The 49th International Conference on Parallel Processing (ICPP’20)

GraBi:

Communication-Efficient and Workload-Balanced
Partitioning for Bipartite Graphs

1Feng Sheng, 1Qiang Cao, 2Hong Jiang, and 1Jie Yao

17-20 August 2020, Edmonton, AB, Canada

GraBi: Communication-Efficient and Workload-Balanced Partitioning for Bipartite Graphs

Outline

f Background
O Motivation

O Design of GraBi

» Vertical Partitioning: Vertex-vector Chunking
» Horizontal Partitioning: Vertex-chunk Assignment

0 Evaluation
0 Conclusion

Feng Sheng, Qiang Cao, Hong Jiang, and Jie Yao

Graph Partitioning

Graph partitioning distributes vertices and edges over computing nodes.

Background - Motivation - Design - Evaluation - Conclusion

Graph Partitioning

Graph partitioning distributes vertices and edges over computing nodes.

O Vertex Master @ Vertex Replica

(D)—(2) O~>® Node 1
D Node 2

(4)— (3 O-(B) Node3

(a) Edge-cut (b) Vertex-cut

» Edge-cut equally distributes vertices among nodes.
» Vertex-cut equally distributes edges among nodes.

Background - Motivation - Design - Evaluation - Conclusion

Graph Partitioning

Graph partitioning distributes vertices and edges over computing nodes.

O Vertex Master @ Vertex Replica

(D)—(2) O~>® Node 1
D Node 2

(4)— (3 O-(B) Node3

(a) Edge-cut (b) Vertex-cut

» Edge-cut equally distributes vertices among nodes.
» Vertex-cut equally distributes edges among nodes.

» replication factor (1): the average number of replicas per vertex.

Background - Motivation - Design - Evaluation - Conclusion

Bipartite graphs & MLDM algorithms

* Bipartite graphs

» Vertices are separated into two disjoint subsets.
» Every edge connects one vertex each from the two subsets.

Background - Motivation - Design - Evaluation - Conclusion

Bipartite graphs & MLDM algorithms

* Bipartite graphs

» Vertices are separated into two disjoint subsets.
» Every edge connects one vertex each from the two subsets.

* Machine Learning and Data Mining (MLDM) algorithms
> Bipartite graphs have been widely used in MLDM applications .

Background - Motivation - Design - Evaluation - Conclusion

Bipartite graphs & MLDM algorithms

* Bipartite graphs

» Vertices are separated into two disjoint subsets.
» Every edge connects one vertex each from the two subsets.

* Machine Learning and Data Mining (MLDM) algorithms
> Bipartite graphs have been widely used in MLDM applications.

B Y # of items D

/\\ z pl 0

X # of users
Q
N
o
X
O
~

® R(u,v) [— P
\, ” px (0

(a) View of Matrix (b) View of Graph

Background - Motivation - Design - Evaluation - Conclusion

* Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

Background - Motivation - Design - Evaluation - Conclusion

Observations

* Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

> The authors of CUBE!] associate each vertex with a vector of up to 128 elements.
> The users of PowerGraph!?! can configure each vertex value as a vector of
thousands of elements

[1] M. Zhang, Y. Wu, K. Chen, et al. Exploring the Hidden Dimension in Graph Processing. In OSDI 2016.
[2]). E. Gonzalez, Y. Low, H. Gu, et al. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In OSDI 2012.

Background - Motivation - Design - Evaluation - Conclusion

Observations

* Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

> The authors of CUBE!] associate each vertex with a vector of up to 128 elements.

> The users of PowerGraph!?! can configure each vertex value as a vector of
thousands of elements

* Observation 2: The sizes of two vertex-subsets in a bipartite graph can be
highly lopsided.

[1] M. Zhang, Y. Wu, K. Chen, et al. Exploring the Hidden Dimension in Graph Processing. In OSDI 2016.
[2]). E. Gonzalez, Y. Low, H. Gu, et al. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In OSDI 2012.

Background - Motivation - Design - Evaluation - Conclusion

Observations

* Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

> The authors of CUBE!] associate each vertex with a vector of up to 128 elements.

