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Graph partitioning distributes vertices and edges over computing nodes.
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Graph Partitioning

Graph partitioning distributes vertices and edges over computing nodes.

O Vertex Master @ Vertex Replica

(D)—(2) O~>® Node 1
D Node 2

(4)— (3 O-(B) Node3

(a) Edge-cut (b) Vertex-cut

» Edge-cut equally distributes vertices among nodes.
» Vertex-cut equally distributes edges among nodes.

» replication factor (1): the average number of replicas per vertex.
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Bipartite graphs & MLDM algorithms

* Bipartite graphs

» Vertices are separated into two disjoint subsets.
» Every edge connects one vertex each from the two subsets.
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Bipartite graphs & MLDM algorithms

* Bipartite graphs

» Vertices are separated into two disjoint subsets.
» Every edge connects one vertex each from the two subsets.

* Machine Learning and Data Mining (MLDM) algorithms
> Bipartite graphs have been widely used in MLDM applications.
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* Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.
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Observations

* Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

> The authors of CUBE!] associate each vertex with a vector of up to 128 elements.
> The users of PowerGraph!?! can configure each vertex value as a vector of
thousands of elements

[1] M. Zhang, Y. Wu, K. Chen, et al. Exploring the Hidden Dimension in Graph Processing. In OSDI 2016.
[2] ). E. Gonzalez, Y. Low, H. Gu, et al. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In OSDI 2012.
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vector.

> The authors of CUBE!] associate each vertex with a vector of up to 128 elements.

> The users of PowerGraph!?! can configure each vertex value as a vector of
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* Observation 2: The sizes of two vertex-subsets in a bipartite graph can be
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Observations

* Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

> The authors of CUBE!] associate each vertex with a vector of up to 128 elements.

> The users of PowerGraph!?! can configure each vertex value as a vector of
thousands of elements

* Observation 2: The sizes of two vertex-subsets in a bipartite graph can be
highly lopsided.

> In Netflix!3], the number of users is about 27x that of movies.
> In English Wikipedial*l, the number of articles is about 98x that of words.

[1] M. Zhang, Y. Wu, K. Chen, et al. Exploring the Hidden Dimension in Graph Processing. In OSDI 2016.

[2] ). E. Gonzalez, Y. Low, H. Gu, et al. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In OSDI 2012.
[3] http://www.netflixprize.com/community/viewtopic.php?pid=9857

[4] https://dumps.wikimedia.org/
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* Observation 3: Within a vertex-subset, the vertices usually exhibit power-law
degree distribution
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* Observation 3: Within a vertex-subset, the vertices usually exhibit power-law
degree distribution

> Both the two vertex-subsets in DBLP!1! exhibit power-law degree distribution.
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[1] https://dumps.wikimedia.org/
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* Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

C—> Each vertex vector can be divided into multiple sub-vectors.
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* Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

C—> Each vertex vector can be divided into multiple sub-vectors.

* Observation 2: The sizes of two vertex-subsets in a bipartite graph can be
highly lopsided

|:> The two vertex-subsets can be processed with different priorities.
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* Observation 1: The vertex value in MLDM algorithms is a multi-element
vector.

C—> Each vertex vector can be divided into multiple sub-vectors.

* Observation 2: The sizes of two vertex-subsets in a bipartite graph can be
highly lopsided

|:> The two vertex-subsets can be processed with different priorities.

* Observation 3: Within a vertex-subset, the vertices usually exhibit power-law
degree distribution

|:> The vertices of different degrees should be distinguished.

Background - Motivation - Design - Evaluation - Conclusion



Overview of GraBi

» GraBiis a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.
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» GraBiis a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

» GraBi comprehensively exploits the above three observations of bipartite
graphs and MLDM algorithm:s.
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Overview of GraBi

» GraBiis a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

» GraBi comprehensively exploits the above three features of bipartite
graphs and MLDM algorithm:s.

» GraBi partitions a bipartite graph first vertically, and then horizontally,
to realize high-quality partitioning.
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Vertical Partitioning: Vertex-vector Chunking
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Vertical Partitioning: Vertex-vector Chunking

Replical Vertex 2
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yVertex 3 Partitioning * P

Node 2

Node 3

% Vertex Master ~ g=== Vertex Replica  4¢—> inter-vertex Comm. <==% Intra-vertex Comm.

