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Coflow patterns in DCN

Source: HotNets (2012) - Coflow: A networking abstraction for cluster applications

Map-reduce Bulk Synchronous Parallel (BSP) Partition-aggregate

“Each coflow is a collection of flows between two groups of 
machines with associated semantics.”



Coflow patterns in DCN

In many cases, coflows are bounded with deadlines

1. SLA-requirements

2. Time-slotted fair-sharing for concurrent jobs.

3. …

The problem/design goal: 
How to let more coflows meet their deadlines?
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Limits: inflexible, no performance guarantee
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Two trade-offs

#1 Timeliness completeness

#2 The completeness of (co)flow A          that of (co)flow B



Poco: a POlicy-based COflow scheduler
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Two key designs

1. Enable applications to specify 
coflow requirements explicitly.
✓Timeliness/deadlines

✓Completeness/level of tolerance

2. Explore the trade-offs explicitly 
with a monolithic (time-slotted) 
Linear Program model.
✓Requirements → linear constraints



Poco: service model

Provide guaranteed performance with admission control

Solve the 
involved LP
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Poco: parallelized solver

Obviously, 𝑨𝑫𝒌𝑨𝑻 is positive-semidefinite, having the Cholesky decomposition of 𝑳𝑳𝑻 in most cases. 

Accordingly, the original problem can be solved efficiently via 𝑳𝒈 = 𝒗. then 𝑳𝑻𝒅𝒚 = 𝒈.

In case it is not positive-definite, the equations can be solve with other approximated methods.

The core of interior-point method:
solve equations iteratively



Poco: parallelized solver

Solution: parallelize the computation by leveraging the specific structure of the LP

#1 Constraints introduced by the 
timeliness and completeness 

requirements of the 1st coflow



Poco: parallelized solver

Solution: parallelize the computation by leveraging the specific structure of the LP

#2 Constraints of link capacities 
involved in the 1st coflow.
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Poco: parallelized solver

Note: in rare cases the involved matrix is not positive-definite, we can solve the associated 𝒅𝒚 with approximated methods



Poco: parallelized solver

Benefits:

✓Explore the sparsity of A
explicitly

✓Make both Cholesky 
decompaction and solving 
parallelized

Note: in rare cases the involved matrix is not positive-definite, we can solve the associated 𝒅𝒚 with approximated methods



Poco: parallelized solver

❖ Naive implementations upon scipy/numpy, 
❖ Ubuntu 18.04, Intel Xeon(R) Silver 4210 CPU, 16G RAM, Python3

Parallelization speeds up the solving greatly.



Evaluation

• Flow-level simulator in Python3

• Inputs
• Synthesized with Facebook traces
• Completeness-requirement: 0.9, deadline: 1 + U[1; 2] 

• Baselines
• Con-Myopic
• FS (per-flow fair-sharing)
• Varys

• Metrics
• Percentage of coflows that meet their requirements
• Achieved completions/delivered data volumes



Evaluation

Poco outperforms existing 
solutions greatly.

Poco is very flexible.



Summary

Poco

1. Enables distributed applications to specify their requirements 
explicitly along with their coflow requests; 

2. Explores the trade-offs explicitly with a monolithic (time-slotted) 
Linear Program  (LP) model;

3. Parallelizes the solving of LP using the specific structure of the model.

Refer to the paper for more details

Join our slack discussion: Parallel Algorithms II (Thursday, August 20th, 12:30pm-1:00pm)

Drop me emails at sxluo[at]swjtu.edu.cn


