
Communication-aware Job Scheduling
using SLURM

Priya Mishra, Tushar Agrawal, Preeti Malakar
Indian Institute of Technology Kanpur

16th International Workshop on Scheduling and Resource
Management for Parallel and Distributed Systems

Introduction

• Job Scheduling deals with cluster management and resource allocation
as per job requirements

• Users submit jobs specifying nodes and wall-clock time required

• Current job schedulers do not consider job-specific characteristics or
communication-patterns of a job
▫ May lead to interference from other communication-intensive jobs

▫ Placing frequently communicating node-pairs several hops away leads to
high communication times

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Effect of network contention

• J1 and J2 are two parallel MPI¹ jobs

• J1 executed repeatedly on 8 nodes (4 nodes on 2
switches)

• J2 executed every 30 minutes on 12 nodes spread
across same two switches

• Sharp increase in execution time of J1 when J2 is
executed

• Sharing switches/links degrades performance

¹ 2020. MPICH. https://www.mpich.org.

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

OBJECTIVE

Developing node-allocation algorithms that
consider the job’s behaviour during resource

allocation to improve the performance of
communication-intensive jobs

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Network Topology

We use fat-tree¹ based network topology in our study

s2

s1s0

Level 2 switch

Leaf switch

Nodesn0 n2n1 n3 n4 n5 n7n6

¹ C. E. Leiserson. 1985. Fat-trees: Universal networks for hardware-efficient super-computing. IEEE Trans. Comput.10 (1985), 892–901.

.

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

SLURM – Simple Linux Utility for Resource Management¹

• Select/linear plugin allocates entire nodes to jobs

• Supports tree/fat-tree network topology via topology/tree plugin

• Default SLURM algorithm uses best-fit allocation

s2

s1s0

n0 n2n1 n3 n4 n5 n7n6

¹ Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple Linux Utility for Resource Management. In Job Scheduling Strategies for Parallel Processing.

.

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Communication Patterns

• We assume that submitted parallel jobs use MPI for communication

• Global communication matrix
▫ May not reflect most crucial communications

▫ Temporal communication information is not considered

• We consider the underlying algorithms of MPI collectives

• We consider three standard communication patterns – recursive
doubling (RD), recursive halving with vector doubling (RHVD) and
binomial tree algorithm

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Communication Patterns

• Gives a more definitive communication pattern without incurring
profiling cost
▫ Important for applications where the collective communication costs

dominate the execution times

• Our strategies consider all stages of algorithms (RD, RHVD, Binomial)
and allocate based on the costliest communication step/stage
▫ Difficult to achieve using a communication matrix

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Communication-aware Scheduler

• We propose mainly two node-allocation algorithms – greedy, balanced

• Every job is categorized as compute or communication intensive
▫ Can be deduced using MPI profiles of MPI application¹ or through user input

• Algorithms identify lowest-level common switch with requested number
of nodes available

• If this lowest-level switch is leaf-switch → requested number of nodes
allocated to the job

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

¹Benjamin Klenk and Holger Fröning. 2017. An Overview of MPI Characteristics of Exascale Proxy Applications. In High Performance Computing. Springer International Publishing,

Common Notations

Notation Description

i Node index

𝑳𝒊 Leaf Switch connected to node i

L_nodes Total number of nodes on the leaf switch

L_comm Number of nodes running communication-intensive jobs on the leaf switch

L_busy Number of nodes allocated on the leaf switch

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Greedy Allocation

• Minimize network contention by minimizing link/switch sharing

• For communication-intensive job select the leaf switches which:
• Have maximum number of free nodes

• Minimum number of running communication-intensive jobs

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

We characterize leaf switches using their communication ratio

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 𝐿 =
𝐿_𝑐𝑜𝑚𝑚

𝐿_𝑏𝑢𝑠𝑦
+

𝐿_𝑏𝑢𝑠𝑦

𝐿_𝑛𝑜𝑑𝑒𝑠

Number of communication-intensive jobs
relative to the busy nodes on leaf switch

Measure of contention

Measure of available nodes
on leaf switch

Controls node-spread

Lower communication-ratio → lower contention and higher number of free nodes

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Design of Greedy Allocation

Sort underlying leaf switches in order of
communication ration

Switches sorted in increasing
order

Switches sorted in decreasing
order

Communication-intensive Compute-intensive

Requested number of nodes allocated from
switches in sorted order

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Balanced Allocation

• Aims at allocating nodes in powers of two to minimize inter-switch
communication

