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Graph partitioning distributes vertices and edges over computing nodes.
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➢ Edge-cut equally distributes vertices among nodes.
➢ Vertex-cut equally distributes edges among nodes.

➢ replication factor (𝜆):  the average number of replicas per vertex. 
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➢ Vertices are separated into two disjoint subsets.
➢ Every edge connects one vertex each from the two subsets.

• Bipartite graphs
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• Bipartite graphs

• Machine Learning and Data Mining (MLDM) algorithms

➢ Bipartite graphs have been widely used in MLDM applications.
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• Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.
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• Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

➢ The authors of 𝐶𝑈𝐵𝐸[1] associate each vertex with a vector of up to 128 elements.

➢ The users of 𝑃𝑜𝑤𝑒𝑟𝐺𝑟𝑎𝑝ℎ[2] can configure each vertex value as a vector of 
thousands of elements

[1] M. Zhang, Y. Wu, K. Chen, et al. Exploring the Hidden Dimension in Graph Processing. In OSDI 2016. 
[2] J. E. Gonzalez, Y. Low, H. Gu, et al. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In OSDI 2012.
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• Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

➢ The authors of 𝐶𝑈𝐵𝐸[1] associate each vertex with a vector of up to 128 elements.

➢ The users of 𝑃𝑜𝑤𝑒𝑟𝐺𝑟𝑎𝑝ℎ[2] can configure each vertex value as a vector of 
thousands of elements

• Observation 2: The sizes of two vertex-subsets in a bipartite graph can be
highly lopsided.

➢ In 𝑁𝑒𝑡𝑓𝑙𝑖𝑥[3], the number of users is about 27x that of movies.

➢ In 𝐸𝑛𝑔𝑙𝑖𝑠ℎ 𝑊𝑖𝑘𝑖𝑝𝑒𝑑𝑖𝑎[4], the number of articles is about 98x that of words.

[1] M. Zhang, Y. Wu, K. Chen, et al. Exploring the Hidden Dimension in Graph Processing. In OSDI 2016. 
[2] J. E. Gonzalez, Y. Low, H. Gu, et al. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In OSDI 2012.
[3] http://www.netflixprize.com/community/viewtopic.php?pid=9857
[4] https://dumps.wikimedia.org/
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• Observation 3: Within a vertex-subset, the vertices usually exhibit power-law
degree distribution 
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• Observation 3: Within a vertex-subset, the vertices usually exhibit power-law
degree distribution 

(a) Author Degree Distribution (b) Publication Degree Distribution

➢ Both the two vertex-subsets in 𝐷𝐵𝐿𝑃[1] exhibit power-law degree distribution.

[1] https://dumps.wikimedia.org/
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• Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

Each vertex vector can be divided into multiple sub-vectors.
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• Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

Each vertex vector can be divided into multiple sub-vectors.

• Observation 2: The sizes of two vertex-subsets in a bipartite graph can be
highly lopsided

The two vertex-subsets can be processed with different priorities. 

• Observation 3: Within a vertex-subset, the vertices usually exhibit power-law
degree distribution 

The vertices of different degrees should be distinguished.
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➢ GraBi is a communication-efficient and workload-balanced partitioning 
framework for bipartite graphs.
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➢ GraBi is a communication-efficient and workload-balanced partitioning 
framework for bipartite graphs.

➢ GraBi comprehensively exploits the above three features of bipartite 
graphs and MLDM algorithms.

➢ GraBi partitions a bipartite graph first vertically, and then horizontally, 
to realize high-quality partitioning.

Overview of GraBi
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• Intra-vertex Communication happens within a computing node
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➢ Number of Layers L

• L=1, horizontal partitioning, inter-vertex communication dominates

• L=N, vertical partitioning, intra-vertex communication dominates

→ 𝑳 = 1, 2, … ,N
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D is the number of elements in each vector, N is the number of computing nodes.
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→ 𝑳 = 1, 2, … ,N
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➢ Number of Layers L

𝐿 is set as the Greatest Common Divisor (GCD) of 𝐷 and 𝑁
D is the number of elements in each vector, N is the number of computing nodes.

→  Each vertex-chunk consists of 𝐷/𝐿 elements, Each layer is assigned to 𝑁 /𝐿 nodes.

The vertical partitioning stage, Vertex-vector Chunking, is simple 
element-grouping for every vectored vertex.

• L=1, horizontal partitioning, inter-vertex communication dominates

• L=N, vertical partitioning, intra-vertex communication dominates

→ 𝑳 = 1, 2, … ,N
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Cut each high-degree vertex-chunk into multiple sub-chunks
→ balance the computation time among vertices



Summary of GraBi
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➢ Vertical Partitioning:

Divide a bipartite graph into several layers
→ trade off between inter-vertex communication and intra-vertex communication

➢ Horizontal Partitioning:

Assign the bigger vertex-subset first within each layer 
→  decrease the number of replicas

Cut each high-degree vertex-chunk into multiple sub-chunks
→ balance the computation time among vertices

GraBi

Fine-grained,  high-quality

Light-weight

Generalizable to most MLDM algorithms
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➢ Implementation

• GraBi is implemented on a open-source distributed graph-processing system 𝑃𝑜𝑤𝑒𝑟𝐿𝑦𝑟𝑎[1].