> The users of PowerGraph!?! can configure each vertex value as a vector of
thousands of elements

* Observation 2: The sizes of two vertex-subsets in a bipartite graph can be
highly lopsided.

> In Netflix!3], the number of users is about 27x that of movies.
> In English Wikipedial*l, the number of articles is about 98x that of words.

[1] M. Zhang, Y. Wu, K. Chen, et al. Exploring the Hidden Dimension in Graph Processing. In OSDI 2016.

[2]). E. Gonzalez, Y. Low, H. Gu, et al. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In OSDI 2012.
[3] http://www.netflixprize.com/community/viewtopic.php?pid=9857

[4] https://dumps.wikimedia.org/

Background - Motivation - Design - Evaluation - Conclusion

* Observation 3: Within a vertex-subset, the vertices usually exhibit power-law
degree distribution

Background - Motivation - Design - Evaluation - Conclusion

* Observation 3: Within a vertex-subset, the vertices usually exhibit power-law
degree distribution

> Both the two vertex-subsets in DBLP!1! exhibit power-law degree distribution.

§ 106_ : § 106'

pu 105_ T 105'

Q " &l

> 104 > 1074

5 10°] © 103

= ..‘- - 2]

2102 . 310

£ 10" " £ 10%

- 0 I = I S 0 —_

= 10%4{ _ o v emmmwe = 10°{_ . . —
109 101 102 1009 101 102 103

Degree Degree

(a) Author Degree Distribution (b) Publication Degree Distribution

[1] https://dumps.wikimedia.org/

Background - Motivation - Design - Evaluation - Conclusion

* Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

C—> Each vertex vector can be divided into multiple sub-vectors.

Background - Motivation - Design - Evaluation - Conclusion

* Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

C—> Each vertex vector can be divided into multiple sub-vectors.

* Observation 2: The sizes of two vertex-subsets in a bipartite graph can be
highly lopsided

|:> The two vertex-subsets can be processed with different priorities.

Background - Motivation - Design - Evaluation - Conclusion

* Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

C—> Each vertex vector can be divided into multiple sub-vectors.

* Observation 2: The sizes of two vertex-subsets in a bipartite graph can be
highly lopsided

|:> The two vertex-subsets can be processed with different priorities.

* Observation 3: Within a vertex-subset, the vertices usually exhibit power-law
degree distribution

|:> The vertices of different degrees should be distinguished.

Background - Motivation - Design - Evaluation - Conclusion

Overview of GraBi

» GraBiis a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

Background - Motivation - Design - Evaluation - Conclusion

Overview of GraBi

» GraBiis a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

» GraBi comprehensively exploits the above three observations of bipartite
graphs and MLDM algorithm:s.

Background - Motivation - Design - Evaluation - Conclusion

Overview of GraBi

» GraBiis a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

» GraBi comprehensively exploits the above three features of bipartite
graphs and MLDM algorithm:s.

» GraBi partitions a bipartite graph first vertically, and then horizontally,
to realize high-quality partitioning.

Background - Motivation - Design - Evaluation - Conclusion

Vertical Partitioning: Vertex-vector Chunking

Replical Vertex 2

Vertex 2 —
Replica3 Vertex 1 / -_’3
Node 1

Vertex 1 - :/7‘ B
| ¥ /
Horizontal .
Replica2 Vertex 3
yVertex 3 Partitioning ¥ P
Node 2

3 Node 3

% Vertex Master ~ g=== Vertex Replica 4¢—> inter-vertex Comm. <==% Intra-vertex Comm.

Background - Motivation - Design - Evaluation - Conclusion

Vertical Partitioning: Vertex-vector Chunking

Replical Vertex 2

Vertex 2 /‘]
Replica3 Vertex 1 _ .
Vertex 1 = / - Node 1
| 1
A
Horizontal ‘/Re‘ lica2 Vertex3
yVertex 3 Partitioning * P

Node 2

Node 3

% Vertex Master ~ g=== Vertex Replica 4¢—> inter-vertex Comm. <==% Intra-vertex Comm.

The whole vector of a vertex
is assigned to a computing node.