STEP 1

STEP 2

STEP 3

STEP 1

STEP 2

STEP 3

Unbalanced Allocation Balanced Allocation

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Design of Balanced Allocation
Sort underlying leaf switches in order of free nodes

Communication-intensive Compute-intensive

Switches sorted in decreasing order

Leaf switches traversed in sorted order
and number of nodes allocated on each is

the largest power of two that can be
accommodated

Remaining free nodes on each leaf switch
are allocated by traversing them in

reverse sorted order

Requested number of nodes allocated
from switches in sorted order

Switches sorted in increasing order

Remaining Nodes > 0 ?

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Consider a job that requires 512 nodes

512

256

128 128

256

128

64 64

128

64 64

32 32

Leaf Switch L[1] L[2] L[3] L[4] L[5] L[6] L[7]

Free Nodes 160 150 100 80 70 50 40

Allocated Nodes 128 128 64 64 64 32 32

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Adaptive Allocation

• Greedy allocation minimizes contention and fragmentation
▫ Unbalanced, more inter-switch communication

• Balanced allocation minimizes inter-switch communication
▫ More fragmentation

• Adaptive allocation compares both allocations and selects the more
optimal node allocation based on their cost of communication

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Experimental Setup

• We evaluate using job logs of Intrepid, Theta and Mira¹ supercomputers
▫ Intrepid logs from Parallel Workload Archive²

▫ Theta and Mira logs from Argonne Leadership Computing Facility³

• Contain job name, nodes requested, submission times, start times etc.

• 1000 jobs from each log

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

¹ 2020. Mira and Theta. https://www.alcf.anl.gov/alcf-resources

² 2005. Parallel Workload Archive. www.cse.huji.ac.il/labs/parallel/workload/

³ 2019. ALCF, ANL. https://reports.alcf.anl.gov/data/index.html
.

Experimental Setup

• Do not have any information about nature of the job
▫ Some jobs are assumed communication-intensive, others as compute-intensive

▫ Percentage of communication-intensive jobs varied from 30% - 90%

• Jobs with power-of-two node requirements considered

• Job logs emulated by configuring SLURM with enable-front-end option
▫ Run for same duration as their execution times

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Runtime Estimates

The runtime of a job can be modelled as:
𝑇𝑜𝑡𝑎𝑙 𝑅𝑢𝑛𝑡𝑖𝑚𝑒 𝑇 = 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 + 𝑇𝑐𝑜𝑚𝑚

where:

𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 : Compute time of a job

𝑇𝑐𝑜𝑚𝑚 : Communication time of a job

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Contention Factor C(i,j)

• Communicating nodes i and j are present on same leaf switch (𝐿𝑖 = 𝐿𝑗)

𝐶 𝑖, 𝑗 =
𝐿𝑖_𝑐𝑜𝑚𝑚

𝐿𝑖_𝑛𝑜𝑑𝑒𝑠

• Communicating nodes i and j are present on different leaf switches (𝐿𝑖 ≠ 𝐿𝑗)

𝐶 𝑖, 𝑗 =
𝐿𝑖_𝑐𝑜𝑚𝑚

𝐿𝑖_𝑛𝑜𝑑𝑒𝑠
+
𝐿𝑗_𝑐𝑜𝑚𝑚

𝐿𝑗_𝑛𝑜𝑑𝑒𝑠
+

1

2

𝐿𝑖_𝑐𝑜𝑚𝑚 + 𝐿𝑗_𝑐𝑜𝑚𝑚

𝐿𝑖_𝑛𝑜𝑑𝑒𝑠 + 𝐿𝑗_𝑛𝑜𝑑𝑒𝑠

Contention on individual leaf switches Contention on lowest-level common
switch connecting the two leaf switches

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Distance d(i,j)

𝑑 𝑖, 𝑗 = 2 ∗ 𝐿𝑜𝑤𝑒𝑠𝑡 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑐𝑜𝑚𝑚𝑜𝑛 𝑠𝑤𝑖𝑡𝑐ℎ

d(n0, n1) = 2

d(n0, n5) = 4

s2

s1s0

n0 n2n1 n3 n4 n5 n7n6

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Cost of communication

Effective hops between communicating nodes i and j is:

