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Asymmetric Multicore Processors (AMPs)

Performance asymmetry: big cores + small cores
Same Instruction Set Architecture (ISA) but different features:

� Processor frequency and power consumption
� Microarchitecture

� In-order vs. out-of-order pipeline
� Retirement/issue width

� Cache(s) size and hierarchy
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Example: ARM big.LITTLE processor

e.g., Google Pixel 7 e.g., Samsung Galaxy A8 Odroid XU-4 Hikey 960 ARM Juno Platform
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Intel Lakefield’s hybrid processor

1 Sunny Cove core + 4 Tremont cores Samsung Galaxy Book S

Microsoft Neo Surface
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Our goal

Goal: Automatically deliver good performance to data-parallel loop-based OpenMP
programs on AMPs

Main limiting factors for scalability of loop-based OpenMP programs
1 Phases with limited parallelism (e.g. sequential sections)
2 Load imbalance in iteration distribution
3 Shared-resource contention (Last-level cache, memory bandwidth)

Issue AMPs
Cores with different performance introduce load imbalance inherently
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Load imbalance on AMPs

Application with a single parallel loop runs on
AMP (2 big cores + 2 small cores)
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Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance
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Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based

Legacy OpenMP code targets symmetric
multicore
The static schedule is used as itera-
tions have similar amount of work

� Each thread runs same # of iterations

Execution of unmodified application on
an AMP
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Application with a single parallel loop runs on
AMP (2 big cores + 2 small cores)
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Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance
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portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based
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Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance
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Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based
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Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance
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portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based
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Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance
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Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based

Similar performance!
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Addressing the load imbalance

Cannot just we assign more iterations to big-core threads in proportion to the
big-to-small relative performance?

� Speedup Factor (SF)1 ⇒ big-to-small relative performance:
Ctimesmall
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SF for BT and CG on Platform A
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SF is not only platform- and application- specific but may also vary across loops

1For these experiments, the SF was measured with the ratio of completion times (small-to-big) registered
for each loop running with a single thread
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Our proposal

We proposed three asymmetry-aware loop-scheduling methods
� AID: Asymmetric Iteration Distribution
� Replacements for static and dynamic methods on AMP

� Cater to the demands of different applications

Features
Implemented in libgomp (GNU OpenMP runtime system)
Applications need to be recompiled, but no changes required in source code
The same binary can be used on different platforms with the same ISA

� The runtime system automatically adapts to the platform
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AID loop-scheduling methods

3 variants of Asymmetric-Iteration Distribution (AID)
1 AID-static: replacement for static on AMPs
2 AID-hybrid: “safer” version of AID-static
3 AID-dynamic: replacement for dynamic on AMPs

Common aspects
Usually assign more loop iterations to big-core threads than to small-core threads

� Based on the loop’s SF (predicted at runtime)

Designed for scenarios with no oversubscription
There is no need to modify applications to activate them

� Environment variables for enabling and setting parameters
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Implementation of dynamic schedule in libgomp
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Lock-free implementation
2 shared counters: next and end
chunk (default value 1)
Uses fetch-and-add

� Atomic: next+=chunk

Each thread invokes
gomp_iter_dynamic_next() until next>=end
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AID-Static

Designed for loops where iterations have the same amount of work

End Loop

Begin Loop

static schedule

All threads are allotted “the same” amount of
iterations
Big-core threads complete their share earlier
causing imbalance

End Loop

Begin Loop

AID-static

Small-core threads → k iterations
Big-core threads → SF · k iterations
total_iterations = Nbig · SF · k + Nsmall · k

k =
total_iterations

Nbig · SF + Nsmall
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AID-Static: SF prediction
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Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance
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Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based
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mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance
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Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based
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Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance
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Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based
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Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Enabling performance portability of data-parallel OpenMP applications on asymmetric multicore processors ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Running Synchronization Scheduling and Fork/Join

Thread 1

Thread 2

Thread 3

Thread 4

0 ns 113,950,500,329 ns

(a) EP on 2B-2S
Thread 1

Thread 2

Thread 3

Thread 4

0 ns 114,813,862,874 ns

(b) EP on 4S
Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance
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Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based
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AID-Static: Implementation
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AID-static: Limitations

Predicted SF may not be representative throughout the loop
� Processing varies slightly across iterations
� SF misprediction
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Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance
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Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based
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AID-Hybrid: Implementation
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Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance
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Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATED WORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based
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AID-dynamic

Goal: To make a good replacement for
dynamic on AMPs
It relies on two configurable chunk values:

� major (M): Used for AID phases (variant
of dynamic)

� small-core threads → M iterations
� big-core threads → M · R iterations
� R = g(SF )

� minor (m): Used in between AID phases
and at the end of the loop’s execution

mode=AID;
cur_aid_phase=0;

while (!pool.is_empty()) {
if (pool.remaining_iter()<=M*nr_threads)

mode=DYNAMIC;

if (mode==AID &&
prev_phase_completed(cur_aid_phase)){
R=calculate_progress(cur_aid_phase);
chunk=big_core_thread()?R*M:M;
dynamic(chunk,pool);
current_aid_phase++;

}
else {

dynamic(m,pool);
}

}

AID phase 1 AID phase 2 AID phase 3 ... dynamic

Transition phases
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AID-dynamic
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Required changes in the GCC compiler

To guarantee performance portability with our proposal:
1 The runtime system must be deployed as a dynamic library (libgomp.so)
2 The compiled program must invoke loop-related runtime API calls

