
Enabling performance portability of data-parallel
OpenMP applications on asymmetric multicore

processors

Juan Carlos Sáez∗,Fernando Castro∗, Manuel Prieto-Matías∗,†

∗Facultad de Informática
†Instituto de Tecnología del Conocimiento (ITC)
Complutense University of Madrid, Spain

49th International Conference on Parallel Processing (ICPP ’20)

August 17-20, 2020



This research has been supported by

Grant references: RTI2018-093684-B-I00 and S2018/TCS-4423



Asymmetric Multicore Processors (AMPs)

Performance asymmetry: big cores + small cores
Same Instruction Set Architecture (ISA) but different features:

� Processor frequency and power consumption
� Microarchitecture

� In-order vs. out-of-order pipeline
� Retirement/issue width

� Cache(s) size and hierarchy

49th International Conference on Parallel Processing (ICPP ’20) - 3



Example: ARM big.LITTLE processor

e.g., Google Pixel 7 e.g., Samsung Galaxy A8 Odroid XU-4 Hikey 960 ARM Juno Platform
49th International Conference on Parallel Processing (ICPP ’20) - 4



Intel Lakefield’s hybrid processor

1 Sunny Cove core + 4 Tremont cores Samsung Galaxy Book S

Microsoft Neo Surface

49th International Conference on Parallel Processing (ICPP ’20) - 5



Our goal

Goal: Automatically deliver good performance to data-parallel loop-based OpenMP
programs on AMPs

Main limiting factors for scalability of loop-based OpenMP programs
1 Phases with limited parallelism (e.g. sequential sections)
2 Load imbalance in iteration distribution
3 Shared-resource contention (Last-level cache, memory bandwidth)

Issue AMPs
Cores with different performance introduce load imbalance inherently

49th International Conference on Parallel Processing (ICPP ’20) - 6



Our goal

Goal: Automatically deliver good performance to data-parallel loop-based OpenMP
programs on AMPs

Main limiting factors for scalability of loop-based OpenMP programs
1 Phases with limited parallelism (e.g. sequential sections)
2 Load imbalance in iteration distribution
3 Shared-resource contention (Last-level cache, memory bandwidth)

Issue AMPs
Cores with different performance introduce load imbalance inherently

49th International Conference on Parallel Processing (ICPP ’20) - 6



Load imbalance on AMPs

Application with a single parallel loop runs on
AMP (2 big cores + 2 small cores)

Core
0

T0

Core
1

T1

Core
2

T2

Core
3

T3

T0

T1

T2

T3

0 ns 113,950,500,329 ns

Enabling performance portability of data-parallel OpenMP applications on asymmetric multicore processors ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Running Synchronization Scheduling and Fork/Join

Thread 1

Thread 2

Thread 3

Thread 4

0 ns 113,950,500,329 ns

(a) EP on 2B-2S
Thread 1

Thread 2

Thread 3

Thread 4

0 ns 114,813,862,874 ns

(b) EP on 4S
Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance

0 10 20 30
Loop number

1

2

3

4

5

6

7

S
pe

ed
up

fa
ct

or

(a) BT on Platform A

0 10 20 30
Loop number

1.7

1.8

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(b) BT on Platform B

0 10 20 30
Loop number

1
2
3
4
5
6
7
8

S
pe

ed
up

fa
ct

or

(c) CG on Platform A

0 10 20 30
Loop number

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(d) CG on Platform B
Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based

Legacy OpenMP code targets symmetric
multicore
The static schedule is used as itera-
tions have similar amount of work

� Each thread runs same # of iterations

Execution of unmodified application on
an AMP

49th International Conference on Parallel Processing (ICPP ’20) - 7



Load imbalance on AMPs

Application with a single parallel loop runs on
AMP (2 big cores + 2 small cores)

Core
0

T0

Core
1

T1

Core
2

T2

Core
3

T3

T0

T1

T2

T3

0 ns 113,950,500,329 ns

Enabling performance portability of data-parallel OpenMP applications on asymmetric multicore processors ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Running Synchronization Scheduling and Fork/Join

Thread 1

Thread 2

Thread 3

Thread 4

0 ns 113,950,500,329 ns

(a) EP on 2B-2S
Thread 1

Thread 2

Thread 3

Thread 4

0 ns 114,813,862,874 ns

(b) EP on 4S
Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance

0 10 20 30
Loop number

1

2

3

4

5

6

7

S
pe

ed
up

fa
ct

or

(a) BT on Platform A

0 10 20 30
Loop number

1.7

1.8

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(b) BT on Platform B

0 10 20 30
Loop number

1
2
3
4
5
6
7
8

S
pe

ed
up

fa
ct

or

(c) CG on Platform A

0 10 20 30
Loop number

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(d) CG on Platform B
Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based

Application with a single parallel loop runs on
sCMP (4 small cores)

Core
0

T0

Core
1

T1

Core
2

T2

Core
3

T3

T0

T1

T2

T3

0 ns 114,813,862,874 ns

Enabling performance portability of data-parallel OpenMP applications on asymmetric multicore processors ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Running Synchronization Scheduling and Fork/Join

Thread 1

Thread 2

Thread 3

Thread 4

0 ns 113,950,500,329 ns

(a) EP on 2B-2S
Thread 1

Thread 2

Thread 3

Thread 4

0 ns 114,813,862,874 ns

(b) EP on 4S
Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance

0 10 20 30
Loop number

1

2

3

4

5

6

7

S
pe

ed
up

fa
ct

or

(a) BT on Platform A

0 10 20 30
Loop number

1.7

1.8

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(b) BT on Platform B

0 10 20 30
Loop number

1
2
3
4
5
6
7
8

S
pe

ed
up

fa
ct

or

(c) CG on Platform A

0 10 20 30
Loop number

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(d) CG on Platform B
Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based

