12

Master

Replica

Node 1 Node 2 Node 3 Node 4

1 3 1 2 4

5 9 8 10

2 3 4

9 8 12 118 6 10

5
1 2 4

7 6 10 8

don’t distinguish vertex-subsets 15 replicas

Horizontal Partitioning: Vertex-chunk Assignment

Background ·Motivation ·Design ·Evaluation ·Conclusion

1 2 3 4

5 6 7 8 9 10 11 12

Master

Replica

Horizontal Partitioning: Vertex-chunk Assignment

Background ·Motivation ·Design ·Evaluation ·Conclusion

1 2 3 4

5 6 7 8 9 10 11 12

Master

Replica

Node 1 Node 2 Node 3 Node 4

2

9

1

5

4

10

2 3

6

4

11

1

7

1 2 3 4

8 12

assign the bigger vertex-subset first 8 replicas

Horizontal Partitioning: Vertex-chunk Assignment

Background ·Motivation ·Design ·Evaluation ·Conclusion

5

1 2 3 4

6

𝑅𝑝𝑒𝑟_𝑣𝑒𝑟𝑡𝑒𝑥 = 𝛼 ×
𝐸

𝑈

… …

𝛼 is an amplification factor

Horizontal Partitioning: Vertex-chunk Assignment

Background ·Motivation ·Design ·Evaluation ·Conclusion

3 4

6

6

3 4

Node 2

f 1

f 1f 2f 3f 4

A set of
Hash Functions

Sub-chunk

Rper_vertex = 2

Vertex-chunk

Low-degree

Horizontal Partitioning: Vertex-chunk Assignment

Background ·Motivation ·Design ·Evaluation ·Conclusion

5

1 2 3 4

5

1 2

5

3 4

f 1 f 2

Node 1 Node 2

f 1f 2f 3f 4

A set of
Hash Functions

Sub-chunk

Rper_vertex = 2

Vertex-chunk

High-degree

Horizontal Partitioning: Vertex-chunk Assignment

Background ·Motivation ·Design ·Evaluation ·Conclusion

5

1 2 3 4

6

5

1 2

5

3 4

f 1 f 2

Node 1 Node 2

f 1f 2f 3f 4

A set of
Hash Functions

Sub-chunk

Rper_vertex = 2

Vertex-chunk6

3 4

Node 2

f 1

… …

vertex ID functions

5 1, 2

6 1

… …

k 1,2,4

Global Table

Summary of GraBi

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Vertical Partitioning:

Divide a bipartite graph into several layers
→ trade off between inter-vertex communication and intra-vertex communication

Summary of GraBi

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Vertical Partitioning:

Divide a bipartite graph into several layers
→ trade off between inter-vertex communication and intra-vertex communication

➢ Horizontal Partitioning:

Assign the bigger vertex-subset first within each layer
→ decrease the number of replicas

Cut each high-degree vertex-chunk into multiple sub-chunks
→ balance the computation time among vertices

Summary of GraBi

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Vertical Partitioning:

Divide a bipartite graph into several layers
→ trade off between inter-vertex communication and intra-vertex communication

➢ Horizontal Partitioning:

Assign the bigger vertex-subset first within each layer
→ decrease the number of replicas

Cut each high-degree vertex-chunk into multiple sub-chunks
→ balance the computation time among vertices

GraBi

Fine-grained, high-quality

Light-weight

Generalizable to most MLDM algorithms

Experimental Setup

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Implementation

• GraBi is implemented on a open-source distributed graph-processing system 𝑃𝑜𝑤𝑒𝑟𝐿𝑦𝑟𝑎[1].

• The two important parameters in GraBi, 𝐿 and 𝛼, are set as 4 and 2 respectively.

[1] R. Chen, J. Shi, Y. Chen, et al. PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs. In EuroSys 2015.

Experimental Setup

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Implementation

➢ Counterparts

• Hybrid-cut (Observation 3)

• Bi-cut (Observation 2)

• 3D-partitioner (Observation 1+ Observation 2)

[1] R. Chen, J. Shi, Y. Chen, et al. PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs. In EuroSys 2015.

• GraBi is implemented on a open-source distributed graph-processing system 𝑃𝑜𝑤𝑒𝑟𝐿𝑦𝑟𝑎[1].

• The two important parameters in GraBi, 𝐿 and 𝛼, are set as 4 and 2 respectively.

Experimental Setup

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Cluster Configuration
The experiments are conducted on an 8-node cluster.

Each node has one Intel Xeon E5-2650 processor (8 cores) and 16GB DRAM.

Experimental Setup

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Cluster Configuration
The experiments are conducted on an 8-node cluster.

