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Introduction

● Concurrent data structures are important, but hard to design

● Bulk operations pose significant scaling challenge

● Simplest solution is two-phase locking (2PL)
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Introduction

● Atomic snapshot

○ Time and memory cost

○ Staleness

○ Read-only

● Multi-versioning

○ Memory cost

○ Staleness

○ Read-only
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Introduction

● Propose three algorithms for maps

● Support linearizable bulk operations

○ Entire bulk operation, end-to-end, is linearizable

● Linearizability

○ Strong correctness condition

○ Must exist an equivalent sequential ordering

○ Must obey real-time order

● Meet several additional design constraints
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Introduction

● Focus on system software

● Strict memory bounds

● No leaks, no garbage collector

● Support mutating bulk operations

● Support bulk ops with loop-carried data dependencies

● Generic algorithms applicable to multiple data structures
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Introduction

● Primary underlying question: delay when?

● Answer this question using metadata

● Differ in location and granularity of metadata
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Introduction

● Low granularity

○ Lack of information

● High granularity

○ More overhead



Metadata Location
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Introduction

● Global vs local metadata

● Global

○ Greater risk of contention

● Local

○ More overhead

○ Each thread has access to less metadata

○ Metadata granularity controlled by number of partitions
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Introduction

● Thread E performs elementals ω1, ω2

● Thread F performs foreach operation ωF

● Due to order of accesses to e1, ωF → ω1

● Due to order of accesses to e3, ω2 → ωF

● Due to temporal order by same thread, ω1 → ω2

● ω1 → ω2 → ωF → ω1 ... A cycle.

● At least one op must delay to prevent this



Insight
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Challenges

● The cycle occurred due to Thread E going from left to right

● Going from right to left does not cause a cycle

● ωF linearizes when Thread E goes from right to left

● Track bulk ops’ linearization points
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Aggressive Ordering

● Uses coarse-grained, global metadata

● Simple algorithm with low overhead

● Assigns total global order to all bulk ops

● Bulk ops ordered by ID

● Bulk op IDs are assigned by creation time

● Bulk ops that start later always ordered later
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Aggressive Ordering

● lastID used to generate bulk op IDs

● linearizedID used to track which ops have linearized

● Each partition tracks lastVisitorID

Type AOGlobalMetadata
lastID : Atomic<Integer64>
linearizedID : Atomic<Integer64> 

Type AOPartitionLock extends Atomic<Integer64>
lastVisitorID : Bit[63]
lockBit : Bit 



Bulk Operation
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Aggressive Ordering

● Obtain a unique ID, myID

● Iterate over each partition:

○ Wait until lastVisitorID == myID – 1

○ Lock the partition, do the work, unlock

○ Set lastVisitorID = myID

● Atomically increase linearizedID to myID



Elemental Operation
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Aggressive Ordering

● Get ID of last linearized bulk op, lastLinID

○ lastLinID represents earliest lin. point, not necessarily the actual lin. Point

● Find partition p containing sought key

● Wait until p.lastVisitorID >= lastLinID

● Lock, do the work, unlock

● Atomically increase linearizedID

○ Set it to value p.lastVisitorID had while locked
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Aggressive Ordering

● Unnecessary ordering

○ Disjoint range operations, read-only bulk operations

● Range ops must touch every partition (lastVisitorID)

● Ordering by start time not always best



Algorithm 2:

Dynamic Ordering
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Dynamic Ordering

● Uses fine-grained, global metadata

● Seeks to address shortcomings in AO with more metadata



Metadata
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Dynamic Ordering

● The global metadata consists of a list of sets of 

BulkOpMetadata objects

● BulkOpMetadata stores metadata on a single bulk op

● Bulk ops in the same set are unordered wrt each other

● Bulk ops in different sets are ordered by position in list

○ Closer to head = ordered earlier, vice versa

Type DOGlobalMetadata
bulkOps : List<Set<BulkOpMetadata>>

Type BulkOpMetadata
const startKey : Key 
const endKey : Key
const readOnly : Boolean
lastKey : Key
linearized     : Boolean 



Bulk Operation
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Dynamic Ordering

● Initialize BulkOpMetadata object for op

● Insert BulkOpMetadata into global list as early as possible

● Iterate over each partition:

○ Atomically: search global list for any ops that block this op, and acquire lock on partition

○ Do work, release lock

● Recursively mark this op linearized

● Remove BulkOpMetadata object from global list



Elemental Operation
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Dynamic Ordering

● Atomically calculate a list of all preceding bulk ops

● Determine which partition p contains the sought key

● Wait until all bulk ops on list are done with k

● Acquire partition lock, perform elemental operation

● Linearize any bulk ops which have accessed k

● Release partition lock



Pros & Cons
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Dynamic Ordering

● Avoids much of the false waiting incurred by Aggressive Ordering

● Increased overhead

● Contention on global metadata

● Accesses to global metadata are frequent and complex



Algorithm 3:

Localized Ordering
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Localized Ordering

● Uses fine-grained, local metadata

● Maintains advantages of 2PL (range operations) and builds from there

● 2PL achieves linearizability by delaying operations from starting

● However, it is sufficient to delay them from returning



Metadata
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Localized Ordering

● No global metadata

● Per-partition metadata consists of two queues

● Any operation must reach head of started queue to access object

● Any operation must reach head of completed queue to return

● completed queue increases concurrency without sacrificing correctness

Type OLPartitionLock
started   : AtomicQueue<ThreadID>
completed : AtomicQueue<ThreadID>



Bulk Operation
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Localized Ordering

● For each partition p:

○ Enqueue in p.started
○ Dequeue self from started for previous partition (if exists)

○ Wait until head of p.started
○ Operate on p
○ Enqueue in p.completed

● Dequeue from last started queue

● Dequeue from all completed queues



Elemental Operation
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Localized Ordering

● Determine the partition p containing the sought key

● Enqueue in p.started queue

● Wait until head of  p.started

● Do work

● Enqueue in  p.finished

● Dequeue from  p.started

● Wait until head of  p.finished

● Dequeue from  p.finished
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Evaluation

● Compare AO, DO, and LO on two data structures

● Chunked skip list of our own design

○ Ordered

● Interlocked Hash Table (IHT)

○ Unordered; therefore, no range ops

● Baseline: Two-Phase Locking

● Upper bound: an implementation where bulk operations are not linearizable (NL)
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Evaluation

Skip List IHT



Range-Only Workload
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Evaluation

Range Length 4,096 Range Length 131,072



Mixed Workload
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Evaluation

1 Foreach Thread 2 Range Threads, Length 131,072
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Conclusion

● We introduce three algorithms for scalable linearizable bulk ops

● Performance exceeds 2PL

● Each algorithm has a niche; no single one is best

● Please see the paper for discussion about partition size
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