49th International Conference on Parallel Processing (ICPP ’20) - 7



Load imbalance on AMPs

Application with a single parallel loop runs on
AMP (2 big cores + 2 small cores)

Core
0

T0

Core
1

T1

Core
2

T2

Core
3

T3

T0

T1

T2

T3

0 ns 113,950,500,329 ns

Enabling performance portability of data-parallel OpenMP applications on asymmetric multicore processors ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Running Synchronization Scheduling and Fork/Join

Thread 1

Thread 2

Thread 3

Thread 4

0 ns 113,950,500,329 ns

(a) EP on 2B-2S
Thread 1

Thread 2

Thread 3

Thread 4

0 ns 114,813,862,874 ns

(b) EP on 4S
Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance

0 10 20 30
Loop number

1

2

3

4

5

6

7

S
pe

ed
up

fa
ct

or

(a) BT on Platform A

0 10 20 30
Loop number

1.7

1.8

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(b) BT on Platform B

0 10 20 30
Loop number

1
2
3
4
5
6
7
8

S
pe

ed
up

fa
ct

or
(c) CG on Platform A

0 10 20 30
Loop number

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(d) CG on Platform B
Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based

Application with a single parallel loop runs on
sCMP (4 small cores)

Core
0

T0

Core
1

T1

Core
2

T2

Core
3

T3

T0

T1

T2

T3

0 ns 114,813,862,874 ns

Enabling performance portability of data-parallel OpenMP applications on asymmetric multicore processors ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Running Synchronization Scheduling and Fork/Join

Thread 1

Thread 2

Thread 3

Thread 4

0 ns 113,950,500,329 ns

(a) EP on 2B-2S
Thread 1

Thread 2

Thread 3

Thread 4

0 ns 114,813,862,874 ns

(b) EP on 4S
Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance

0 10 20 30
Loop number

1

2

3

4

5

6

7

S
pe

ed
up

fa
ct

or

(a) BT on Platform A

0 10 20 30
Loop number

1.7

1.8

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(b) BT on Platform B

0 10 20 30
Loop number

1
2
3
4
5
6
7
8

S
pe

ed
up

fa
ct

or

(c) CG on Platform A

0 10 20 30
Loop number

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(d) CG on Platform B
Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based

Similar performance!

49th International Conference on Parallel Processing (ICPP ’20) - 7



Addressing the load imbalance

Cannot just we assign more iterations to big-core threads in proportion to the
big-to-small relative performance?

� Speedup Factor (SF)1 ⇒ big-to-small relative performance:
Ctimesmall

Ctimebig

SF for BT and CG on Platform A

0 10 20 30
Loop number

1

2

3

4

5

6

7

S
p

ee
du

p
fa

ct
or

0 10 20 30
Loop number

1

2

3

4

5

6

7

8
S

p
ee

du
p

fa
ct

or

SF for BT and CG on Platform B

0 10 20 30
Loop number

1.7

1.8

1.9

2.0

2.1

2.2

S
p

ee
du

p
fa

ct
or

0 10 20 30
Loop number

1.9

2.0

2.1

2.2

S
p

ee
du

p
fa

ct
or

SF is not only platform- and application- specific but may also vary across loops

1For these experiments, the SF was measured with the ratio of completion times (small-to-big) registered
for each loop running with a single thread

49th International Conference on Parallel Processing (ICPP ’20) - 8



Addressing the load imbalance

Cannot just we assign more iterations to big-core threads in proportion to the
big-to-small relative performance?

� Speedup Factor (SF)1 ⇒ big-to-small relative performance:
Ctimesmall

Ctimebig

SF for BT and CG on Platform A

0 10 20 30
Loop number

1

2

3

4

5

6

7

S
p

ee
du

p
fa

ct
or

0 10 20 30
Loop number

1

2

3

4

5

6

7

8
S

p
ee

du
p

fa
ct

or

SF for BT and CG on Platform B

0 10 20 30
Loop number

1.7

1.8

1.9

2.0

2.1

2.2

S
p

ee
du

p
fa

ct
or

0 10 20 30
Loop number

1.9

2.0

2.1

2.2

S
p

ee
du

p
fa

ct
or

SF is not only platform- and application- specific but may also vary across loops
1For these experiments, the SF was measured with the ratio of completion times (small-to-big) registered

for each loop running with a single thread
49th International Conference on Parallel Processing (ICPP ’20) - 8



Our proposal

We proposed three asymmetry-aware loop-scheduling methods
� AID: Asymmetric Iteration Distribution
� Replacements for static and dynamic methods on AMP

� Cater to the demands of different applications

Features
Implemented in libgomp (GNU OpenMP runtime system)
Applications need to be recompiled, but no changes required in source code
The same binary can be used on different platforms with the same ISA

� The runtime system automatically adapts to the platform

49th International Conference on Parallel Processing (ICPP ’20) - 9



Our proposal

We proposed three asymmetry-aware loop-scheduling methods
� AID: Asymmetric Iteration Distribution
� Replacements for static and dynamic methods on AMP

� Cater to the demands of different applications

Features
Implemented in libgomp (GNU OpenMP runtime system)
Applications need to be recompiled, but no changes required in source code
The same binary can be used on different platforms with the same ISA

