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Asymmetric Multicore Processors (AMPs)

m Performance asymmetry: big cores 4+ small cores
m Same Instruction Set Architecture (ISA) but different features:
B Processor frequency and power consumption

B Microarchitecture

B |n-order vs. out-of-order pipeline
B Retirement/issue width

B Cache(s) size and hierarchy
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Example: ARM big.LITTLE processor
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e.g., Google Pixel 7 e.g., Samsung Galaxy A8 Odroid XU-4 Hikey 960 ARM Juno Platform
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Memory LP-DD4 4x16
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1.5M L2

Intel Lakefield’s hybrid processor

1 Sunny Cove core + 4 Tremont cores

Big CPU
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Our goal

m Goal: Automatically deliver good performance to data-parallel loop-based OpenMP
programs on AMPs

PARSEC

'sek] A unit of measure

spec
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Our goal

m Goal: Automatically deliver good performance to data-parallel loop-based OpenMP
programs on AMPs

/IPARSEC -
spec

m Main limiting factors for scalability of loop-based OpenMP programs

Phases with limited parallelism (e.g. sequential sections)
Load imbalance in iteration distribution
Shared-resource contention (Last-level cache, memory bandwidth)

rare Cores with different performance introduce load imbalance inherently I
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Load imbalance on AMPs

Application with a single parallel loop runs on
AMP (2 big cores + 2 small cores)

Core Core
0 1 Core’ Core
2 3

\. Running [l Synchronization [] Scheduling and Fork/]oin‘

0 ns 113,950,500,329 ns

m Legacy OpenMP code targets symmetric
multicore

m The static schedule is used as itera-
tions have similar amount of work

B FEach thread runs same # of iterations

m Execution of unmodified application on
an AMP
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Load imbalance on AMPs

Application with a single parallel loop runs on Application with a single parallel loop runs on
AMP (2 big cores + 2 small cores) sCMP (4 small cores)
T0 T1

éé $ 4 gégg
Core Core Core [ Core ] Core] Core
Core’ Core

0 1 2 3 0 1 2 3
[l Rumning. [ Synchronization [ Scheduling and ForkJoin | (W Running B Synchronization [ Scheduling and Forl/Join |
o | To |
(. 1 |
™2 |
3 |

0 ns 114,813,862,874 ns

0 ns 113,950,500,329 ns
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Load imbalance on AMPs

Application with a single parallel loop runs on Application wit le parallel loop runs on

AMP (2 big cores + 2 small cores) all cores)

Core [ Core [ Core [ Core
0 1 2 3
E Running [J] Synchronization [] Scheduling and Fork/Join |

7o

TO

T1

T2

0 ns 113,950,500,329 ns 0 ns 114,813,862,874 ns
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Addressing the load imbalance g

m Cannot just we assign more iterations to big-core threads in proportion to the

big-to-small relative performance?
Ctimesman

® Speedup Factor (SF)! = big-to-small relative performance: -
Ctimepig

SF for BT and CG on Platform B

SF for BT and CG on Platform A

-
ER
(SRS
[
o
o

Speedup factor

—_- e
Speedup factor
Speedup factor
Speedup factor

19

oW e o
B

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Loop number Loop number Loop number Loop number

1For these experiments, the SF was measured with the ratio of completion times (small-to-big) registered

or each loop running with a single thread
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® Speedup Factor (SF)! = big-to-small relative performance: -
Ctimepig

SF for BT and CG on Platform B

SF for BT and CG on Platform A

-
-1
(SRS
[
o
o

— e
o

Speedup factor
Speedup factor
Speedup factor
Speedup factor

oW e o
B

0 10 20 3 0 10 20 30 0 10 20 30 0 10 20 3(
Loop number Loop number Loop number Loop number

SF is not only platform- and application- specific but may also vary across loops

1For these experiments, the SF was measured with the ratio of completion times (small-to-big) registered

or each loop running with a single thread
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Our proposal

m We proposed three asymmetry-aware loop-scheduling methods

® AID: Asymmetric Iteration Distribution
B Replacements for static and dynamic methods on AMP

B Cater to the demands of different applications

ArTeCS
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Our proposal

m We proposed three asymmetry-aware loop-scheduling methods

® AID: Asymmetric Iteration Distribution
B Replacements for static and dynamic methods on AMP

