
Avoiding Register Overflow in the Bakery Algorithm

Amirhossein Sayyadabdi
University of Isfahan
ahsa@eng.ui.ac.ir

Mohsen Sharifi
University of Science and Technology

msharifi@iust.ac.ir

SRMPDS ‘20, Edmonton, AB, Canada

Agenda

● Background on mutual exclusion and the Bakery algorithm

● Problem statement

● Bakery++

● Performance, practicality and correctness of Bakery++

● Discussion and future work

● Conclusions

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

1 /15

Mutual Exclusion

Started the field of concurrency.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

1 /15

Mutual Exclusion

Started the field of concurrency.

Originally proposed and solved by Dijkstra in 1965.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

1 /15

Mutual Exclusion

Started the field of concurrency.

Originally proposed and solved by Dijkstra in 1965.

A group of independent sequential processes that have access to shared memory.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

1 /15

Mutual Exclusion

Started the field of concurrency.

Originally proposed and solved by Dijkstra in 1965.

A group of independent sequential processes that have access to shared memory.

Prevent the processes from executing a specific region of code called the “critical section”
simultaneously.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

1 /15

Mutual Exclusion (cont.)

Correctness conditions as specified by Knuth:

1. No two processes are allowed to execute their critical sections simultaneously.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

2 /15

Mutual Exclusion (cont.)

Correctness conditions as specified by Knuth:

1. No two processes are allowed to execute their critical sections simultaneously.

2. A reliable process should be allowed to enter its critical section eventually.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

2 /15

Mutual Exclusion (cont.)

Correctness conditions as specified by Knuth:

1. No two processes are allowed to execute their critical sections simultaneously.

2. A reliable process should be allowed to enter its critical section eventually.

3. Crashing of a process should not block others from accessing the critical section.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

2 /15

Mutual Exclusion (cont.)

Correctness conditions as specified by Knuth:

1. No two processes are allowed to execute their critical sections simultaneously.

2. A reliable process should be allowed to enter its critical section eventually.

3. Crashing of a process should not block others from accessing the critical section.

4. Processes may fail at any time and then restart outside of the critical section.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

2 /15

Mutual Exclusion (cont.)

Correctness conditions as specified by Knuth:

1. No two processes are allowed to execute their critical sections simultaneously.

2. A reliable process should be allowed to enter its critical section eventually.

3. Crashing of a process should not block others from accessing the critical section.

4. Processes may fail at any time and then restart outside of the critical section.

5. No assumptions are made about the execution speeds of processes.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

2 /15

Resource Management

Resource management concerns the coordination and collaboration of users.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

3 /15

Resource Management

Resource management concerns the coordination and collaboration of users.

It is usually based on making a decision.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

3 /15

Resource Management

Resource management concerns the coordination and collaboration of users.

It is usually based on making a decision.

In the case of mutual exclusion, that decision is about granting access to a resource.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

3 /15

Resource Management

Resource management concerns the coordination and collaboration of users.

It is usually based on making a decision.

In the case of mutual exclusion, that decision is about granting access to a resource.

Mutual exclusion is useful for supporting resource access management.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

3 /15

The Bakery Algorithm

1. Processes can enter their critical sections in first-come-first-served order.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

4 /15

The Bakery Algorithm

1. Processes can enter their critical sections in first-come-first-served order.

2. The failure of individual system components will not cause the entire system to halt.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

4 /15

The Bakery Algorithm

1. Processes can enter their critical sections in first-come-first-served order.

2. The failure of individual system components will not cause the entire system to halt.

3. No process writes into the memory of other processes.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

4 /15

The Bakery Algorithm

1. Processes can enter their critical sections in first-come-first-served order.

2. The failure of individual system components will not cause the entire system to halt.

3. No process writes into the memory of other processes.

4. If a read and a write occur simultaneously at a memory location, then the value

obtained by the read operation may have any arbitrary value.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

4 /15

integer array choosing [1..N], number [1..N];

begin integer j;

L1: choosing[i] := 1;

number[i] := 1 + maximum (number[1], … , number[N]);

choosing[i] := 0;

for j = 1 step 1 until N do

begin

L2: if choosing[j] ≠ 0 then goto L2;

L3: if number[j] ≠ 0 and (number[j], j < number[i], i) then goto L3;

end;

critical section; number[i] := 0; noncritical section; goto L1;

end

The Bakery Algorithm (cont.)