The whole vector of a vertex |:> * Inter-vertex Communication happens between computing nodes
is assigned to a computing node. * Intra-vertex Communication happens within a computing node
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Vertical Partitioning: Vertex-vector Chunking
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Vertical Partitioning: Vertex-vector Chunking
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The whole vector of a vertex is
divided into vertex-chunks.
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Vertical Partitioning: Vertex-vector Chunking

Chunk 1 (1)
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Node 2 ~ Q;unkl (3)

Chunk 3 (3)
Node 3

% Vertex Master  g=== Vertex Replica 4¢—> inter-vertex Comm. <==% Intra-vertex Comm.

The whole vector of a vertex is |:> * Inter-vertex Communication happens within a computing node
divided into vertex-chunks. * Intra-vertex Communication happens between computing nodes
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Vertical Partitioning: Vertex-vector Chunking

» Number of Layers L

* [=1, horizontal partitioning, inter-vertex communication dominates

* [=N, vertical partitioning, intra-vertex communication dominates

- L=12..,N
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Vertical Partitioning: Vertex-vector Chunking

» Number of Layers L

* [=1, horizontal partitioning, inter-vertex communication dominates

* [=N, vertical partitioning, intra-vertex communication dominates
- L=1,2,..,N

L is set as the Greatest Common Divisor (GCD) of D and N
D is the number of elements in each vector, N is the number of computing nodes.

-> Each vertex-chunk consists of D/L elements, Each layer is assigned to N /L nodes.
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Vertical Partitioning: Vertex-vector Chunking

» Number of Layers L

* [=1, horizontal partitioning, inter-vertex communication dominates

* [=N, vertical partitioning, intra-vertex communication dominates
- L=1,2,..,N

L is set as the Greatest Common Divisor (GCD) of D and N
D is the number of elements in each vector, N is the number of computing nodes.

-> Each vertex-chunk consists of D/L elements, Each layer is assigned to N /L nodes.

The vertical partitioning stage, Vertex-vector Chunking, is simple
element-grouping for every vectored vertex.
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Horizontal Partitioning: Vertex-chunk Assignment




Horizontal Partitioning: Vertex-chunk Assignment
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Horizontal Partitioning: Vertex-chunk Assignment
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Horizontal Partitioning: Vertex-chunk Assignment
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Horizontal Partitioning: Vertex-chunk Assignment
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Summary of GraBi|

» Vertical Partitioning:

Divide a bipartite graph into several layers
- trade off between inter-vertex communication and intra-vertex communication
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Summary of GraBi|

» Vertical Partitioning:

Divide a bipartite graph into several layers
- trade off between inter-vertex communication and intra-vertex communication

» Horizontal Partitioning:

Assign the bigger vertex-subset first within each layer
— decrease the number of replicas

Cut each high-degree vertex-chunk into multiple sub-chunks
- balance the computation time among vertices
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Summary of GraBi|

» Vertical Partitioning:

Divide a bipartite graph into several layers
- trade off between inter-vertex communication and intra-vertex communication

» Horizontal Partitioning:

Assign the bigger vertex-subset first within each layer
— decrease the number of replicas

Cut each high-degree vertex-chunk into multiple sub-chunks
- balance the computation time among vertices

Fine-grained, high-quality
GraBi Light-weight

Generalizable to most MLDM algorithms
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Experimental Setup

» Implementation

* GraBiisimplemented on a open-source distributed graph-processing system PowerLyra[l].

 The two important parameters in GraBi, L and «, are set as 4 and 2 respectively.

[1] R. Chen, J. Shi, Y. Chen, et al. PowerlLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs. In EuroSys 2015.
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Experimental Setup

» Implementation

* GraBiisimplemented on a open-source distributed graph-processing system PowerLyra[l].

 The two important parameters in GraBi, L and «, are set as 4 and 2 respectively.

» Counterparts

e Hybrid-cut (Observation 3)
e Bi-cut (Observation 2)

* 3D-partitioner (Observation 1+ Observation 2)

[1] R. Chen, J. Shi, Y. Chen, et al. PowerlLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs. In EuroSys 2015.
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Experimental Setup

» Cluster Configuration
The experiments are conducted on an 8-node cluster.