B Cater to the demands of different applications

m Implemented in libgomp (GNU OpenMP runtime system)

m Applications need to be recompiled, but no changes required in source code
m The same binary can be used on different platforms with the same ISA

B The runtime system automatically adapts to the platform
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AID loop-scheduling methods

m 3 variants of Asymmetric-Iteration Distribution (AID)

AID-static: replacement for static on AMPs
AID-hybrid: “safer” version of AID-static
AID-dynamic: replacement for dynamic on AMPs

ArTeCS
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AID loop-scheduling methods

m 3 variants of Asymmetric-Iteration Distribution (AID)

AID-static: replacement for static on AMPs
AID-hybrid: “safer” version of AID-static
AID-dynamic: replacement for dynamic on AMPs

Common aspects

m Usually assign more loop iterations to big-core threads than to small-core threads
B Based on the loop's SF (predicted at runtime)
m Designed for scenarios with no oversubscription

m There is no need to modify applications to activate them

® Environment variables for enabling and setting parameters
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Implementation of dynamic schedule in libgomp
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Implementation of dynamic schedule in libgomp

Thread 0
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Implementation of dynamic schedule in libgomp

Thread 2
§ T
it7

ArTeCS
Shared pool of iterations
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Implementation of dynamic schedule in libgomp

Thread 3
§ T
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Implementation of dynamic schedule in libgomp

Lock-free implementation
m 2 shared counters: next and end
Thread 1 hunk (default value 1)
e m chun efault value
g\“'
m Uses fetch-and-add
B Atomic: next+=chunk
.
m Each thread invokes
gomp_iter_dynamic_next () until next>=end
[ it13 ] 4

Shared pool of iterations
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AID-Static

Designed for loops where iterations have the same amount of work

static schedule

Begin Loop — — — - - =

LI B B |
LI R B |
End Loop = =l= L J_L X_V_ I

m All threads are allotted “the same” amount of
iterations

m Big-core threads complete their share earlier
causing imbalance

ArTeCS
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Designed for loops where iterations have the same amount of work

static schedule AID-static
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AlID-Static

Designed for loops where iterations have the same amount of work

static schedule

Begin Loop — — — - -

LI B B |
LI R B |
End Loop = =l= L J_L X_V_ I

m All threads are allotted “the same” amount of
iterations

m Big-core threads complete their share earlier
causing imbalance

ArTeCS

Tet

AID-static

Begin Loop — — - - -

End Loop - -'- - -

m Small-core threads — k iterations
m Big-core threads — SF - k iterations
m total_iterations = Npjg - SF - k + Nsmay - k

49th International Conference on Parallel Processing (ICPP '20) = 15



AlID-Static

Designed for loops where iterations have the same amount of work

static schedule AID-static

Begin Loop — — — - -

Begin Loop — — - - -

LI B B |
e End Loo;
End Loop — =l- L J_L X_V_ I P - - -

m All threads are allotted “the same” amount of m Small-core threads — k iterations
iterations
m Big-core threads — SF - k iterations
m Big-core threads complete their share earlier

causing imbalance m total_iterations = Npjg - SF - k + Nsmay - k

total__iterations
ArTeCS B Nbig * SF + Nsman
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AID-Static: SF prediction

Running Synchronization Scheduling and Fork/Join
Y 8

Thread 0 |
Thread 1 |
Thread 2

|
Thread 3 |
Thread 4

Thread 5

Thread 6

Thread 7

1
LYEE [ oop begins

m Run chunk iterations on big-cores and
on small-core threads

m Last thread that completes sampling
is the one that calculates SF and k

1 Nsmall -1 _,_
. g small,i
Nsma/l —o
— =
m SF = Nop—1
1
: E Thig.j
N big -
Jj=0
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AID-Static: SF prediction

‘. Running ] Synchronization [] Scheduling and Fork/]oin‘

Thread 0 ra = > E— m Run chunk iterations on big-cores and
Thread 1 _ ] ] on small-core threads

N Loc - m Last thread that completes sampling
Thread 2 1 | .

is the one that calculates SF and k
Thread 3 1 Nsmal—1
Thread 4 Neman Z Tamaii
T small.0 m SF = 0