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

5 /15

Trouble with Bakery

The Bakery algorithm assumes unbounded registers.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

6 /15

Trouble with Bakery

The Bakery algorithm assumes unbounded registers.

The value of number[i] for process i may tend to infinity!

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

6 /15

Trouble with Bakery

The Bakery algorithm assumes unbounded registers.

The value of number[i] for process i may tend to infinity!

Two competing processes may keep incrementing this value forever:

number[i] := 1 + maximum (number[1], … , number[N]);

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

6 /15

Trouble with Bakery

The Bakery algorithm assumes unbounded registers.

The value of number[i] for process i may tend to infinity!

Two competing processes may keep incrementing this value forever:

number[i] := 1 + maximum (number[1], … , number[N]);

This causes register overflow in real systems.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

6 /15

Our Purpose

Avoid register overflows in the Bakery algorithm without making compromises.

Previous approaches to achieve the same goal:

● Introduce new shared variables.

● Redefine certain operations or functions in the algorithm.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

7 /15

Notable Solutions

 The majority of approaches to avoid overflows in the Bakery algorithm include:

1. Changing the definitions of “<” operator and “maximum” function.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

8 /15

Notable Solutions

 The majority of approaches to avoid overflows in the Bakery algorithm include:

1. Changing the definitions of “<” operator and “maximum” function.
2. Using modulo arithmetic instead of integer arithmetic.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

8 /15

Notable Solutions

 The majority of approaches to avoid overflows in the Bakery algorithm include:

1. Changing the definitions of “<” operator and “maximum” function.
2. Using modulo arithmetic instead of integer arithmetic.
3. Introducing new shared variables or using extra memory.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

8 /15

Notable Solutions

 The majority of approaches to avoid overflows in the Bakery algorithm include:

1. Changing the definitions of “<” operator and “maximum” function.
2. Using modulo arithmetic instead of integer arithmetic.
3. Introducing new shared variables or using extra memory.
4. Resetting the values of registers before an overflow occurs.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

8 /15

The Bakery++ Algorithm

There is an important theoretical question in the paper that introduced Bakery:

“Can one find an algorithm for finite processors such that processors enter their critical
sections on a first-come-first-served basis, and no processor may write into another
processor’s memory?”

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

9 /15

The Bakery++ Algorithm

There is an important theoretical question in the paper that introduced Bakery:

“Can one find an algorithm for finite processors such that processors enter their critical
sections on a first-come-first-served basis, and no processor may write into another
processor’s memory?”

To our knowledge, all of the previous works on bounding the Bakery algorithm have failed
to answer this question.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

9 /15

Bakery++

Bakery++ is a slightly modified version of the Bakery algorithm.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

10 /15

Bakery++

Bakery++ is a slightly modified version of the Bakery algorithm.

We call it “Bakery++” because it is almost identical to Bakery.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

10 /15

Bakery++

Bakery++ is a slightly modified version of the Bakery algorithm.

We call it “Bakery++” because it is almost identical to Bakery.

It does not use any additional variables.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

10 /15

Bakery++

Bakery++ is a slightly modified version of the Bakery algorithm.

We call it “Bakery++” because it is almost identical to Bakery.

It does not use any additional variables.

It does not redefine the operators or functions used in Bakery.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

10 /15

constant M;
integer array choosing [1..N], number [1..N];
begin integer j;
L1: if ∃ q ∈ {1, … , N} such that number[q] ≥ M then goto L1;
choosing[i] := 1;
number[i] := maximum (number[1], … , number[N]);
if number[i] ≥ M then begin

 number[i] := 0; choosing[i] := 0; goto L1;
 end

else number[i] := number[i] + 1;
choosing[i] := 0;
for j = 1 step 1 until N do
begin

L2: if choosing[j] ≠ 0 then goto L2;
L3: if number[j] ≠ 0 and (number[j], j < number[i], i) then goto L3;

end;
critical section; number[i] := 0; noncritical section; goto L1;
end

Bakery++ (cont.)

