| INTERNATIONAL
CONFERENCE ON /
| PARALLEL

PROCESSING

ICPPIZOZOIEDMONTONICANADA

AUGUST 17-20, 2020

Selective Coflow Completion for Time-sensitive
Distributed Applications with Poco

Shouxi Luo
Joint work with Pingzhi Fan, Huanlai Xing, and Hongfang Yu

A&

R A
w U@ $"'

79856

Outline

e Coflow patterns in DCN

* Existing solutions

* Two trade-offs

* Poco: key designs, service model, and parallelized solver
* Evaluation

* Summary

Coflow patterns in DCN

superstep(i)

mappers aggregator

aggregators

reducers superstep(i+1)

1 .|
write barrier workers

barrier

Map-reduce Bulk Synchronous Parallel (BSP) Partition-aggregate

“Each coflow is a collection of flows between two groups of
machines with associated semantics.”

Source: HotNets (2012) - Coflow: A networking abstraction for cluster applications

Coflow patterns in DCN

In many cases, coflows are bounded with deadlines
1. SLA-requirements

2. Time-slotted fair-sharing for concurrent jobs.

3. ..

The problem/design goal:

How to let more coflows meet their deadlines?

Existing solutions

Existing solutions

* Meeting hard deadlines with admission control
e Varys[1]

[1] SIGCOMM (2014) - Efficient Coflow Scheduling with Varys

Existing solutions

* Meeting hard deadlines with admission control
e Varys[1]

* Deal with soft deadlines with preemptive, prioritized scheduling
 D2CAS[2]

[1] SIGCOMM (2014) - Efficient Coflow Scheduling with Varys
[2] IEEE ICC (2016) - Decentralized Deadline-Aware Coflow Scheduling for Datacenter Networks

Existing solutions

* Meeting hard deadlines with admission control
e Varys[1]

* Deal with soft deadlines with preemptive, prioritized scheduling
 D2CAS[2]

Limits: overlooking the fact that, many distributed

applications can tolerate incomplete data delivery by design

Existing solutions

* Meeting hard deadlines with admission control
e Varys[1]

* Deal with soft deadlines with preemptive, prioritized scheduling
 D2CAS[2]

Limits: overlooking the fact that, many distributed
applications can tolerate incomplete data delivery by design

https://www.cpd-india.com/blog/web-search-engine-tool-that-help-you-find-anything-on-the-internet/

Existing solutions

* Meeting hard deadlines with admission control
e Varys[1]

* Deal with soft deadlines with preemptive, prioritized scheduling
 D2CAS[2]

Limits: overlooking the fact that, many distributed
applications can tolerate incomplete data delivery by design

https://medium.com/@Nithanaroy/3-ways-to-design-affective-classes-in-ml-classification-algorithms-57a302e5397b
https://www.cpd-india.com/blog/web-search-engine-tool-that-help-you-find-anything-on-the-internet/

Existing solutions

* Meeting hard deadlines with admission control
e Varys[1]

* Deal with soft deadlines with preemptive, prioritized scheduling
 D2CAS[2]

Limits: overlooking the fact that, many distributed

applications can tolerate incomplete data delivery by design

Netwaork

@8 B 0P @ @Y

With erasure code

https://www.cpd-india.com/blog/web-search-engine-tool-that-help-you-find-anything-on-the-internet/
https://medium.com/@Nithanaroy/3-ways-to-design-affective-classes-in-ml-classification-algorithms-57a302e5397b

Existing solutions

* Meeting hard deadlines with admission control
e Varys[1]

* Deal with soft deadlines with preemptive, prioritized scheduling
 D2CAS[2]

* Maximize the marginal partial throughput to explore the tolerance of
partial transmission

e Con-myopic|3]

[1] SIGCOMM (2014) - Efficient Coflow Scheduling with Varys
[2] IEEE ICC (2016) - Decentralized Deadline-Aware Coflow Scheduling for Datacenter Networks
[3] IEEE Infocom (2018) - Online Partial Throughput Maximization for Multidimensional Coflow