Each node has one Intel Xeon E5-2650 processor (8 cores) and 16GB DRAM.

➢ Bipartite Graphs
Graph |U| |V| |E| |U/V|

DBLP 4,000K 1,426K 8.6M 2.81

Netflix 480K 18K 100.5M 27.02

LiveJournal 7,489K 3,201K 112.3M 2.34

Yahoo 1,001K 625K 256.8M 1.60

Orkut 8,731K 2,783K 327.0M 3.14

Experimental Setup

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Cluster Configuration
The experiments are conducted on an 8-node cluster.

Each node has one Intel Xeon E5-2650 processor (8 cores) and 16GB DRAM.

➢ MLDM Algorithms Alternating Least Squares (ALS)

Stochastic Gradient Descent (SGD)

Non-negative Matrix Factorization (NMF)

➢ Bipartite Graphs
Graph |U| |V| |E| |U/V|

DBLP 4,000K 1,426K 8.6M 2.81

Netflix 480K 18K 100.5M 27.02

LiveJournal 7,489K 3,201K 112.3M 2.34

Yahoo 1,001K 625K 256.8M 1.60

Orkut 8,731K 2,783K 327.0M 3.14

Overall Performance

Background ·Motivation ·Design ·Evaluation ·Conclusion

• GraBi improves the execution time by an average of 1.65x over Hybrid-cut, 1.70x over Bi-cut,
and 1.09x over 3D-partitioner respectively.

• GraBi surpasses Hybrid-cut and Bi-cut in both the partitioning and computation phases.

• GraBi outperforms 3D-partitioner in the computation phase, but slightly underperforms in the
partitioning phase.

➢ Total Execution Time

Partitioning Phase

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Replication Factor

Graph Hybrid-cut Bi-cut 3D-partitioner GraBi

DBLP 2.74 3.08 1.38 1.45

Netflix 3.37 2.14 1.16 1.20

LiveJournal 2.64 3.47 1.30 1.52

Yahoo 3.34 4.43 1.53 1.56

Orkut 3.34 4.43 1.53 1.56

• A lower replication factor represents higher partitioning quality.

• The average of Hybrid-cut, Bi-cut, 3Dpartitioner, and GraBi are 3.06, 3.28, 1.36, and 1.45
respectively.

Partitioning Phase

Background ·Motivation ·Design ·Evaluation ·Conclusion

• Bi-cut has the shortest loading & distributing time, and Hybrid-cut has the longest.

• The finalizing time is almost proportional to the corresponding replication factor.

➢ Graph Partitioning Time

Computation Phase

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Network Traffic

• GraBi reduces the network traffic in Hybrid-cut and Bi-cut by an average of 45% and
49% respectively.

• GraBi incurs more network traffic than 3D-partitioner by an average of 11%.

Computation Phase

Background ·Motivation ·Design ·Evaluation ·Conclusion

➢ Graph Computation Time

• GraBi outstrips Hybrid-cut, Bi-cut, and 3D-partitioner by an average of 3.12x, 3.41x,
and 1.30x respectively.

Scalability

Background ·Motivation ·Design ·Evaluation ·Conclusion

• As to the partitioning phase, the scalability of 3D-partitioner and GraBi is better than
Hybrid-cut and Bi-cut.

• As to the computation phase, the scalability Hybrid-cut of and GraBi is better than Bi-cut
and 3D-partitioner.

Impact of Parameters

Background ·Motivation ·Design ·Evaluation ·Conclusion

• ALS and SGD algorithms behave best at different values of 𝐿.

• The impact of 𝛼 is moderate and stable within a wide value range.

Conclusion

Background ·Motivation ·Design ·Evaluation ·Conclusion

GraBi is a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

Conclusion

Background ·Motivation ·Design ·Evaluation ·Conclusion

GraBi is a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

➢ Vertical Partitioning:

Divide a bipartite graph into several layersObservation 1 Efficient Communication

Conclusion

Background ·Motivation ·Design ·Evaluation ·Conclusion

GraBi is a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

➢ Vertical Partitioning:

Divide a bipartite graph into several layers

➢ Horizontal Partitioning:

Assign the bigger vertex-subset first within each layer

Observation 1 Efficient Communication

Observation 2 Efficient Communication

Conclusion

Background ·Motivation ·Design ·Evaluation ·Conclusion

GraBi is a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

➢ Vertical Partitioning:

Divide a bipartite graph into several layers

➢ Horizontal Partitioning:

Assign the bigger vertex-subset first within each layer

Decompose each high-degree vertex-chunk into sub-chunks

Observation 1 Efficient Communication

Observation 2 Efficient Communication

Observation 3 Workload Balance

Thank You !