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

11 /15

Performance and Practicality

Bakery++ does not introduce new variables, so the spatial complexities of both
algorithms are identical.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

12 /15

Performance and Practicality

Bakery++ does not introduce new variables, so the spatial complexities of both
algorithms are identical.

The temporal complexity of Bakery++ depends on the number of executions of the goto
statement exactly after label L1.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

12 /15

Performance and Practicality

Bakery++ does not introduce new variables, so the spatial complexities of both
algorithms are identical.

The temporal complexity of Bakery++ depends on the number of executions of the goto
statement exactly after label L1.

The reason Bakery ++ is useful in practice is that it is almost as simple as the original
Bakery, without new variables and fancy operations or functions.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

12 /15

Performance and Practicality

Bakery++ does not introduce new variables, so the spatial complexities of both
algorithms are identical.

The temporal complexity of Bakery++ depends on the number of executions of the goto
statement exactly after label L1.

The reason Bakery ++ is useful in practice is that it is almost as simple as the original
Bakery, without new variables and fancy operations or functions.

There are no practical limitations for implementing the Bakery++ algorithm.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

12 /15

Correctness Argument

Bakery++ does not introduce new variables and its control flow is almost identical to
Bakery. The changes that have been made to Bakery include:

● Introducing a constant that represents the maximum value storable.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

13 /15

Correctness Argument

Bakery++ does not introduce new variables and its control flow is almost identical to
Bakery. The changes that have been made to Bakery include:

● Introducing a constant that represents the maximum value storable.
● Adding a conditional statement and a goto after label L1 that does not manipulate

the values of Bakery’s data objects.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

13 /15

Correctness Argument

Bakery++ does not introduce new variables and its control flow is almost identical to
Bakery. The changes that have been made to Bakery include:

● Introducing a constant that represents the maximum value storable.
● Adding a conditional statement and a goto after label L1 that does not manipulate

the values of Bakery’s data objects.
● Adding a conditional statement before incrementing the maximum value obtained

from reading all processes’ variable number.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

13 /15

Correctness Argument

Bakery++ does not introduce new variables and its control flow is almost identical to
Bakery. The changes that have been made to Bakery include:

● Introducing a constant that represents the maximum value storable.
● Adding a conditional statement and a goto after label L1 that does not manipulate

the values of Bakery’s data objects.
● Adding a conditional statement before incrementing the maximum value obtained

from reading all processes’ variable number.
● If there is a possibility of overflow in process i, then we simply set

number[i] = choosing[i] = 0 and then we jump to label L1. Otherwise, we will
continue by incrementing the maximum value and the original Bakery algorithm.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

13 /15

Discussion and Future Work

There are two questions:

1. What happens if there are more customers in the bakery than the maximum
number that can be stored in a register?

2. What is the definition of the exact moment when a process is considered to have
taken its turn for entering its critical section?

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

14 /15

Conclusions

We revisited the problem of mutual exclusion and the Bakery algorithm, the first true
mutual exclusion algorithm, to solve the problem of integer overflow.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

15 /15

Conclusions

We revisited the problem of mutual exclusion and the Bakery algorithm, the first true
mutual exclusion algorithm, to solve the problem of integer overflow.

Previous approaches to solving the problem of register overflow concentrated on making
use of new variables and redefining the operations or functions used in the original
Bakery, and they were complicated solutions.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

15 /15

Conclusions

We revisited the problem of mutual exclusion and the Bakery algorithm, the first true
mutual exclusion algorithm, to solve the problem of integer overflow.

Previous approaches to solving the problem of register overflow concentrated on making
use of new variables and redefining the operations or functions used in the original
Bakery, and they were complicated solutions.

Bakery ++ is quite simple and it differs from Bakery in just a few instructions.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

15 /15

Conclusions

We revisited the problem of mutual exclusion and the Bakery algorithm, the first true
mutual exclusion algorithm, to solve the problem of integer overflow.

Previous approaches to solving the problem of register overflow concentrated on making
use of new variables and redefining the operations or functions used in the original
Bakery, and they were complicated solutions.

Bakery ++ is quite simple and it differs from Bakery in just a few instructions.

We have specified Bakery++ in the PlusCal language and performed model checking.

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

15 /15

Thank you!

SRMPDS ‘20, Edmonton, AB, CanadaAvoiding Register Overflow in the Bakery Algorithm