Existing solutions

* Meeting hard deadlines with admission control
e Varys[1]

* Deal with soft deadlines with preemptive, prioritized scheduling
 D2CAS|[2]

* Maximize the marginal partial throughput to explore the tolerance of

partial transmission
e Con-myopic[3]

Limits: inflexible, no performance guarantee

[1] SIGCOMM (2014) - Efficient Coflow Scheduling with Varys
[2] IEEE ICC (2016) - Decentralized Deadline-Aware Coflow Scheduling for Datacenter Networks
[3] IEEE Infocom (2018) - Online Partial Throughput Maximization for Multidimensional Coflow

Two trade-offs

¢
Vf:/(; i"f(l‘)df

Two trade-offs

.
vy =/ re(t)dt re(t) < ce — Z re ()
0 freF\f)

Two trade-offs

.
vy =/ re(t)dt re(t) < ce — Z re ()
0 freF\f)

#1 Timeliness 4= completeness

#2 The completeness of (co)flow A 4= that of (co)flow B

Poco: a POlicy-based COflow scheduler

Poco: key designs

Two key designs

Poco: key designs

Two key designs
1. Enable applications to specify

coflow requirements explicitly.

v'Timeliness/deadlines
v'Completeness/level of tolerance

Grammar

Ci
Fi
R
fi.j

. ee e

Ly

(Fi:Ri) Application-specified coflow request
(- fijo) Transfer demands of cofow C;
{,(Gik i k) - -} Completeness requirements
(Ti,j5Vi,jrPi,j) Details of the j-th subflow in coflow i

More Notation

Ti,}'
Vj,j

Pi,j -
Gi,k :
bik

Expired time of flow f; ; (we have ¥j : 7; ; = 7; in this paper)
Remaining volume of flow f; ;

Path of flow f; ;

Set of flow(s) in the same completeness group

Completeness requirement

Poco: key designs

Two key designs

1. Enable applications to specify
coflow requirements explicitly.
v'Timeliness/deadlines
v'Completeness/level of tolerance

2. Explore the trade-offs explicitly
with a monolithic (time-slotted)
Linear Program model.

v'Requirements = linear constraints

Grammar
Ci = (Fii Ri) Application-specified coflow request
Fi = Sy Transfer demands of cofow C;
Ri = {, (G i k) -} Completeness requirements
fi,j u= (TijivijiPi,j) Details of the j-th subflow in coflow i
More Notation
7i,j : Expired time of flow f; ; (we have Vj : 7; ; = 7; in this paper)
vi,j - Remaining volume of flow f; ;
pi,j - Pathof flow f; ;
G : Setof flow(s) in the same completeness group
¢; r : Completeness requirement
n |Fi| 7ij
Maximize rijaAr st (4
i=1 j=1 t=1
Tij
Z Zri’j’IAT > Gik Vi, k (4a)
(i./))€G, . 1=1
Tij
ny D rijahr <vig Vi (4b)
=1
Z Fijit < Ceps Vet (4c)
(i,j):eep; j
Fiju 20, Vi, jt (4d)

Poco: service model

Schedule coflows to guarantee

Coflow request completeness and timeliness

Application 9} Poco . Network
controllers E controller
admit/rej e::t4/\

n |Fi| Tij

Maximize ZZ Zri.j.lAT ..
=1 =1 =
by

o
AT 2 Gk ik 4
SOIVe the tiyf;‘z,k;r”'r T ik Vi (4a)
.
L i A < i v-’ . (4b)
involved LP &) 2w = ¥
Z Tiji S Cern Vet (4c)
(i.j):e€p;j
rije 20, Vi jt (4d)

Provide guaranteed performance with admission control

Challenge:
How to solve large-scale LPs efficiently?

Challenge:
How to solve large-scale LPs efficiently?