Thread 5 s 1 Npig—1

Tsma//,l

Thread 6

Thread 7
TsmaH,}

1
LRE [ oop begins

% ] 49th International Conference on Parallel Processing (ICPP '20) = 16




AID-Static: SF prediction

‘. Running ] Synchronization [] Scheduling and Fork/]oin‘

Thread 0 ra = > E— m Run chunk iterations on big-cores and
Thread 1 _ ] ] on small-core threads

N Loc - m Last thread that completes sampling
Thread 2 1 | .

is the one that calculates SF and k
Thread 3 1 Nsmal—1
Thread 4 Neman Z Tamaii
T small.0 m SF = 0

Thread 5 s 1 Npig—1

Tsma//,l

Thread 6

Thread 7
TsmaH,}

1
LRE [ oop begins

% ] 49th International Conference on Parallel Processing (ICPP '20) = 16




AID-Static: SF prediction

Running Synchronization Scheduling and Fork/Join
Y 8

Thread 0 . J |
N Thig.0 - )
Thread 1 7 | m Efficient lock-free implementation
N T’ L4 . .
Thread 2 i I m Threads complete iterations even
L4

during the sampling phase (4;)

Thread 3

m Each thread needs to gather 2 times-

Thread 4 tamps (vsyscall)

Tsma//,()

s m Shared counters to maintain aggre-
gate completion time

Thread 5

Tsma//,l

Thread 6

Thread 7
Tsma”,3

1
LYEE [ oop begins
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AID-Static: Implementation

m Threads in 3 possible states

B A state transition may occur when the thread “steals” work from the shared pool

Thread is not the last one

in completing sampling phase At least one
thread has still
“ not completed
Loop SAMPLING_WAIT\| / the sampling
begins phase

Current thread is
the last one
completing the
sampling phase

All threads
completed the

Big: SF- k —§;
sampling phase

Small: k —§;
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AlD-static: Limitations

m Predicted SF may not be representative throughout the loop

B Processing varies slightly across iterations
B SF misprediction

[l Running [ Synchronization [] Scheduling and Fork/Join |

TO |
TO T1 T2 T3 T1

oot I
é § é k

T3 | —
[c';'eIcZ'eIC?.'eIcTe] Y T4 |

> T |
Y —

77 I
0 ns  47,145,510,892 ns

AID-Static could introduce load imbalance
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AID-Hybrid: Implementation

total_iterations - f total_iterations - (1 — f)

| AID-Static dynamic ‘

Iteration number

m AID-hybrid: AID-static + OpenMP’s dynamic
B { is a configurable parameter (percentage)

[l Running [l Synchronization [] Scheduling and Fork/Join

1

TO0 T1 T2 T3 Tl_ :
T T

§ § § § T4 5 6 T7 T2— :

1

1

[

302 1 L0 s I

[

[

[t}

1

0 ns 44,650,953,367 ns 43,986,144,465 ns 44,650,953,367 ns
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AID-dynamic

m Goal: To make a good replacement for
dynamic on AMPs

m It relies on two configurable chunk values:

® major (M): Used for AID phases (variant
of dynamic)

B small-core threads — M iterations
B big-core threads — M - R iterations
= R =g(SF)

B minor (m): Used in between AID phases
and at the end of the loop's execution

mode=AID;
cur_aid_phase=0;

while (!pool.is_empty()) {
if (pool.remaining_iter () <=M#nr_threads)
mode=DYNAMIC;

if (mode==AID &&
prev_phase_completed(cur_aid_phase)){
R=calculate_progress(cur_aid_phase);
chunk=big_core_thread () 7R*M:M;
dynamic (chunk,pool) ;
current_aid_phase++;
}
else {
dynamic (m,pool) ;

}

[] AIDphase1 T[] AID phase 2 [ [ AID phase 3 [ |

[dynamic

Transition phases
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AID-dynamic