� The runtime system automatically adapts to the platform

49th International Conference on Parallel Processing (ICPP ’20) - 9



Contents

1 Introduction

2 Design and implementation of AID

3 Experimental Evaluation

4 Conclusions and Future Work

49th International Conference on Parallel Processing (ICPP ’20) - 10



Contents

1 Introduction

2 Design and implementation of AID

3 Experimental Evaluation

4 Conclusions and Future Work

49th International Conference on Parallel Processing (ICPP ’20) - 11



Contents

1 Introduction

2 Design and implementation of AID

3 Experimental Evaluation

4 Conclusions and Future Work

49th International Conference on Parallel Processing (ICPP ’20) - 12



AID loop-scheduling methods

3 variants of Asymmetric-Iteration Distribution (AID)
1 AID-static: replacement for static on AMPs
2 AID-hybrid: “safer” version of AID-static
3 AID-dynamic: replacement for dynamic on AMPs

Common aspects
Usually assign more loop iterations to big-core threads than to small-core threads

� Based on the loop’s SF (predicted at runtime)

Designed for scenarios with no oversubscription
There is no need to modify applications to activate them

� Environment variables for enabling and setting parameters

49th International Conference on Parallel Processing (ICPP ’20) - 13



AID loop-scheduling methods

3 variants of Asymmetric-Iteration Distribution (AID)
1 AID-static: replacement for static on AMPs
2 AID-hybrid: “safer” version of AID-static
3 AID-dynamic: replacement for dynamic on AMPs

Common aspects
Usually assign more loop iterations to big-core threads than to small-core threads

� Based on the loop’s SF (predicted at runtime)

Designed for scenarios with no oversubscription
There is no need to modify applications to activate them

� Environment variables for enabling and setting parameters

49th International Conference on Parallel Processing (ICPP ’20) - 13



Implementation of dynamic schedule in libgomp

it0
it1
it2
it3
it4
it5
it6
it7
it8
it9
it10
it11
it12
it13
it14
it15

Shared pool of iterations

Thread 0

Thread 2

Thread 3

Thread 1

Lock-free implementation
2 shared counters: next and end
chunk (default value 1)
Uses fetch-and-add

� Atomic: next+=chunk

Each thread invokes
gomp_iter_dynamic_next() until next>=end

49th International Conference on Parallel Processing (ICPP ’20) - 14



Implementation of dynamic schedule in libgomp

it0
it1
it2
it3
it4
it5
it6
it7
it8
it9
it10
it11
it12
it13
it14
it15

Shared pool of iterations

Thread 0

Thread 2

Thread 3

Thread 1

Lock-free implementation
2 shared counters: next and end
chunk (default value 1)
Uses fetch-and-add

� Atomic: next+=chunk

Each thread invokes
gomp_iter_dynamic_next() until next>=end

49th International Conference on Parallel Processing (ICPP ’20) - 14



Implementation of dynamic schedule in libgomp

it0
it1
it2
it3
it4
it5
it6
it7
it8
it9
it10
it11
it12
it13
it14
it15

Shared pool of iterations

Thread 0

Thread 2

Thread 3

Thread 1

Lock-free implementation
2 shared counters: next and end
chunk (default value 1)
Uses fetch-and-add

� Atomic: next+=chunk

Each thread invokes
gomp_iter_dynamic_next() until next>=end

49th International Conference on Parallel Processing (ICPP ’20) - 14



Implementation of dynamic schedule in libgomp

it0
it1
it2
it3
it4
it5
it6
it7
it8
it9
it10
it11
it12
it13
it14
it15

Shared pool of iterations

Thread 0

Thread 2

Thread 3

Thread 1

Lock-free implementation
2 shared counters: next and end
chunk (default value 1)
Uses fetch-and-add

� Atomic: next+=chunk

Each thread invokes
gomp_iter_dynamic_next() until next>=end

49th International Conference on Parallel Processing (ICPP ’20) - 14



Implementation of dynamic schedule in libgomp

it0
it1
it2
it3
it4
it5
it6
it7
it8
it9
it10
it11
it12
it13
it14
it15

Shared pool of iterations

Thread 0

Thread 2

Thread 3

Thread 1

Lock-free implementation
2 shared counters: next and end
chunk (default value 1)
Uses fetch-and-add

� Atomic: next+=chunk

Each thread invokes
gomp_iter_dynamic_next() until next>=end

49th International Conference on Parallel Processing (ICPP ’20) - 14



AID-Static

Designed for loops where iterations have the same amount of work

End Loop

Begin Loop

static schedule

All threads are allotted “the same” amount of
iterations
Big-core threads complete their share earlier
causing imbalance

End Loop

Begin Loop

AID-static

Small-core threads → k iterations
Big-core threads → SF · k iterations
total_iterations = Nbig · SF · k + Nsmall · k

k =
total_iterations

Nbig · SF + Nsmall

49th International Conference on Parallel Processing (ICPP ’20) - 15



AID-Static

Designed for loops where iterations have the same amount of work

End Loop

Begin Loop

static schedule

All threads are allotted “the same” amount of
iterations
Big-core threads complete their share earlier
causing imbalance

End Loop

Begin Loop

AID-static

Small-core threads → k iterations
Big-core threads → SF · k iterations
total_iterations = Nbig · SF · k + Nsmall · k

k =
total_iterations

Nbig · SF + Nsmall

49th International Conference on Parallel Processing (ICPP ’20) - 15



AID-Static

Designed for loops where iterations have the same amount of work

End Loop

Begin Loop

static schedule

All threads are allotted “the same” amount of
iterations
Big-core threads complete their share earlier
causing imbalance

End Loop

Begin Loop

AID-static

Small-core threads → k iterations
Big-core threads → SF · k iterations
total_iterations = Nbig · SF · k + Nsmall · k

k =
total_iterations

Nbig · SF + Nsmall

49th International Conference on Parallel Processing (ICPP ’20) - 15



AID-Static

Designed for loops where iterations have the same amount of work

End Loop

Begin Loop

static schedule

All threads are allotted “the same” amount of
iterations
Big-core threads complete their share earlier
causing imbalance