• The two important parameters in GraBi, 𝐿 and 𝛼, are set as 4 and 2 respectively.

[1] R. Chen, J. Shi, Y. Chen, et al. PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs. In EuroSys 2015. 
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➢ Implementation

➢ Counterparts

• Hybrid-cut  (Observation 3)

• Bi-cut  (Observation 2)

• 3D-partitioner  (Observation 1+ Observation 2)

[1] R. Chen, J. Shi, Y. Chen, et al. PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs. In EuroSys 2015. 

• GraBi is implemented on a open-source distributed graph-processing system 𝑃𝑜𝑤𝑒𝑟𝐿𝑦𝑟𝑎[1].

• The two important parameters in GraBi, 𝐿 and 𝛼, are set as 4 and 2 respectively.
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The experiments are conducted on an 8-node cluster. 

Each node has one Intel Xeon E5-2650 processor (8 cores) and 16GB DRAM.
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➢ Bipartite Graphs
Graph |U| |V| |E| |U/V|

DBLP 4,000K 1,426K 8.6M 2.81

Netflix 480K 18K 100.5M 27.02

LiveJournal 7,489K 3,201K 112.3M 2.34

Yahoo 1,001K 625K 256.8M 1.60

Orkut 8,731K 2,783K 327.0M 3.14
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➢ Cluster Configuration
The experiments are conducted on an 8-node cluster. 

Each node has one Intel Xeon E5-2650 processor (8 cores) and 16GB DRAM.

➢ MLDM Algorithms Alternating Least Squares (ALS) 

Stochastic Gradient Descent (SGD)

Non-negative Matrix Factorization (NMF)

➢ Bipartite Graphs
Graph |U| |V| |E| |U/V|

DBLP 4,000K 1,426K 8.6M 2.81

Netflix 480K 18K 100.5M 27.02

LiveJournal 7,489K 3,201K 112.3M 2.34

Yahoo 1,001K 625K 256.8M 1.60

Orkut 8,731K 2,783K 327.0M 3.14
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• GraBi improves the execution time by an average of 1.65x over Hybrid-cut, 1.70x over Bi-cut, 
and 1.09x over 3D-partitioner respectively.

• GraBi surpasses Hybrid-cut and Bi-cut in both the partitioning and computation phases. 

• GraBi outperforms 3D-partitioner in the computation phase, but slightly underperforms in the 
partitioning phase. 

➢ Total Execution Time
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➢ Replication Factor

Graph Hybrid-cut Bi-cut 3D-partitioner GraBi

DBLP 2.74 3.08 1.38 1.45

Netflix 3.37 2.14 1.16 1.20

LiveJournal 2.64 3.47 1.30 1.52

Yahoo 3.34 4.43 1.53 1.56

Orkut 3.34 4.43 1.53 1.56

• A lower replication factor represents higher partitioning quality.

• The average of Hybrid-cut, Bi-cut, 3Dpartitioner, and GraBi are 3.06, 3.28, 1.36, and 1.45 
respectively.
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• Bi-cut has the shortest loading & distributing time, and Hybrid-cut has the longest.

• The finalizing time is almost proportional to the corresponding replication factor. 

➢ Graph Partitioning Time



Computation Phase
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➢ Network Traffic

• GraBi reduces the network traffic in Hybrid-cut and Bi-cut by an average of 45% and 
49% respectively. 

• GraBi incurs more network traffic than 3D-partitioner by an average of 11%.



Computation Phase
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➢ Graph Computation Time

• GraBi outstrips Hybrid-cut, Bi-cut, and 3D-partitioner by an average of 3.12x, 3.41x, 
and 1.30x respectively. 



Scalability
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• As to the partitioning phase, the scalability of 3D-partitioner and GraBi is better than 
Hybrid-cut and Bi-cut.

• As to the computation phase, the scalability Hybrid-cut of and GraBi is better than Bi-cut 
and 3D-partitioner.



Impact of Parameters
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• ALS and SGD algorithms behave best at different values of 𝐿.

• The impact of 𝛼 is moderate and stable within a wide value range.
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GraBi is a communication-efficient and workload-balanced partitioning 
framework for bipartite graphs.

➢ Vertical Partitioning:

Divide a bipartite graph into several layers

➢ Horizontal Partitioning:

Assign the bigger vertex-subset first within each layer 

Decompose each high-degree vertex-chunk into sub-chunks

Observation 1 Efficient Communication

Observation 2 Efficient Communication

Observation 3 Workload Balance



Thank You !


