
Experiences on the characterization of
parallel applications in
embedded systems with Extrae/Paraver

Adrian Munera, Sara Royuela,
Germán Llort, Estanislao Mercadal,
Franck Wartel, Eduardo quiñones

49th International Conference on Parallel Processing (ICPP2020)
17-20 August 2020, Edmonton, AB, Canada

1

Use of parallelism in embedded systems
● Demand for high level of performance in embedded systems.

● Heterogeneity introduces complexity to exploit performance portability.

● Parallel programming models are fundamental for productivity.

● OpenMP is an appropriate solution to leverage the potential of the architecture:
○ Provides time-predictability1

○ Shows delimited correctness guarantees 2

2

1 Serrano et. al, Timing characterization of OpenMP4 tasking model. CASES 2015.
2 Royuela et. al, A Functional Safety OpenMP* for Critical Real-Time Embedded Systems. IWOMP 2017.

Analyzing parallelism in embedded systems

● Parallelism affects functional and non-functional behavior
(time, energy, memory, etc.)

● Need to analyze the impact of parallelism on the functional (FR) and
non-functional (NFR) requirements.

3

Analysis tool
domain

Parallel programming
model Performance NFR

HPC ✅ ✅ ❌

Embedded ❌ ✅ ✅

Analysis tools: classification

4

Data gathering method

✅ ❌

Basic
measurements Easy to obtain

Come without
information
about factors

Sampling

Provide better
understanding
of the
application

Cannot
characterize
fine-grained
tasks

Instrumentation Captures the
activity as it is

May introduce
overhead

Data storage method

✅ ❌

Profiling
Produce a
summary of
the picture

Lack information
for specific points
in time

Tracing Capture exact
picture

May introduce
overhead

Analysis tools: from embedded to HPC systems

5

❖ Score-P
➢ Scalasca
➢ Vampire
➢ TAU

❖ Extrae1

➢ Paraver

❖ ULINKplus Debug Adapter
➢ μVision IDE

❖ J-Trace Debug Probe
➢ SystemView analyzer

❖ RapiTask
❖ RapiTime

❖ LTTng
❖ Tracealyzer

HPC

1 https://tools.bsc.es/extrae

Hardware
solution

Timing
behavior

OS
behavior

Compile-time
instrumentation

Compile- and
run-time

instrumentation

EC

Analysis tools: from EC to HPC systems

6

❖ Score-P
➢ Scalasca
➢ Vampire
➢ TAU

❖ Extrae1

➢ Paraver

❖ ULINKplus Debug Adapter
➢ μVision IDE

❖ J-Trace Debug Probe
➢ SystemView analyzer

➢
❖ RapiTask
❖ RapiTime

❖
❖ LTTng
❖ Tracealyzer

EC HPC

1 https://tools.bsc.es/extrae

Hardware
solution

Timing
behavior

OS
behavior

Compile-time
instrumentation

Compile- and
run-time

instrumentation

✅ Sampling

✅ Instrumentation

✅ Tracing

✅ Profiling

✅ Parallel model characterization

❌ Non-functional requirements

Proposal: adapting Extrae to EC systems

7

Analyze NFR

1. Temperature and power consumption

2. Memory consumption

3. Tasks communication

Adapt to a embedded system

1. Static environment

2. RTOS

3. Specific architecture modules

Outline

● The characterization of OpenMP

● Accommodating Extrae to embedded systems: the GR740

● New functionalities in Extrae

● Analysis: correlating parallelism and non-functional requirements

● Conclusions

8

The characterization of OpenMP

➔ Exposed parallelism

➔ Load balance

➔ Synchronization overhead

➔ Contention overhead

9

Thread-based
model

Taks-based
model

➔ Performance

➔ Power consumption

➔ Temperature

Parallel
Programming

Model

Non-functional
requirements

Embedded Systems: the GR740

Radiation-hard SoC designed as the ESA Next Generation Microprocessor.

10

- LEON4 SPARC V8 @250MHz
- IEEE-754 floating point unit
- 16KB instruction and data caches
- 2MB write-back L2 cache

- LEON4 Statistics Unit, L4stat
- AHB Bus
- Temperature sensor controller
- Timer units

Hardware

- RTEMS RTOS
- RCC cross compilation system
- RTEMS-5.0 C/C++ real-time kernel

with support for SMP
- Newlib

- L4stat driver

Software

Adapting Extrae to the GR740

1. Intercepting calls in a static environment

2. POSIX dependence

3. Retrieving function names

4. Trace generation

5. Supporting hardware counters

6. Statically defining the environment

11

Adapting Extrae to the GR740

1. Intercepting calls in a static environment:
OpenMP Call Extrae OpenMP runtime

◆ Vanilla Extrae: LD_PRELOAD mechanism at runtime.