End Loop

Begin Loop

AID-static

Small-core threads → k iterations
Big-core threads → SF · k iterations
total_iterations = Nbig · SF · k + Nsmall · k

k =
total_iterations

Nbig · SF + Nsmall

49th International Conference on Parallel Processing (ICPP ’20) - 15



AID-Static: SF prediction

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Enabling performance portability of data-parallel OpenMP applications on asymmetric multicore processors ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Running Synchronization Scheduling and Fork/Join

Thread 1

Thread 2

Thread 3

Thread 4

0 ns 113,950,500,329 ns

(a) EP on 2B-2S
Thread 1

Thread 2

Thread 3

Thread 4

0 ns 114,813,862,874 ns

(b) EP on 4S
Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance

0 10 20 30
Loop number

1

2

3

4

5

6

7

S
pe

ed
up

fa
ct

or

(a) BT on Platform A

0 10 20 30
Loop number

1.7

1.8

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(b) BT on Platform B

0 10 20 30
Loop number

1
2
3
4
5
6
7
8

S
pe

ed
up

fa
ct

or

(c) CG on Platform A

0 10 20 30
Loop number

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(d) CG on Platform B
Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based

Loop begins

Tbig,0

Tbig,1

Tbig,2

Tbig,3

Tsmall,0

Tsmall,1

Tsmall,2

Tsmall,3

Run chunk iterations on big-cores and
on small-core threads
Last thread that completes sampling
is the one that calculates SF and k

SF =

1
Nsmall

·

Nsmall −1∑
i=0

Tsmall,i

1
Nbig

·

Nbig −1∑
j=0

Tbig,j

49th International Conference on Parallel Processing (ICPP ’20) - 16



AID-Static: SF prediction

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Enabling performance portability of data-parallel OpenMP applications on asymmetric multicore processors ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Running Synchronization Scheduling and Fork/Join

Thread 1

Thread 2

Thread 3

Thread 4

0 ns 113,950,500,329 ns

(a) EP on 2B-2S
Thread 1

Thread 2

Thread 3

Thread 4

0 ns 114,813,862,874 ns

(b) EP on 4S
Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance

0 10 20 30
Loop number

1

2

3

4

5

6

7

S
pe

ed
up

fa
ct

or

(a) BT on Platform A

0 10 20 30
Loop number

1.7

1.8

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(b) BT on Platform B

0 10 20 30
Loop number

1
2
3
4
5
6
7
8

S
pe

ed
up

fa
ct

or

(c) CG on Platform A

0 10 20 30
Loop number

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(d) CG on Platform B
Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based

Loop begins

Tbig,0

Tbig,1

Tbig,2

Tbig,3

Tsmall,0

Tsmall,1

Tsmall,2

Tsmall,3

Run chunk iterations on big-cores and
on small-core threads
Last thread that completes sampling
is the one that calculates SF and k

SF =

1
Nsmall

·

Nsmall −1∑
i=0

Tsmall,i

1
Nbig

·

Nbig −1∑
j=0

Tbig,j

49th International Conference on Parallel Processing (ICPP ’20) - 16



AID-Static: SF prediction

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Enabling performance portability of data-parallel OpenMP applications on asymmetric multicore processors ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Running Synchronization Scheduling and Fork/Join

Thread 1

Thread 2

Thread 3

Thread 4

0 ns 113,950,500,329 ns

(a) EP on 2B-2S
Thread 1

Thread 2

Thread 3

Thread 4

0 ns 114,813,862,874 ns

(b) EP on 4S
Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance

0 10 20 30
Loop number

1

2

3

4

5

6

7

S
pe

ed
up

fa
ct

or

(a) BT on Platform A

0 10 20 30
Loop number

1.7

1.8

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(b) BT on Platform B

0 10 20 30
Loop number

1
2
3
4
5
6
7
8

S
pe

ed
up

fa
ct

or

(c) CG on Platform A

0 10 20 30
Loop number

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(d) CG on Platform B
Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based

Loop begins

Tbig,0

Tbig,1

Tbig,2

Tbig,3

Tsmall,0

Tsmall,1

Tsmall,2

Tsmall,3

Run chunk iterations on big-cores and
on small-core threads
Last thread that completes sampling
is the one that calculates SF and k

SF =

1
Nsmall

·

Nsmall −1∑
i=0

Tsmall,i

1
Nbig

·

Nbig −1∑
j=0

Tbig,j

49th International Conference on Parallel Processing (ICPP ’20) - 16



AID-Static: SF prediction

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Enabling performance portability of data-parallel OpenMP applications on asymmetric multicore processors ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Running Synchronization Scheduling and Fork/Join

Thread 1

Thread 2

Thread 3

Thread 4

0 ns 113,950,500,329 ns

(a) EP on 2B-2S
Thread 1

Thread 2

Thread 3

Thread 4

0 ns 114,813,862,874 ns

(b) EP on 4S
Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance

0 10 20 30
Loop number

1

2

3

4

5

6

7

S
pe

ed
up

fa
ct

or

(a) BT on Platform A

0 10 20 30
Loop number

1.7

1.8

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(b) BT on Platform B

0 10 20 30
Loop number

1
2
3
4
5
6
7
8

S
pe

ed
up

fa
ct

or

(c) CG on Platform A

0 10 20 30
Loop number

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(d) CG on Platform B
Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based

Loop begins

Tbig,0

Tbig,1

Tbig,2

Tbig,3

Tsmall,0

Tsmall,1

Tsmall,2

Tsmall,3

Efficient lock-free implementation
Threads complete iterations even
during the sampling phase (δi)
Each thread needs to gather 2 times-
tamps (vsyscall)
Shared counters to maintain aggre-
gate completion time