Issue: GCC omits loop-related API calls when schedule clause not provided
...
#pragma omp for

for (j = 0; j < grid_points[1]; j++) {
eta = (double)j * dnym1;
for (k = 0; k < grid_points[2]; k++) {

zeta = (double)k * dnzm1;
exact_solution(xi, eta, zeta, temp);
for (m = 0; m < 5; m++) {
u[i][j][k][m] = temp[m];

}
}

}

Terminal
$ nm -u bt.B | grep -i GOMP_

U GOMP_barrier@@GOMP_1.0
U GOMP_parallel@@GOMP_4.0

The runtime system cannot control the schedule of those loops
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Required changes in the GCC compiler

We changed default value for schedule clause in GCC: static → runtime
� If clause omitted, runtime uses schedule defined in OMP_SCHEDULE env. variable
� Very simple change in GCC 8.3: omp_extract_for_data() at gcc/omp-general.c

...
#pragma omp for

for (j = 0; j < grid_points[1]; j++) {
eta = (double)j * dnym1;
for (k = 0; k < grid_points[2]; k++) {

zeta = (double)k * dnzm1;
exact_solution(xi, eta, zeta, temp);
for (m = 0; m < 5; m++) {
u[i][j][k][m] = temp[m];

}
}

}

Terminal
$ nm -u bt.B_modified | grep -i GOMP_

U GOMP_loop_end@@GOMP_1.0
U GOMP_loop_end_nowait@@GOMP_1.0
U GOMP_loop_runtime_next@@GOMP_1.0
U GOMP_loop_runtime_start@@GOMP_1.0
U GOMP_parallel@@GOMP_4.0

Runtime system is now notified when each loop begins (GOMP_loop_*_start()) and when each
thread requests work to be assigned to it (GOMP_loop_*_next())
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Experimental platforms
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64-bit Intel Xeon E5-2620 v4 (Broadwell-EP)
� 4 x fast cores @ 2.1Ghz
� 4 x slow cores @ 1.2Ghz and 87.5%

duty cycle
32GB DDR4 SDRAM @ 2133MHz
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Applications and thread-to-core mappings

21 OpenMP benchmarks
� NAS Parallel
� PARSEC 3
� Rodinia

GCC 8.3 + Linux kernel 4.14.165
Evaluated loop-scheduling methods

� static (BS and SB)
� dynamic (BS and SB)
� guided (BS and SB)
� AID-static
� AID-hybrid
� AID-dynamic
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Relative performance on Platform A
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Running the master thread on a big core brings substantial improvements in some cases
AID-static and AID-hybrid make good replacements for static (up to 30.7% and 56% improvement)
OpenMP dynamic and AID-dynamic perform in a close range but a >10% improvement is observed
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Relative performance on Platform B
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Smaller big-to-small performance ratios (max. 2.3x vs. 8.9x on Platform A)
The overhead of dynamic negates its benefits in some cases due to lower SF values

� AID-dynamic delivers higher gains vs. dynamic on this platform (22% on average)
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Average relative performance
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Average performance improvement
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AID-hybrid vs. static(BS)

AID-dynamic vs. dynamic(BS)
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Dynamic vs AID-dynamic: different chunk values
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The average improvement with best chunk settings for AID-dynamic vs. static is 5.5%
AID-dynamic delivers up to a 21.9% performance improvement
With AID-dynamic performance is less sensitive to the choice of the chunk values
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Conclusions

Conventional OpenMP loop-scheduling methods are not suitable for AMPs
� static introduces load imbalance
� dynamic better than static but subject to high overhead

We proposed 3 alternative asymmetry-aware loop-scheduling methods
� Implemented in libgomp (GCC 8.3)
� No changes required in application code
� Applications must be recompiled with our modified compiler

Our experimental evaluation on real AMP hardware reveals their effectiveness
� AID-static, AID-hybrid outperform static by up to 30.7% and 56%, respectively
� AID-dynamic improves dynamic by up to 16.8%

� Higher relative improvements when using the best chunk settings for each application

49th International Conference on Parallel Processing (ICPP ’20) - 32



Conclusions

Conventional OpenMP loop-scheduling methods are not suitable for AMPs
� static introduces load imbalance
� dynamic better than static but subject to high overhead

We proposed 3 alternative asymmetry-aware loop-scheduling methods
� Implemented in libgomp (GCC 8.3)
� No changes required in application code
� Applications must be recompiled with our modified compiler

Our experimental evaluation on real AMP hardware reveals their effectiveness
� AID-static, AID-hybrid outperform static by up to 30.7% and 56%, respectively
� AID-dynamic improves dynamic by up to 16.8%

� Higher relative improvements when using the best chunk settings for each application

49th International Conference on Parallel Processing (ICPP ’20) - 32



Conclusions

Conventional OpenMP loop-scheduling methods are not suitable for AMPs
� static introduces load imbalance
� dynamic better than static but subject to high overhead

We proposed 3 alternative asymmetry-aware loop-scheduling methods
� Implemented in libgomp (GCC 8.3)
� No changes required in application code
� Applications must be recompiled with our modified compiler

Our experimental evaluation on real AMP hardware reveals their effectiveness
� AID-static, AID-hybrid outperform static by up to 30.7% and 56%, respectively
� AID-dynamic improves dynamic by up to 16.8%

� Higher relative improvements when using the best chunk settings for each application

49th International Conference on Parallel Processing (ICPP ’20) - 32



Future Work

1 Explore the potential from using multiple AID methods in the same application
� Loops with same-sized iterations → AID-static or AID-hybrid
� Loops amenable to dynamic → AID-dynamic
� Requires making changes in the application and parameter-tunning + profiling

2 Leverage AID in multi-application scenarios
� Devise interaction mechanisms between the OS and the runtime system

3 Evaluate the effectiveness of AID in other types of applications and heterogeneous
platforms
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