Background - Motivation - Design - Evaluation - Conclusion

Vertical Partitioning: Vertex-vector Chunking

Replical Vertex 2

Vertex 2 /‘]
Replica3 Vertex 1 _ .
Vertex 1 = / - Node 1
| 1
A
Horizontal ‘/Re‘ lica2 Vertex3
yVertex 3 Partitioning * P

Node 2

Node 3

% Vertex Master ~ g=== Vertex Replica 4¢—> inter-vertex Comm. <==% Intra-vertex Comm.

The whole vector of a vertex |:> * Inter-vertex Communication happens between computing nodes
is assigned to a computing node. * Intra-vertex Communication happens within a computing node

Background - Motivation - Design - Evaluation - Conclusion

Vertical Partitioning: Vertex-vector Chunking

Chunk 1 (1)

Chunk 2 (2) 7 Chunk 3 (1)

& Shunk 1(2), ~ 7 Noge 1
L/
Chunk 3 (2)

Vertex 2

Vertex 1

Vertical
yVertex 3 Partitioning

< L Chunk2 (3)
Node 2 ~ Q;unkl (3)

Chunk 3 (3)
Node 3

% Vertex Master g=== Vertex Replica 4¢—> inter-vertex Comm. <==% Intra-vertex Comm.

Background - Motivation - Design - Evaluation - Conclusion

Vertical Partitioning: Vertex-vector Chunking

Chunk 1 (1)
Vertex 2
Chunk 2 (2) 7 Chunk 3 (1)
Vertex 1 .~
'\Ehunk 1 (,2)/ “ Node 1
| Vertical Chunk 3 (2) : Chunk2 (3
svertex3 partitioning = unk2 (3)

Node 2" ~ Chunk 1.(3)

Chunk 3 (3)
Node 3

% Vertex Master g=== Vertex Replica 4¢—> inter-vertex Comm. <==% Intra-vertex Comm.

The whole vector of a vertex is
divided into vertex-chunks.

Background - Motivation - Design - Evaluation - Conclusion

Vertical Partitioning: Vertex-vector Chunking

Chunk 1 (1)

Chunk 2 (2) 7 Chunk 3 (1)

& Shunk 1(2), ~ 7 Noge 1
L/
Chunk 3 (2)

Vertex 2

Vertex 1

Vertical
yVertex 3 Partitioning

< L Chunk2 (3)
Node 2 ~ Q;unkl (3)

Chunk 3 (3)
Node 3

% Vertex Master g=== Vertex Replica 4¢—> inter-vertex Comm. <==% Intra-vertex Comm.

The whole vector of a vertex is |:> * Inter-vertex Communication happens within a computing node
divided into vertex-chunks. * Intra-vertex Communication happens between computing nodes

Background - Motivation - Design - Evaluation - Conclusion

Vertical Partitioning: Vertex-vector Chunking

» Number of Layers L

* [=1, horizontal partitioning, inter-vertex communication dominates

* [=N, vertical partitioning, intra-vertex communication dominates

- L=12..,N

Background - Motivation - Design - Evaluation - Conclusion

Vertical Partitioning: Vertex-vector Chunking

» Number of Layers L

* [=1, horizontal partitioning, inter-vertex communication dominates

* [=N, vertical partitioning, intra-vertex communication dominates
- L=1,2,..,N

L is set as the Greatest Common Divisor (GCD) of D and N
D is the number of elements in each vector, N is the number of computing nodes.

-> Each vertex-chunk consists of D/L elements, Each layer is assigned to N /L nodes.

Background - Motivation - Design - Evaluation - Conclusion

Vertical Partitioning: Vertex-vector Chunking

» Number of Layers L

* [=1, horizontal partitioning, inter-vertex communication dominates

* [=N, vertical partitioning, intra-vertex communication dominates
- L=1,2,..,N

L is set as the Greatest Common Divisor (GCD) of D and N
D is the number of elements in each vector, N is the number of computing nodes.

-> Each vertex-chunk consists of D/L elements, Each layer is assigned to N /L nodes.

The vertical partitioning stage, Vertex-vector Chunking, is simple
element-grouping for every vectored vertex.