Thread is not the last one

in completing sampling phase At least one

Loop
begins

SAMPLING_WAI
Thread is not

the last one
in completing
AID phase
All threads

completed the
sampling/AID phase

Current thread is
the last one
completing the
sampling phase

Current is the last thread
completing AID phase
ArTeCS

Jet

thread has still
not completed
the sampling

phase

SF t=0
R(t+1)= AvgTimeAID gpan(t
V=1 gy AT imeATDenenll)
AvgTimeAlDy;g(t)
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Required changes in the GCC compiler

m To guarantee performance portability with our proposal:

The runtime system must be deployed as a dynamic library (1ibgomp.so)
The compiled program must invoke loop-related runtime API calls

m Issue: GCC omits loop-related API calls when schedule clause not provided

#pragma omp for
for (j = 0; j < grid_points[1]; j++) {
eta = (double)j * dnyml; s
for (k 0; k < grid_points[2]; k++) { Terminal
zeta (double)k * dnzmil; $ nm -u bt.B | grep —-i GOMP_
exact_solution(xi, eta, zeta, temp);
for (m = 0; m < 5; m++) {
wli] (51 (k] [m] = temp[m];

U GOMP_barrier@@GOMP_1.0
U GOMP_parallel@QGOMP_4.0

The runtime system cannot control the schedule of those loops
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Required changes in the GCC compiler

m We changed default value for schedule clause in GCC: static — runtime

B |f clause omitted, runtime uses schedule defined in OMP_SCHEDULE env. variable
B \ery simple change in GCC 8.3: omp_extract_for_data() at gcc/omp-general.c

#pragma omp for Terminal
for (j = 0; j < grid_points[1l; j++) { — .

eta = (double)j * dnymi; $ nm -u bt.B_modified | grep -i GOMP_

for (k = (2; k < §rid_points[2]; k++) { U GOMP_loop_end@QGOMP_1.0
zeta = (double)k * dnzml; .
exact_solution(xi, eta, zeta, temp); U GOMP_loop_end_nowait@@GOMP_1.0
for (m = 0; m < 5; m++) { U GOMP_loop_runtime_next@QGOMP_1.0
N ulil [j]1[k] [m] = temp[m]; U GOMP_loop_runtime_start@eGOMP_1.0

} U GOMP_parallel@QGOMP_4.0

}

Runtime system is now notified when each loop begins (GOMP_loop_*_start()) and when each
thread requests work to be assigned to it (GOMP_loop_%*_next())
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Experimental platforms

Platform A (Odroid-XU4 Board)

A15 (| A15 || A15 || Al5 A7 A7 A7 A7

core || core || core || core or or or or

| L2 (2MB) | L2 (512KB)
ACE ACE
interface interface

Cache Coherent Interconnect (CCl)

DRAM controller

m 32-bit ARM big.LITTLE processor

® 4 x Cortex Al5 big cores @ 2.0Ghz
B 4 x Cortex A7 small cores @ 1.5Ghz
m 2GB LPDDR3 SDRAM @ 933MHz
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Experimental platforms

Platform A (Odroid-XU4 Board) Platform B (Intel server platform)

A1s |[A15 | A5 | ALS fast || fast || fast || fast || slow || slow || slow || slow
core || core || core || core || core || core
core || core || core || core ord fcord |cord [cord]
[ L2¢ ) ]

core core
| L2 (2MB) |

512KB L3 (20MB)
ACE ACE
interface interface I
| Cache Coherent Interconnect (CCI) | nterc:nnect |
|
| DRAM controller | | DRAM controller |

m 32-bit ARM big.LITTLE processor m 64-bit Intel Xeon E5-2620 v4 (Broadwell-EP)

B 4 x fast cores @ 2.1Ghz

® 4 x slow cores @ 1.2Ghz and 87.5%
duty cycle

m 32GB DDR4 SDRAM @ 2133MHz

® 4 x Cortex Al5 big cores @ 2.0Ghz
B 4 x Cortex A7 small cores @ 1.5Ghz
m 2GB LPDDR3 SDRAM @ 933MHz
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Applications and thread-to-core mappings g

m 21 OpenMP benchmarks

® NAS Parallel
® PARSEC 3
B Rodinia

m GCC 8.3 + Linux kernel 4.14.165
m Evaluated loop-scheduling methods

B static (BS and SB)
dynamic (BS and SB)
guided (BS and SB)
AID-static
AID-hybrid
AID-dynamic