49th International Conference on Parallel Processing (ICPP ’20) - 16



AID-Static: Implementation

Threads in 3 possible states
� A state transition may occur when the thread “steals” work from the shared pool

SAMPLING

chunk
SAMPLING_WAIT

chunk

AID

Big: SF · k − δi
Small: k − δi

Thread is not the last one
in completing sampling phase

Current thread is
the last one

completing the
sampling phase

All threads
completed the
sampling phase

At least one
thread has still
not completed
the sampling

phase
Loop
begins

49th International Conference on Parallel Processing (ICPP ’20) - 17



AID-static: Limitations

Predicted SF may not be representative throughout the loop
� Processing varies slightly across iterations
� SF misprediction

T0
T1
T2
T3
T4
T5
T6
T7

0 ns 47,145,510,892 ns

Enabling performance portability of data-parallel OpenMP applications on asymmetric multicore processors ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Running Synchronization Scheduling and Fork/Join

Thread 1

Thread 2

Thread 3

Thread 4

0 ns 113,950,500,329 ns

(a) EP on 2B-2S
Thread 1

Thread 2

Thread 3

Thread 4

0 ns 114,813,862,874 ns

(b) EP on 4S
Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance

0 10 20 30
Loop number

1

2

3

4

5

6

7

S
pe

ed
up

fa
ct

or

(a) BT on Platform A

0 10 20 30
Loop number

1.7

1.8

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(b) BT on Platform B

0 10 20 30
Loop number

1
2
3
4
5
6
7
8

S
pe

ed
up

fa
ct

or

(c) CG on Platform A

0 10 20 30
Loop number

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(d) CG on Platform B
Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATEDWORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based

Core
7

T0

Core
6

T1

Core
5

T2

Core
4

T3

Core
3

T4

Core
2

T5

Core
1

T6

Core
0

T7

AID-Static could introduce load imbalance
49th International Conference on Parallel Processing (ICPP ’20) - 18



AID-Hybrid: Implementation

AID-Static dynamic

total_iterations · f total_iterations · (1 − f )

Iteration number

AID-hybrid: AID-static + OpenMP’s dynamic
� f is a configurable parameter (percentage)

T0
T1
T2
T3
T4

T5
T6
T7

0 ns 44,650,953,367 ns

T0
T1
T2
T3
T4

T5
T6
T7

43,986,144,465 ns 44,650,953,367 ns

Enabling performance portability of data-parallel OpenMP applications on asymmetric multicore processors ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Running Synchronization Scheduling and Fork/Join

Thread 1

Thread 2

Thread 3

Thread 4

0 ns 113,950,500,329 ns

(a) EP on 2B-2S
Thread 1

Thread 2

Thread 3

Thread 4

0 ns 114,813,862,874 ns

(b) EP on 4S
Figure 1: Execution traces obtainedwith the Paraver tool [6] for the EP bench-
mark running with the static schedule and 4 threads with (a) two big and two
small cores –2B-2S–, and (b) with four small cores –4S–.

Benchmarks (NPB)– running with 4 threads on an AMP con�gu-
ration consisting of 2 big cores and 2 small cores. This program
consists of a single parallel loop that spans the entire execution;
iterations in this loop have roughly the same computational cost,
so the static schedule (used in the experiment) is an acceptable
choice on a conventional symmetric CMP. Due to the higher perfor-
mance of big cores relative to small ones, big-core threads (1 and 2
in the �gure) reach the implicit synchronization barrier sooner than
small-core threads (3 and 4). This leads to poor utilization of big
cores and low performance, as the completion of loop is bounded by
the performance of small cores. Note that running the application
on a CMP consisting of four small cores (Fig. 1b) delivers nearly the
same performance than using two big cores and two small ones.

A potential way to mitigate the imbalance scenario highlighted
in Fig. 1a would be to distribute iterations unevenly among threads
on big and small cores, and in proportion to the relative perfor-
mance across cores (aka speedup factor [18]). Note that the speedup
factor is platform dependent, and largely depends on the nature of
the code being executed [18, 30]. More importantly, we observed
that the speedup factor may vary substantially across parallel loops
of the same application. As an illustrative example, Fig. 2 shows
the speedup factor for the �rst 30 loops of the BT and CG appli-
cations (from NPB) running on two AMP platforms used in our
experiments, referred to as Platform A and Platform B respectively.
More information on these platforms can be found in Sec. 5. To
determine the speedup factor of each loop we ran the applications
with a single thread on a big and on a small core and measured the
completion time of individual loops. The �gures report the ratio of
these completion times for each loop. Clearly, the speedup factor
varies greatly across loops in the same application, and the trends
observed on Platform A – where loops run up to 7.7 times faster
on a big core than on a small one– di�er substantially from those
of Platform B. This suggests that using a single application-wide
speedup factor to guide loop scheduling would not be enough to
perform e�ective load balancing. In addition, informing the runtime
system on the degree of performance asymmetry, by annotating
each loop with the associated big-to-small speedup, would con-
stitute an impractical approach towards achieving performance

0 10 20 30
Loop number

1

2

3

4

5

6

7

S
pe

ed
up

fa
ct

or

(a) BT on Platform A

0 10 20 30
Loop number

1.7

1.8

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(b) BT on Platform B

0 10 20 30
Loop number

1
2
3
4
5
6
7
8

S
pe

ed
up

fa
ct

or

(c) CG on Platform A

0 10 20 30
Loop number

1.9

2.0

2.1

2.2

S
pe

ed
up

fa
ct

or

(d) CG on Platform B
Figure 2: Big-to-small relative performance for the �rst 30 loops of applica-
tions BT and CG on Platforms A and B.

portability. In light of these observations, we advocate for deal-
ing with performance asymmetry at runtime so as to deliver the
bene�ts of AMPs to unmodi�ed applications.

