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Introduction
Semantic Segmentation of Images

Ø Given an image with 𝑁×𝑁 pixels and a set of 𝑘 distinct classes, 
label each of the 𝑁! pixels with one of the 𝑘 distinct classes.

Ø For example, given a 256 ×256 image of a car, road, buildings 
and people, a semantic segmentation of the image classifies 
each of the 256×256 = 2"# pixels into one of 𝑘 = 4 classes {car, 
road, building, people}.
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Image credit: https://mc.ai/how-to-do-semantic-segmentation-using-deep-learning/

Semantic Segmentation

conv  3 x 3, ReLU
max pool, 2 x 2
up-conv  2 x 2
conv  1 x 1
copy and crop

In
pu

t i
m

ag
e

Se
gm

en
te

d
im

ag
e

https://mc.ai/how-to-do-semantic-segmentation-using-deep-learning/
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The U-Net Model
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U-Net Architecture

Input Image Output Image

U-Net: Convolutional Networks for 
Biomedical Image Segmentation   

Olaf Ronneberger, Philipp Fischer, Thomas Brox
Medical Image Computing and Computer-

Assisted Intervention (MICCAI), Springer, LNCS, 
Vol.9351: 234--241, 2015.

• Refer to this as the 𝜖 − region (halo).

• Halo width (𝜖) is a function of U-Net 
architecture (depth, channel width, 
filter sizes, etc.).

• Halo width (𝜖) determines the 
receptive field of the model.

• Larger the receptive field, wider the 
length-scales of identifiable objects.

𝜖 = 3 ⋅ 2$%! − 1 𝑑𝑛&
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Why Is It A Summit-scale Problem?

Ø Satellite images collected at high-resolutions (30-50 cm) yield 
very large 10,000 x 10,000 images.

Ø Most computer vision workloads deal with images of 𝑂(10!×
10!) resolution (for example, ImageNet).

Ø This work targets ultra-wide extent images with 𝑂(10'×10') 
resolution ⇒ 10,000-fold larger data samples!

Ø At present, requires many days to train a single model (even 
on special-purpose DL platforms like DGX boxes).

Ø Hyperparameter tuning of these models take much longer.

Ø Need accurate scalable high-speed training framework. 

Ø Large U-Net models are needed to resolve multi-scale objects 
(buildings, solar panels, land cover details).

Ø Advanced DAQ systems generate vast amounts of high-
resolution images ⇒ large data volume. 
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image size

Larger receptive 
fields require larger 

models

Multi-TB of data 
from DAQ systems.
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Sample Parallelism - Taming Large Image Size 
Leveraging Summit’s Vast GPU Farm
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Tile size chosen such that appended 
tile plus model parameters fit on a 

single Summit GPU.

Ø Given a 𝑁×𝑁 image, U-Net segments a 
𝑁 − 𝜖 ×(𝑁 − 𝜖) inset square.

Ø Partition each 𝑁×𝑁 = 10000×10000 image 
sample into non-overlapping tiles.

Ø Append an extra halo region of width 𝜖
along each side of each tile. 

Ø Assign each appended tile to a Summit 
GPU. Use standard U-Net to segment 
appended tile.

Ø Each GPU segments an area equal to that 
of the original non-overlapping tile.

𝑁

𝑁

𝑁 − 𝜖

𝑁
−
𝜖

Blue dashed square 
is segmented for 

each appended tile.
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Ø Optimal tiling for each 10000×10000 sample image 
was found to be 8×8.

Ø Each 1250×1250 tile was appended with a halo of 
width 𝜖 = 92 and assigned to a single Summit GPU.
Ø 10 – 11 Summit nodes to train each 10000×
10000 image sample.

Ø A U-Net model was trained on a data set of 100 
10000×10000×4 satellite images, collected at 30-
50 cm resolution.

Ø The training time per epoch was shown to be ∼12 
seconds using 1200 Summit GPUs compared to 
∼1,740 seconds on a DGX-1.

Ø Initial testing revealed no appreciable loss of 
training/validation accuracy using the new 
parallel framework.

Performance of  Sample-Parallel U-Net 
Training

+100X Faster U-Net Training
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§ 𝐾 → 𝐹𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒
§ 𝑆 → 𝑆𝑡𝑟𝑖𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
§ 𝑃 → 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 𝑙𝑖𝑧𝑒
§ 𝑛! → 𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑛𝑣𝑠 𝑝𝑒𝑟 𝑙𝑒𝑣𝑒𝑙
§ 𝐿 → 𝑛𝑜. 𝑜𝑓 𝑈𝑁𝑒𝑡 𝑙𝑒𝑣𝑒𝑙𝑠
§ 𝑁×𝑁 = 𝑞"(𝑇#×𝑇′)

Limitations of Sample Parallelism
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Ø An image of size 𝑁× 𝑁 is partitioned into a 𝑞×𝑞 array of 𝑇(×𝑇( tiles.

Ø 𝐸 ∼ )*+,- .*-/01 *2 &*03/+,+4*56 317 +4-1
)*+,- .*-/01 *2 /612/- &*03/+,+4*56 317 +4-1

= 𝑂 )!