ArTeCS
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SB mapping
T7 T6 T5 T4
§ T3 T2 T1 TO

[ Core I Core I Core I Core ] Core Core Core Core
1 (1]

BS mapping

TO Tl T2 T3
§ T4 T5 T6 T7

[ Core I Core I Core I Core ] Core Core Core Core
1 [1]

{7
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Relative performance on Platform A

Z static(SB) BN static(BS) E= dynamic(SB) B dynamic(BS) =3 AID-static BN AID-hybrid == AID-dynamic]
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® Running the master thread on a big core brings substantial improvements in some cases
m AID-static and AID-hybrid make good replacements for static (up to 30.7% and 56% improvement)
m OpenMP dynamic and AID-dynamic perform in a close range but a >10% improvement is observed
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Relative performance on Platform B

Z3 static(SB) EE static(BS) E=3 dynamic(SB) B dynamic(BS) =1 AID-static ~ ISEM AID-hybrid =X AID-dynamic

175 -
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m Smaller big-to-small performance ratios (max. 2.3x vs. 8.9x on Platform A)
m The overhead of dynamic negates its benefits in some cases due to lower SF values
B AID-dynamic delivers higher gains vs. dynamic on this platform (22% on average)

ArTeCS
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Average relative performance

s Platform A - Platform B

AID-dynamic vs. dynamic(BS)

AID-hybrid vs. static(BS)

AlD-static vs. static (BS)

0.0% 5.0% 10.0% 150% 200% 25.0%
Average performance improvement

ArTeCS
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m The average improvement with best chunk settings for AID-dynamic vs. static is 5.5%

m With AID-dynamic performance is less sensitive to the choice of the chunk values

m AID-dynamic delivers up to a 21.9% performance improvement

B static(BS)
2 dynamic(BS)/1

Dynamic vs AID-dynam
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=3 dynamic(BS)/10

ArTeCS




Contents

B Conclusions and Future Work

ArTeCS

G@ ] 49th International Conference on Parallel Processing (ICPP '20) - 31




Conclusions

m Conventional OpenMP loop-scheduling methods are not suitable for AMPs

B static introduces load imbalance
B dynamic better than static but subject to high overhead
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Conclusions

m Conventional OpenMP loop-scheduling methods are not suitable for AMPs

B static introduces load imbalance
B dynamic better than static but subject to high overhead

m We proposed 3 alternative asymmetry-aware loop-scheduling methods

B |Implemented in libgomp (GCC 8.3)
® No changes required in application code
® Applications must be recompiled with our modified compiler

49th International Conference on Parallel Processing (ICPP '20) = 32




Conclusions
|

m Conventional OpenMP loop-scheduling methods are not suitable for AMPs

B static introduces load imbalance
B dynamic better than static but subject to high overhead

m We proposed 3 alternative asymmetry-aware loop-scheduling methods

B |Implemented in libgomp (GCC 8.3)
® No changes required in application code
® Applications must be recompiled with our modified compiler

m Our experimental evaluation on real AMP hardware reveals their effectiveness

B ATD-static, AID-hybrid outperform static by up to 30.7% and 56%, respectively
B AID-dynamic improves dynamic by up to 16.8%

B Higher relative improvements when using the best chunk settings for each application
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Future Work

Explore the potential from using multiple AID methods in the same application

B | oops with same-sized iterations — AID-static or AID-hybrid
® | oops amenable to dynamic — AID-dynamic
B Requires making changes in the application and parameter-tunning + profiling

ArTeCS
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Explore the potential from using multiple AID methods in the same application

B | oops with same-sized iterations — AID-static or AID-hybrid
® | oops amenable to dynamic — AID-dynamic
B Requires making changes in the application and parameter-tunning + profiling

Leverage AID in multi-application scenarios

B Devise interaction mechanisms between the OS and the runtime system
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Future Work

Explore the potential from using multiple AID methods in the same application

B | oops with same-sized iterations — AID-static or AID-hybrid
® | oops amenable to dynamic — AID-dynamic
B Requires making changes in the application and parameter-tunning + profiling

Leverage AID in multi-application scenarios
B Devise interaction mechanisms between the OS and the runtime system

Evaluate the effectiveness of AID in other types of applications and heterogeneous
platforms
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