3 RELATED WORK
Loop-scheduling is an active long-established research area, which
has given rise to a plethora of proposals [4, 14, 16, 21, 26, 27, 40, 43].
Previous research has pointed out that a wide variety of loop-
scheduling methods is necessary to meet the demands of an ample
spectrum of applications [14]. This observation has led researchers
to propose additional scheduling methods [21, 27, 46] to those al-
ready provided by the OpenMP standard. In addition, extensions
in the speci�cation of parallel loops have been considered to let
the user de�ne custom scheduling policies [4], which are espe-
cially bene�cial to applications with irregular parallelism. Many of
these proposals stand in contrast with our research, as we do not
target speci�c application types but instead strive to provide e�-
cient asymmetry-aware replacements for the well-known general-
purpose static and dynamic loop-scheduling methods, which fail
to cope with performance asymmetry. The implementation we
created for the di�erent variants of AID (asymmetric iteration dis-
tribution) on top of libgomp enables the user to apply the AID
methods without making changes to the application code. As we
discuss in Sec. 5 we also experimented with the guided method of
OpenMP [36] but found that it delivers poor performance compared
to static and dynamic on AMPs. For that reason, we focused on
the creation of more e�cient alternatives to the latter techniques.

In the context of asymmetric multicores, previous experimental
studies have been conducted to assess the e�ectiveness of the vari-
ous loop scheduling methods in OpenMP [7, 13]. Speci�cally, a very
recent study [13] demonstrates that dynamic is, in general, supe-
rior to static scheduling on AMPs, thanks to its ability to assign
more work to threads running on big cores. Our experimental anal-
ysis, which considers a broader spectrum of loop-based OpenMP
applications, allows us to arrive at a similar conclusion, but also
reveals that the overhead of dynamic may negate the bene�ts of
this loop-scheduling method in some cases. Moreover, unlike these
previous works [7, 13], our main contribution is the design and
implementation of new loop scheduling approaches for AMPs that
outperform static and dynamic. Clearly, existing compiler-based

Core
7

T0

Core
6

T1

Core
5

T2

Core
4

T3

Core
3

T4

Core
2

T5

Core
1

T6

Core
0

T7

49th International Conference on Parallel Processing (ICPP ’20) - 19



AID-dynamic

Goal: To make a good replacement for
dynamic on AMPs
It relies on two configurable chunk values:

� major (M): Used for AID phases (variant
of dynamic)

� small-core threads → M iterations
� big-core threads → M · R iterations
� R = g(SF )

� minor (m): Used in between AID phases
and at the end of the loop’s execution

mode=AID;
cur_aid_phase=0;

while (!pool.is_empty()) {
if (pool.remaining_iter()<=M*nr_threads)

mode=DYNAMIC;

if (mode==AID &&
prev_phase_completed(cur_aid_phase)){
R=calculate_progress(cur_aid_phase);
chunk=big_core_thread()?R*M:M;
dynamic(chunk,pool);
current_aid_phase++;

}
else {

dynamic(m,pool);
}

}

AID phase 1 AID phase 2 AID phase 3 ... dynamic

Transition phases
49th International Conference on Parallel Processing (ICPP ’20) - 20



AID-dynamic

SAMPLING

m
SAMPLING_WAIT

m

AID

Big: R · M − δi
Small: M − δi

Thread is not the last one
in completing sampling phase

Current thread is
the last one

completing the
sampling phase

All threads
completed the

sampling/AID phase

Thread is not
the last one

in completing
AID phase

Current is the last thread
completing AID phase

At least one
thread has still
not completed
the sampling

phase
Loop
begins

R(t + 1) =

Y
_]

_[

SF t = 0

R(t) ·
AvgT imeAIDsmall(t)
AvgT imeAIDbig(t) t > 0

(1)

1

49th International Conference on Parallel Processing (ICPP ’20) - 21



Required changes in the GCC compiler

To guarantee performance portability with our proposal:
1 The runtime system must be deployed as a dynamic library (libgomp.so)
2 The compiled program must invoke loop-related runtime API calls

Issue: GCC omits loop-related API calls when schedule clause not provided
...
#pragma omp for

for (j = 0; j < grid_points[1]; j++) {
eta = (double)j * dnym1;
for (k = 0; k < grid_points[2]; k++) {

zeta = (double)k * dnzm1;
exact_solution(xi, eta, zeta, temp);
for (m = 0; m < 5; m++) {
u[i][j][k][m] = temp[m];

}
}

}

Terminal
$ nm -u bt.B | grep -i GOMP_

U GOMP_barrier@@GOMP_1.0
U GOMP_parallel@@GOMP_4.0

The runtime system cannot control the schedule of those loops

49th International Conference on Parallel Processing (ICPP ’20) - 22



Required changes in the GCC compiler

We changed default value for schedule clause in GCC: static → runtime
� If clause omitted, runtime uses schedule defined in OMP_SCHEDULE env. variable
� Very simple change in GCC 8.3: omp_extract_for_data() at gcc/omp-general.c

...
#pragma omp for

for (j = 0; j < grid_points[1]; j++) {
eta = (double)j * dnym1;
for (k = 0; k < grid_points[2]; k++) {

zeta = (double)k * dnzm1;
exact_solution(xi, eta, zeta, temp);
for (m = 0; m < 5; m++) {
u[i][j][k][m] = temp[m];