𝐻𝑜𝑝𝑠 𝑖, 𝑗 = 𝑑 𝑖, 𝑗 ∗ 1 + 𝐶 𝑖, 𝑗

Total cost of communication:

𝐶𝑜𝑠𝑡 =

𝑛=1

𝑁

max
𝑖,𝑗∈𝑆𝑛

𝐻𝑜𝑝𝑠(𝑖, 𝑗)

where:

▫ 𝑆𝑛: Set of all node-pairs communicating at nth step

▫ N: Total number of steps in the communication algorithm

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Modified Runtime

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑅𝑢𝑛𝑡𝑖𝑚𝑒 𝑇′ = 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 + 𝑇𝑐𝑜𝑚𝑚 ∗
𝐶𝑜𝑠𝑡_𝐽𝑜𝑏𝑎𝑤𝑎𝑟𝑒

𝐶𝑜𝑠𝑡_𝐷𝑒𝑓𝑎𝑢𝑙𝑡

where:

𝐶𝑜𝑠𝑡_𝐽𝑜𝑏𝑎𝑤𝑎𝑟𝑒: Cost of communication for job-aware algorithm

𝐶𝑜𝑠𝑡_𝐷𝑒𝑓𝑎𝑢𝑙𝑡: Cost of communication for default algorithm

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Evaluation metrics

1. Execution time – Time between start and completion of job

2. Wait time – Time between submission and start of job

3. Turnaround time – Time between submission and completion of job

4. Node Hour – Number of nodes * Execution time

5. Cost of communication

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Types of Experiments

• Continuous Runs
▫ 1000 jobs are run using the submission times derived from logs

• Individual Runs
▫ Jobs are submitted one at a time to a partially occupied cluster

▫ Provides common starting point to compare allocation of each job

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Impact on Execution Time and Wait Time

• 90% jobs considered communication-intensive

• Balanced and adaptive always perform better
than default and greedy

• Decrease in execution times makes resources
available faster → wait times decrease

• Average wait time reductions were 35%, 26%
and 32% for Intrepid, Theta and Mira

• Little or negative improvement for Mira under
greedy allocation

▫ Communicating node-pairs on same switch in
default but not greedy

▫ Difference in available links/switches – hence,
we also compare using individual runs

Job Log Algorithms
Execution Time (Hours)

Default Greedy Balanced Adaptive

Intrepid
RHVD

1382
1351 1256 1251

RD 1345 1264 1257

Theta
RHVD

2189
1740 1700 1663

RD 1810 1731 1706

Mira
RHVD

3289
3956 2342 2435

RD 3285 2559 2637

Average improvement in execution time – 9%
Average improvement in wait time – 31%

Table: Execution times (in hours) in all three job logs

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Continuous vs Individual Runs

• For a given state of cluster, proposed
algorithms always perform better than default

▫ 2-13% improvement using greedy allocation

▫ 7-25% improvement using balanced and
adaptive allocation

• Similar to continuous, balanced and adaptive
perform better than greedy

Job Log Algorithms
Execution Time (% improvement)

Greedy Balanced Adaptive

Intrepid
RHVD 3.65 7.23 7.81

RD 1.70 8.12 8.29

Theta
RHVD 9.65 9.65 9.65

RD 13.56 13.56 13.56

Mira
RHVD 10.84 19.69 21.71

RD 9.45 24.32 24.91

Table: Improvements in execution times

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Variation in Communication Patterns

• A – 67% compute, 33% RHVD

B – 50% compute, 50% RHVD

C – 30% compute, 70% RHVD

D – 50% compute, 15% RD, 35% Binomial

E – 30% compute, 21% RD, 49% Binomial

• For same communication pattern, as
communication ratio increases from A (33%) to C
(70%), gain increases

▫ Larger fraction of execution time reduces

▫ Similarly between D and E

Figure: Reduction in execution time using various
communication patterns for Theta

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Conclusion

• Proposed three node allocation algorithms to improve performance of
communication-intensive jobs

• Evaluated algorithms using three supercomputer job logs

• Demonstrate that proposed algorithms improve execution times, wait
times and system throughput

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Future Work

• Include other communication patterns

• Explore process mapping after node allocation

• Extend to other topologies

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

Thank You!

ICPP – SRMPDS’20 Communication-aware Job Scheduling using SLURM