)"!
∼ 𝑂 1 + 𝑞 '8

9

Ø Ideally, 𝐸 = 1.

Ø Decreasing 𝑞 (increasing tile sizes) increases the memory 
requirement and quickly overtakes memory available per GPU.

Ø Decreasing 𝜖 decreases the receptive field of the model.

Ø On the other hand, the goal is to decrease 𝑞 and increase 𝜖.

Ø Decrease 𝑞 ⇒ increasing tile size 𝑇′ and decreasing 𝜖 steers away 
from target receptive fields.

Ø To satisfy both, larger U-Net models than can fit on a GPU needed. 

Ø Need model-parallel execution.

𝑁 = 𝑞𝑇(

𝜖 = 3 ⋅ 2$%! − 1 𝑑𝑛& 𝑑 = 9 :%" ;<%!=
:

− 1
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TorchGPipe: PyTorch implementation of Gpipe* Framework 

Model-Parallelism - Taming Large Model Size 
Node-level Pipeline-Parallel Execution

GPU 1 GPU 2 GPU 3 GPU 4 GPU 5 GPU 6

No load balance

GPU 1 GPU 2 GPU 3 GPU 4 GPU 5 GPU 6

With load balance

-- skip connections omitted for ease of presentation --
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Single Summit Node

Ø Number of consecutive layers mapped to a GPU is 
called partition.

Ø Number of layers in each partition is called balance.

Ø Subdivide each mini-batch of tiles into smaller micro-
batches that are assigned to each partition.

Ø Micro-batches per partition ≡ 𝑚𝑏𝑝𝑝

Memory needed/GPU = size(micro-batch) + size(partition)

* Huang, Yanping, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le and Zhifeng Chen. “GPipe: Efficient Training of Giant Neural 
Networks using Pipeline Parallelism.” NeurIPS (2019).



99

Model Parallel Experiments
Single Node Execution

SAMPLE PARALLEL

!×! Image Samples
#×# Padded Tiles

!×!

!×!

!×!

!′
×!
′

!′×
!′

!′
×!

′ MODEL PARALLEL U-NET

96 GB

SUMMIT NODE

!×!

Model No. of 
Levels

Conv. Layers 
Per Level

No. of Trainable 
Parameters 𝝐

Small (Standard) 5 2 72,301,856 92

Medium-1 5 5 232,687,904 230

Medium-2 6 2 289,357,088 188

Large 7 2 1,157,578,016 380

• 10× larger number of trainable parameters.
• 4× fold larger receptive field. 

Benchmark U-Net  Models

Medium -1 

𝟐. 𝟖× (192), 𝟐. 𝟓× (512) and 𝟐× (1024)
speedup using 6 pipeline stages.

Speedup doubles (small: 1.97; medium-2: 2.01) 
as no. of pipeline stages increases from 1 to 6.
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Need for Performance Improvement
Single Node Execution

Ø Small, Medium-2 and Large Models: 
Ø Layers: 109, 129 and 149. 
Ø Balances: small {14, 24, 30, 22, 12, 7}; medium-2 

{16, 26, 38, 26, 12, 11}; large {18, 30, 44, 30, 14, 13}.

Ø Need load balanced pipelined execution.

Ø Encoder memory: 

Ø Decoder memory:

Ø Memory profile: 𝐸ℓ + 𝐷ℓ( vs. ℓ , ℓ( = 𝐿 − ℓ
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Wrapping Up

SAMPLE PARALLEL

!×! Image Samples

#×# Padded Tiles
MODEL PARALLEL U-NET

MODEL PARALLEL U-NET

MODEL PARALLEL U-NET

MODEL PARALLEL U-NET

96 GB

SUMMIT NODE

DATA PARALLEL

!×!

!×!

!×!

!×!

!×!

!×!

!×!
!′
×!

′

!′×
!′

!′
×!

′

Ongoing Work: Sample + Model + Data Parallel Framework

Load Balance Heuristics Data Parallelism

SAMPLE PARALLEL

!×! Image Samples
#×# Padded Tiles

!×!

!×!

!×!

!′
×!
′

!′×
!′

!′
×!

′ MODEL PARALLEL U-NET

96 GB

SUMMIT NODE

!×!

This Paper: Prototype Sample + Model Parallel Framework

• 𝟏𝟎× larger number of trainable parameters.
• 𝟒× fold larger receptive field. • 𝟏𝟎𝟎𝟎𝟎× larger image size. 

Ø Training image segmentation neural 
network models become extremely 
challenging when:
Ø Image sizes are very large
Ø Desired receptive fields are large
Ø Volume of training data is large.

Ø Fast training/inference needed for
geo-sensing applications –satellite 
imagery, disaster assessment, precision 
agriculture, etc.

Ø This work is a first step – can train 10×
larger U-Net models with 4× larger 
receptive field on 10000× larger 
images.

Ø Ongoing efforts are underway to 
integrate load balancing heuristics 
and data-parallel execution to handle 
large volumes of training data 
efficiently.
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