Background - Motivation - Design - Evaluation - Conclusion

Horizontal Partitioning: Vertex-chunk Assignment

Horizontal Partitioning: Vertex-chunk Assignment

don’t distinguish vertex-subsets @ 15 replicas

s Dood 82

Node 1 Node 2 Node 3 Node 4

Horizontal Partitioning: Vertex-chunk Assignment

Horizontal Partitioning: Vertex-chunk Assignment

Horizontal Partitioning: Vertex-chunk Assignment

Horizontal Partitioning: Vertex-chunk Assignment

A set of 9 9

Hash Functions

f4 f3f2f1 G Low-degree
Rper_vertex =2 :
|
fly
76 O Vertex-chunk
\\ //

() Sub-chunk

Background - Motivation - Design - Evaluation - Conclusion

Horizontal Partitioning: Vertex-chunk Assignment

A set of
Hash Functions
f4 f3f2 f1 2
I— ———————————
|
fly
\ 5\\‘ 4 5\\\ O Vertex-chunk
\ / _// g
No;le 1 Node 2 () Sub-chunk

Background - Motivation - Design - Evaluation - Conclusion

Horizontal Partitioning: Vertex-chunk Assignment

Global Table

0 g 9 e vertex ID| functions
A set of 5 1,2
Hash Functions / ‘ - -

k 1,2,4

:— ___________ i Rper_VertEX = 2 i
fly f2 v fly
(5) 5 76 O Vertex-chunk
- = - Y Sub-
NOde 1 Node 2 NOde 2 _/’ SUb Chunk

Background - Motivation - Design - Evaluation - Conclusion

Summary of GraBi|

» Vertical Partitioning:

Divide a bipartite graph into several layers
- trade off between inter-vertex communication and intra-vertex communication

Background - Motivation - Design - Evaluation - Conclusion

Summary of GraBi|

» Vertical Partitioning:

Divide a bipartite graph into several layers
- trade off between inter-vertex communication and intra-vertex communication

» Horizontal Partitioning:

Assign the bigger vertex-subset first within each layer
— decrease the number of replicas

Cut each high-degree vertex-chunk into multiple sub-chunks
- balance the computation time among vertices

Background - Motivation - Design - Evaluation - Conclusion

Summary of GraBi|

» Vertical Partitioning:

Divide a bipartite graph into several layers
- trade off between inter-vertex communication and intra-vertex communication

» Horizontal Partitioning:

Assign the bigger vertex-subset first within each layer
— decrease the number of replicas

Cut each high-degree vertex-chunk into multiple sub-chunks
- balance the computation time among vertices

Fine-grained, high-quality
GraBi Light-weight

Generalizable to most MLDM algorithms

Background - Motivation - Design - Evaluation - Conclusion

Experimental Setup

» Implementation

* GraBiisimplemented on a open-source distributed graph-processing system PowerLyra[l].

 The two important parameters in GraBi, L and «, are set as 4 and 2 respectively.

[1] R. Chen, J. Shi, Y. Chen, et al. PowerlLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs. In EuroSys 2015.

Background - Motivation - Design - Evaluation - Conclusion

Experimental Setup

» Implementation

* GraBiisimplemented on a open-source distributed graph-processing system PowerLyra[l].

 The two important parameters in GraBi, L and «, are set as 4 and 2 respectively.

» Counterparts

e Hybrid-cut (Observation 3)
e Bi-cut (Observation 2)

* 3D-partitioner (Observation 1+ Observation 2)

[1] R. Chen, J. Shi, Y. Chen, et al. PowerlLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs. In EuroSys 2015.

Background - Motivation - Design - Evaluation - Conclusion

Experimental Setup

» Cluster Configuration
The experiments are conducted on an 8-node cluster.

Each node has one Intel Xeon E5-2650 processor (8 cores) and 16GB DRAM.

Background - Motivation - Design - Evaluation - Conclusion

Experimental Setup

» Cluster Configuration
The experiments are conducted on an 8-node cluster.

Each node has one Intel Xeon E5-2650 processor (8 cores) and 16GB DRAM.