}
}

}

Terminal
$ nm -u bt.B_modified | grep -i GOMP_

U GOMP_loop_end@@GOMP_1.0
U GOMP_loop_end_nowait@@GOMP_1.0
U GOMP_loop_runtime_next@@GOMP_1.0
U GOMP_loop_runtime_start@@GOMP_1.0
U GOMP_parallel@@GOMP_4.0

Runtime system is now notified when each loop begins (GOMP_loop_*_start()) and when each
thread requests work to be assigned to it (GOMP_loop_*_next())

49th International Conference on Parallel Processing (ICPP ’20) - 23



Contents

1 Introduction

2 Design and implementation of AID

3 Experimental Evaluation

4 Conclusions and Future Work

49th International Conference on Parallel Processing (ICPP ’20) - 24



Experimental platforms

A15
core

A15
core

A15
core

A15
core

L2 (2MB)

A7
core

A7
core

A7
core

A7
core

L2 (512KB)

Cache Coherent Interconnect (CCI)

DRAM controller

Platform A (Odroid-XU4 Board)

ACE
interface

ACE
interface

32-bit ARM big.LITTLE processor
� 4 x Cortex A15 big cores @ 2.0Ghz
� 4 x Cortex A7 small cores @ 1.5Ghz

2GB LPDDR3 SDRAM @ 933MHz

fast
core

fast
core

fast
core

fast
core

slow
core

slow
core

slow
core

slow
core

L3 (20MB)

Interconnect

DRAM controller

Platform B (Intel server platform)

64-bit Intel Xeon E5-2620 v4 (Broadwell-EP)
� 4 x fast cores @ 2.1Ghz
� 4 x slow cores @ 1.2Ghz and 87.5%

duty cycle
32GB DDR4 SDRAM @ 2133MHz

49th International Conference on Parallel Processing (ICPP ’20) - 25



Experimental platforms

A15
core

A15
core

A15
core

A15
core

L2 (2MB)

A7
core

A7
core

A7
core

A7
core

L2 (512KB)

Cache Coherent Interconnect (CCI)

DRAM controller

Platform A (Odroid-XU4 Board)

ACE
interface

ACE
interface

32-bit ARM big.LITTLE processor
� 4 x Cortex A15 big cores @ 2.0Ghz
� 4 x Cortex A7 small cores @ 1.5Ghz

2GB LPDDR3 SDRAM @ 933MHz

fast
core

fast
core

fast
core

fast
core

slow
core

slow
core

slow
core

slow
core

L3 (20MB)

Interconnect

DRAM controller

Platform B (Intel server platform)

64-bit Intel Xeon E5-2620 v4 (Broadwell-EP)
� 4 x fast cores @ 2.1Ghz
� 4 x slow cores @ 1.2Ghz and 87.5%

duty cycle
32GB DDR4 SDRAM @ 2133MHz

49th International Conference on Parallel Processing (ICPP ’20) - 25



Applications and thread-to-core mappings

21 OpenMP benchmarks
� NAS Parallel
� PARSEC 3
� Rodinia

GCC 8.3 + Linux kernel 4.14.165
Evaluated loop-scheduling methods

� static (BS and SB)
� dynamic (BS and SB)
� guided (BS and SB)
� AID-static
� AID-hybrid
� AID-dynamic

Core
7

T0

Core
6

T1

Core
5

T2

Core
4

T3

Core
3

T4

Core
2

T5

Core
1

T6

Core
0

T7

BS mapping

Core
7

T7

Core
6

T6

Core
5

T5

Core
4

T4

Core
3

T3

Core
2

T2

Core
1

T1

Core
0

T0

SB mapping

49th International Conference on Parallel Processing (ICPP ’20) - 26



Relative performance on Platform A

BT CG EP FT IS LU MG

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
or

m
al

iz
ed

p
er

fo
rm

an
ce

blackscholes

bodytra
ck

str
eamcluste

r

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
or

m
al

iz
ed

p
er

fo
rm

an
ce

bfs
bptre

e

CFDEuler3D

heartw
all

hotsp
ot

hotsp
ot3D

lavamd

leukocyte

partic
lefilte

r
sra

dv1
sra

dv2

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

N
or

m
al

iz
ed

p
er

fo
rm

an
ce

BT CG EP FT IS LU MG

bla
cks

cho
les

bod
ytr

ack

stre
am

clu
ste

r bfs
bpt

ree

CFD
Eule

r3D

hea
rtw

all

hot
spo

t

hot
spo

t3D
lav

am
d

leu
koc

yte

par
ticl

efil
ter

sra
dv1

sra
dv2

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

N
or

m
al

iz
ed

pe
rf
or

m
an

ce

static(SB) static(BS) dynamic(SB) dynamic(BS) AID-static AID-hybrid AID-dynamic

Running the master thread on a big core brings substantial improvements in some cases
AID-static and AID-hybrid make good replacements for static (up to 30.7% and 56% improvement)
OpenMP dynamic and AID-dynamic perform in a close range but a >10% improvement is observed

49th International Conference on Parallel Processing (ICPP ’20) - 27



Relative performance on Platform B

BT CG EP FT IS LU MG

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
or

m
al

iz
ed

p
er

fo
rm

an
ce

blackscholes

bodytra
ck

str
eamcluste

r

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
or

m
al

iz
ed

p
er

fo
rm

an
ce

bfs
bptre

e

CFDEuler3D

heartw
all

hotsp
ot

hotsp
ot3D

lavamd

leukocyte

partic
lefilte

r
sra

dv1
sra

dv2

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

p
er

fo
rm

an
ce

BT CG EP FT IS LU MG

bla
cks

cho
les

bod
ytr

ack

stre
am

clu
ste

r bfs
bpt

ree

CFD
Eule

r3D

hea
rtw

all

hot
spo

t

hot
spo

t3D
lav

am
d

leu
koc

yte

par
ticl

efil
ter

sra
dv1

sra
dv2

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

N
or

m
al

iz
ed

pe
rf
or

m
an

ce

static(SB) static(BS) dynamic(SB) dynamic(BS) AID-static AID-hybrid AID-dynamic

Smaller big-to-small performance ratios (max. 2.3x vs. 8.9x on Platform A)
The overhead of dynamic negates its benefits in some cases due to lower SF values