◆ Adapted Extrae: Symbol wrapping at compile time, using linker flags.

12

 int i,j;
Wrap_GOMP_parallel()

Wrap_GOMP_parallel() Real_GOMP_parallel()

application.c extrae.a libgomp.a

Adapting Extrae to the GR740

2. POSIX dependence:

◆ Extrae relies on standard functions and structures from POSIX.

◆ Unfortunately, not all C standard libraries implement all POSIX
functions.

◆ Newlib does not implement the ucontext structure, used for
implementing the sampling mechanism. In the adaptation it has been
replaced by hardware timers.

13

Adapting Extrae to the GR740
3/4. Retrieving function names and trace generation:

◆ Originally, Extrae obtains the symbol names of the executable using the
binutils libraries targeting the binary from the file system.

◆ The binary is not available inside the board file system, since it is loaded
in RAM. In the adaptation, Extrae now specifies the binary path and the
use of a remote file system (NFS).

◆ This remote file system is also required for generating the final traces,
where we also need to take into account the file system limitations
(maximum file size, maximum size per write, etc)

14

 GR740

PC HostNFS

 Bin.exe, Traces ...

Adapting Extrae to the GR740
5. Supporting hardware counters:

◆ Vanilla Extrae relies on PAPI library to gather the hardware counters of
the system. PAPI does not support the GR740 architecture.

◆ The GR740 board provides the L4STAT unit, that implements hardware
counters. This data is accessible through the L4STAT driver.

◆ We have extended Extrae to additionally support the L4STAT driver
instead of just PAPI.

15

Analysis: Applications & Aspects

16

Applications Evaluated aspects

SparseLU loops Memory: stack and heap
Temperature and power consumption

SparseLU tasks Task communication

Image processing Sampling

Analysis: SparseLU

17

SparseLU loops

#pragma omp parallel private(kk)

for (..) // 3 iterations

#pragma omp single

 lu0(BENCH[kk*bots_arg_size+kk]);

#pragma omp for nowait schedule(dynamic)

 for(..)

fwd(BENCH[kk*bots_arg_size+kk], BENCH[kk*bots_arg_size+jj]);

#pragma omp for schedule(dynamic)

 for (...)

 bdiv (BENCH[kk*bots_arg_size+kk], BENCH[ii*bots_arg_size+kk]);

…….

Analysis: memory consumption

18

Runtime
states

Stack

Analysis: memory consumption

19

Runtime
states

Stack

The main thread uses more stack memory than
the others.

Application uses stack size between 1000
and 3000

Analysis: memory consumption

20

Runtime
states

Dynamic (de)
allocation

Matrix allocation Runtime allocations

Analysis: memory consumption

21

Runtime
states

Dynamic (de)
allocation

Heap

Malloc calls

Heap does not decrement, since memory does not
return to the OS although it is freed.

Runtime allocations

Analysis: temperature

22

Work
sharings

Temperature

The temperature of the system is correlated with the cpu usage.

Analysis: power consumption

23

Parallel
execution

Power
consumption

The power consumption can be calculated using the information about cpu usage.

Analysis: tasks communication

24

TDG Task communication

Tasks dependencies can be represented inside the traces.

SparseLU tasks

Analysis: sampling and the AMBA bus

25

Sampling
10ms

Sampling
250ms

Parallel user
functions

Image processing

Extrae extensions portability

Applicable to

GR740 boards

RTEMS operating systems

OpenMP-compatible systems

26

Extensions

1. Temperature and power consumption

2. Memory consumption

3. Tasks communication

Conclusions

● Currently embedded systems lack of tools to analyze applications
performance at parallel programming level.

● HPC analysis tools do not support the analysis of non-functional requirements.

● Well-tested performance tools such as Extrae can be:

○ adapted to the constraints of embedded systems, e.g., RTEMS + GR740.

○ extended to analyze non-functional requirements, such as temperature and
power consumption, a key aspect in embedded systems.

27

Experiences on the characterization of
parallel applications in

embedded systems with Extrae/Paraver

adrian.munera@bsc.es

ICPP2020
28

Work partially funded from the HP4S (High-Performance Parallel Payload Processing
for Space) project under ESA-ESTEC ITI contract Nº 4000124124/18/NL/CRS