> Bipartite Graphs
Graph U] |V |E| |U/V|
DBLP 4,000K 1,426K 8.6M 2.81
Netflix 480K 18K 100.5M 27.02
LiveJournal 7,489K 3,201K 112.3M 2.34
Yahoo 1,001K 625K 256.8M 1.60
Orkut 8,731K 2,783K | 327.0M 3.14

Background - Motivation - Design - Evaluation - Conclusion

Experimental Setup

» Cluster Configuration
The experiments are conducted on an 8-node cluster.

Each node has one Intel Xeon E5-2650 processor (8 cores) and 16GB DRAM.

> Bipartite Graphs
Graph U] V] |E| |U/V|
DBLP 4,000K 1,426K 8.6M 2.81
Netflix 480K 18K 100.5M 27.02
LiveJournal 7,489K 3,201K 112.3M 2.34
Yahoo 1,001K 625K 256.8M 1.60
Orkut 8,731K 2,783K | 327.0M 3.14
> MLDM Algorithms Alternating Least Squares (ALS)

Stochastic Gradient Descent (SGD)
Non-negative Matrix Factorization (NMF)

Background - Motivation - Design - Evaluation - Conclusion

Overall Performance

> Total Execution Time

g=w4 Hybrid-cut (Partitioning) =Y Hybrid-cut (Computation)
[ooal Bi-cut (Partitioning) 71 Bi-cut (Computation)
1900 3D (Partitioning) L1 3D (Computation)

g GraBi (Partitioning) 51 GraBi (Computation)

= 1.6

< 1.4 -

= 1.21 . ¥

§ 1.0“""?74 ____________________________ .

0.8 |

506 g s

E 04 :f. a:)io . :,;’71 1

S5

[0 w9} 0 DOfo o

S NF

* GraBiimproves the execution time by an average of 1.65x over Hybrid-cut, 1.70x over Bi-cut,
and 1.09x over 3D-partitioner respectively.

* GraBi surpasses Hybrid-cut and Bi-cut in both the partitioning and computation phases.

* GraBi outperforms 3D-partitioner in the computation phase, but slightly underperforms in the
partitioning phase.

Background - Motivation - Design - Evaluation - Conclusion

Partitioning Phase

> Replication Factor

Graph Hybrid-cut Bi-cut 3D-partitioner GraBi
DBLP 2.74 3.08 1.38 1.45
Netflix 3.37 2.14 1.16 1.20
LiveJournal 2.64 3.47 1.30 1.52
Yahoo 3.34 4.43 1.53 1.56
Orkut 3.34 4.43 1.53 1.56

* Alower replication factor represents higher partitioning quality.

* The average of Hybrid-cut, Bi-cut, 3Dpartitioner, and GraBi are 3.06, 3.28, 1.36, and 1.45
respectively.

Background - Motivation - Design - Evaluation - Conclusion

Partitioning Phase

» Graph Partitioning Time

Hybrid-cut ©°7°7 3D Hybrid-cut 227 3D
X4 Bi-cut — GraBi [Bi-cut —— GraBi
1.4 owld
ig 1.2 Ig 1.2 ;
1.0+ - e 1.0+ = e
308/ \gR wn WA T VH| gosiie N YA
w061 D0 Uh W ke bhE| ®06 Pk sl
€04 00 Ur 1 NH o €04 Dr NS
g02|\H WH \WH Y7H WH| S02|\H E i
Z olils s 4 wH Z plils (¥
DBLP NF L YH OK DBLP NF LI YH OK
(a) Loading & Distributing Time (b) Finalizing Time

e Bi-cut has the shortest loading & distributing time, and Hybrid-cut has the longest.

* The finalizing time is almost proportional to the corresponding replication factor.