� AID-dynamic delivers higher gains vs. dynamic on this platform (22% on average)

49th International Conference on Parallel Processing (ICPP ’20) - 28



Average relative performance

0.0% 5.0% 10.0% 15.0% 20.0% 25.0%
Average performance improvement

AID-static vs. static (BS)

AID-hybrid vs. static(BS)

AID-dynamic vs. dynamic(BS)

Platform A Platform B

49th International Conference on Parallel Processing (ICPP ’20) - 29



Dynamic vs AID-dynamic: different chunk values

BT EP FT MG bodytrack heartwall hotspot3D lavamd leukocyte particlefilter sradv1
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

p
er

fo
rm

an
ce

static(BS)

dynamic(BS)/1

dynamic(BS)/5

dynamic(BS)/10

dynamic(BS)/15

dynamic(BS)/20

dynamic(BS)/25

dynamic(BS)/30

AID-dynamic/1,1

AID-dynamic/1,5

AID-dynamic/1,10

AID-dynamic/1,15

AID-dynamic/1,20

AID-dynamic/1,25

AID-dynamic/1,30

AID-dynamic/1,35

The average improvement with best chunk settings for AID-dynamic vs. static is 5.5%
AID-dynamic delivers up to a 21.9% performance improvement
With AID-dynamic performance is less sensitive to the choice of the chunk values

49th International Conference on Parallel Processing (ICPP ’20) - 30



Contents

1 Introduction

2 Design and implementation of AID

3 Experimental Evaluation

4 Conclusions and Future Work

49th International Conference on Parallel Processing (ICPP ’20) - 31



Conclusions

Conventional OpenMP loop-scheduling methods are not suitable for AMPs
� static introduces load imbalance
� dynamic better than static but subject to high overhead

We proposed 3 alternative asymmetry-aware loop-scheduling methods
� Implemented in libgomp (GCC 8.3)
� No changes required in application code
� Applications must be recompiled with our modified compiler

Our experimental evaluation on real AMP hardware reveals their effectiveness
� AID-static, AID-hybrid outperform static by up to 30.7% and 56%, respectively
� AID-dynamic improves dynamic by up to 16.8%

� Higher relative improvements when using the best chunk settings for each application

49th International Conference on Parallel Processing (ICPP ’20) - 32



Conclusions

Conventional OpenMP loop-scheduling methods are not suitable for AMPs
� static introduces load imbalance
� dynamic better than static but subject to high overhead

We proposed 3 alternative asymmetry-aware loop-scheduling methods
� Implemented in libgomp (GCC 8.3)
� No changes required in application code
� Applications must be recompiled with our modified compiler

Our experimental evaluation on real AMP hardware reveals their effectiveness
� AID-static, AID-hybrid outperform static by up to 30.7% and 56%, respectively
� AID-dynamic improves dynamic by up to 16.8%

� Higher relative improvements when using the best chunk settings for each application

49th International Conference on Parallel Processing (ICPP ’20) - 32



Conclusions

Conventional OpenMP loop-scheduling methods are not suitable for AMPs
� static introduces load imbalance
� dynamic better than static but subject to high overhead

We proposed 3 alternative asymmetry-aware loop-scheduling methods
� Implemented in libgomp (GCC 8.3)
� No changes required in application code
� Applications must be recompiled with our modified compiler

Our experimental evaluation on real AMP hardware reveals their effectiveness
� AID-static, AID-hybrid outperform static by up to 30.7% and 56%, respectively
� AID-dynamic improves dynamic by up to 16.8%

� Higher relative improvements when using the best chunk settings for each application

49th International Conference on Parallel Processing (ICPP ’20) - 32



Future Work

1 Explore the potential from using multiple AID methods in the same application
� Loops with same-sized iterations → AID-static or AID-hybrid
� Loops amenable to dynamic → AID-dynamic
� Requires making changes in the application and parameter-tunning + profiling

2 Leverage AID in multi-application scenarios
� Devise interaction mechanisms between the OS and the runtime system

3 Evaluate the effectiveness of AID in other types of applications and heterogeneous
platforms

49th International Conference on Parallel Processing (ICPP ’20) - 33



Future Work

1 Explore the potential from using multiple AID methods in the same application
� Loops with same-sized iterations → AID-static or AID-hybrid
� Loops amenable to dynamic → AID-dynamic
� Requires making changes in the application and parameter-tunning + profiling

2 Leverage AID in multi-application scenarios
� Devise interaction mechanisms between the OS and the runtime system

3 Evaluate the effectiveness of AID in other types of applications and heterogeneous
platforms

49th International Conference on Parallel Processing (ICPP ’20) - 33



Future Work

1 Explore the potential from using multiple AID methods in the same application
� Loops with same-sized iterations → AID-static or AID-hybrid
� Loops amenable to dynamic → AID-dynamic
� Requires making changes in the application and parameter-tunning + profiling

2 Leverage AID in multi-application scenarios
� Devise interaction mechanisms between the OS and the runtime system

3 Evaluate the effectiveness of AID in other types of applications and heterogeneous
platforms

49th International Conference on Parallel Processing (ICPP ’20) - 33


	Introduction
	Design and implementation of AID
	Experimental Evaluation
	Conclusions and Future Work