Each node has one Intel Xeon E5-2650 processor (8 cores) and 16GB DRAM.
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Experimental Setup

» Cluster Configuration
The experiments are conducted on an 8-node cluster.

Each node has one Intel Xeon E5-2650 processor (8 cores) and 16GB DRAM.

> Bipartite Graphs
Graph U] |V |E| |U/V|
DBLP 4,000K 1,426K 8.6M 2.81
Netflix 480K 18K 100.5M 27.02
LiveJournal 7,489K 3,201K 112.3M 2.34
Yahoo 1,001K 625K 256.8M 1.60
Orkut 8,731K 2,783K | 327.0M 3.14

Background - Motivation - Design - Evaluation - Conclusion



Experimental Setup

» Cluster Configuration
The experiments are conducted on an 8-node cluster.

Each node has one Intel Xeon E5-2650 processor (8 cores) and 16GB DRAM.

> Bipartite Graphs
Graph U] V] |E| |U/V|
DBLP 4,000K 1,426K 8.6M 2.81
Netflix 480K 18K 100.5M 27.02
LiveJournal 7,489K 3,201K 112.3M 2.34
Yahoo 1,001K 625K 256.8M 1.60
Orkut 8,731K 2,783K | 327.0M 3.14
> MLDM Algorithms Alternating Least Squares (ALS)

Stochastic Gradient Descent (SGD)
Non-negative Matrix Factorization (NMF)
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Overall Performance

> Total Execution Time
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* GraBiimproves the execution time by an average of 1.65x over Hybrid-cut, 1.70x over Bi-cut,
and 1.09x over 3D-partitioner respectively.

* GraBi surpasses Hybrid-cut and Bi-cut in both the partitioning and computation phases.

* GraBi outperforms 3D-partitioner in the computation phase, but slightly underperforms in the
partitioning phase.
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Partitioning Phase

> Replication Factor

Graph Hybrid-cut Bi-cut 3D-partitioner GraBi
DBLP 2.74 3.08 1.38 1.45
Netflix 3.37 2.14 1.16 1.20
LiveJournal 2.64 3.47 1.30 1.52
Yahoo 3.34 4.43 1.53 1.56
Orkut 3.34 4.43 1.53 1.56

* Alower replication factor represents higher partitioning quality.

* The average of Hybrid-cut, Bi-cut, 3Dpartitioner, and GraBi are 3.06, 3.28, 1.36, and 1.45
respectively.
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Partitioning Phase

» Graph Partitioning Time
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(a) Loading & Distributing Time (b) Finalizing Time

e Bi-cut has the shortest loading & distributing time, and Hybrid-cut has the longest.

* The finalizing time is almost proportional to the corresponding replication factor.
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GraBi reduces the network traffic in Hybrid-cut and Bi-cut by an average of 45% and
49% respectively.

GraBi incurs more network traffic than 3D-partitioner by an average of 11%.
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Computation Phase

» Graph Computation Time
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e GraBi outstrips Hybrid-cut, Bi-cut, and 3D-partitioner by an average of 3.12x, 3.41x,

and 1.30x respectively.
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Scalability
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(a) Partitioning Time (b) Computation Time

* As to the partitioning phase, the scalability of 3D-partitioner and GraBi is better than
Hybrid-cut and Bi-cut.

* Asto the computation phase, the scalability Hybrid-cut of and GraBi is better than Bi-cut
and 3D-partitioner.

Background - Motivation - Design - Evaluation - Conclusion



Impact of Parameters
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e ALS and SGD algorithms behave best at different values of L.

 The impact of a is moderate and stable within a wide value range.
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Conclusion

GraBi is a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.
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Conclusion

GraBi is a communication-efficient and workload-balanced partitioning
framework for bipartite graphs.

» Vertical Partitioning:

Observation 1 => Divide a bipartite graph into several layers => Efficient Communication

» Horizontal Partitioning:

Observation 2 > Assign the bigger vertex-subset first within each layer => Efficient Communication

Observation 3 =» Decompose each high-degree vertex-chunk into sub-chunks > Workload Balance

Background - Motivation - Design - Evaluation - Conclusion
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