Background - Motivation - Design - Evaluation - Conclusion

Pd P
I Um

zl}

Metwork Traffic (GB)
P

> Network Traffic

BN Hybrid-cut £227 3D === Comm, Reduction

A Bi-cut

Computation Phase

0%

Pt

=

EE - -
Communication Reduction

LI S
= (=] — Pt L

NN

i
a

58 Hybrid-cut £227 3D === Comm. Reduction

FA Bi-cut E= GraBi

Network Traffic (GB)

== Comm. Reduction

ESEH Hybrid-cut E220 3D
[EA Bi-cut

[=4]
=

g}
=

i
=]

P
=
F xE = =

P [l

Metwork Traffic (GB)

(b) SGD

GraBi reduces the network traffic in Hybrid-cut and Bi-cut by an average of 45% and
49% respectively.

GraBi incurs more network traffic than 3D-partitioner by an average of 11%.

Communication Reduction

[aly}

80% =
60% ©
i1}
40%
20%

C

: =

B®

]
Communication R

Background - Motivation - Design - Evaluation - Conclusion

Computation Phase

» Graph Computation Time

55 Hybrid-cut
%) Bi-cut

L 3D
= GraBi

—+— Speedup

(a) ALS

LT < T I =]
Speedup

Pl

= =

50

[55] Hybrid-cut 27 3D —+— Speedup
FE] Bi-cut == GraBi
/) \ '/\
" |
h o\ @\
DBLP NF u

(b) SGD

553 Hybrid-cut 27 3D —+— Speedup
— FE] Bi-cut == GraBi
b o 100 b6
W
5 g a0 5
o E o
IR IV R =
38§ 30
v e, 40 \ \ v
28 ® \ 25
5 | *-\
1 E_ 20 mh* - '1
=] -] = '
0 g 0 DBLP MF L 0
(c) NMF

e GraBi outstrips Hybrid-cut, Bi-cut, and 3D-partitioner by an average of 3.12x, 3.41x,

and 1.30x respectively.

Background - Motivation - Design - Evaluation - Conclusion

Scalability

—4— Hybrid-cut —+— 3D —a— Hybrid-cut —+— 3D
—¥— Bi-cut —+— GraBi —¥— Bi-cut —+— GraBi
— %)
) 4 e
£ ' =
iy C
& ks
= o
.0 5
£ a
© £ 4]
a 23 3 23
22 23 24 25 26 22 23 24 25 26
RMAT-n RMAT-n

(a) Partitioning Time (b) Computation Time

* As to the partitioning phase, the scalability of 3D-partitioner and GraBi is better than
Hybrid-cut and Bi-cut.

* Asto the computation phase, the scalability Hybrid-cut of and GraBi is better than Bi-cut
and 3D-partitioner.

Background - Motivation - Design - Evaluation - Conclusion

Impact of Parameters

—4— S5GD+DBLP -+ ALS+DBLP
—v— SGD+NF +— ALS+NF

-
N

.
|

o
©

o
00

1 2 4 8 1 2 4 8 16 32 64
Number of Layers (L) Amplification Factor (a)

(a) Impact of L on ALS and SGD (b) Impact of & on ALS

Normalized Computation Time
o O O O = =
o N B~ O 0 O N
Normalized Computation Time
|—\
o

e ALS and SGD algorithms behave best at different values of L.

 The impact of a is moderate and stable within a wide value range.

Background - Motivation - Design - Evaluation - Conclusion

Conclusion

GraBi is a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

Background - Motivation - Design - Evaluation - Conclusion

Conclusion

GraBi is a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

» Vertical Partitioning:

Observation 1 => Divide a bipartite graph into several layers => Efficient Communication

Background - Motivation - Design - Evaluation - Conclusion

Conclusion

GraBi is a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

» Vertical Partitioning:

Observation 1 => Divide a bipartite graph into several layers => Efficient Communication

» Horizontal Partitioning:

Observation 2 > Assign the bigger vertex-subset first within each layer => Efficient Communication

Background - Motivation - Design - Evaluation - Conclusion

Conclusion

GraBi is a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

» Vertical Partitioning:

Observation 1 => Divide a bipartite graph into several layers => Efficient Communication

» Horizontal Partitioning:

Observation 2 > Assign the bigger vertex-subset first within each layer => Efficient Communication

Observation 3 =» Decompose each high-degree vertex-chunk into sub-chunks > Workload Balance

Background - Motivation - Design - Evaluation - Conclusion

Thank You !