)

Parallelize the computation by leveraging the
specific structure of the LPs

Poco: parallelized solver

n |F;| Ti.j

Maximize Z Z Z rijAr st

i=1 1=1 r=1
Ti]

Z Z rijaAr 2 ik, Vi k (4a)

(L.J)EGi =1

T,'.J'
Z r,',j',;AT S vf,ja Visj (4b)
=1

> rija S cen Vet (4c)

(i.j)eep; ;

rijae =0, Vi jt (4d)

Poco: parallelized solver

n_ |Fi| Tij

Maximize Z Z Z rijaAr s.t.

i=1 i=1 r=1
Ti,j

D D riibr = ik Vik (4a)

(L.J)EGi =1

T,'.J'

Z .P',',j',;AT S vf,ja Visj (4b)
=1
> rija S cen Vet (4¢)

(1,j):e€p;
Fijit = 0, Vi jt (4d)

=) Minimize w'x st. Az =b

Poco: parallelized solver

n |F;| Ti.j
Maximize Z Z Z rijaAr s.t.
i=1 i=1 r=1
Ti,j
D Dby = ik Vik (4a)
(i./)€Gix 1=1
TI.J M.‘ L] L] T — b
4 Zri‘j’IAT < Vijs Vi, j (4b) lnlmlze w m S -t- . L 1m —
t=1
> rija S cen Vet (4c)
hespn . The core of interior-point method:
rl‘.j,f > 09 VI! Jaf (4d) . . .
solve equations iteratively

ADKA'd,

Poco: parallelized solver

n |Fi|7ij
Maximize ZZZ!‘,‘, A st
i=1 i=1 r=1
Ti,j
D D riibr = ik Vik (4a)
(i,))eGi x t=1 T
TLJ‘ L] L] L] —_
St < i w | M Minimize w' x s.t. Ax =b
t=1
> rija S cen Vet (4c)
(i'j’:ee_”_f~f o Vi " The core of interior-point method:
Tijr =% T 1 solve equations iteratively

A D* ATdy =

Obviously, AD*AT is positive-semidefinite, having the Cholesky decomposition of LLT in most cases.
Accordingly, the original problem can be solved efficiently via Lg = v. then LTdy =g.
In case it is not positive-definite, the equations can be solve with other approximated methods.

Poco: parallelized solver

Solution: parallelize the computation by leveraging the specific structure of the LP

#1 Constraints introduced by the
Ar = b timeliness and completeness
£ = ‘ requirements of the 15t coflow
m A - X " b
A»> £r2 b,

AN
S
]
]

Poco: parallelized solver

Solution: parallelize the computation by leveraging the specific structure of the LP

Ax =

m L
#2 Constraints of link capacities L| A” I Ig |_ bn
involved in the 15t coflow. s B] B2 "o Bn 1 - L b*

Poco: parallelized solver

Constraints introduced by
the 15t subflow’s total volume

T
B a,l-,l 1
a;l))
IR AR hl,i,j,rri,j 0l---10
A= ai,|F; | Bi:= . : . : :)
ka1 00 |k g 0| =1
Wi, |R; 1.1 Wi |R; 117 @i |7 | , 1 kS epijAl<m
e T (1) (ﬂ'i,j) O,i,j,l A .
Constraints a;; = _AT » T, AT | O otherwise
. (..
introduced by . 1 (i,)) € Gk o _
the 1% Uik, = 1 Subflow (i, j) goes through the o-th link

completeness kO otherwise and is active during the [-th time slot/range
requirements

Subflow (i,j) is involved in the k-th
completeness requirement

Poco: parallelized solver

Constraints introduced by
the 15t subflow’s total volume

— a£,1 l =
Qa; 2 | _ -
| By o B O -+|0
A= AL Bi=| .| N
Girt1ai1 0| - |- |%i1 7 Gi,1,F,; 01 i "'hll"l,i,j,ﬂij ol---lo i=1
Wi m1@i1 0 - | ke @ e O 1]
Vi, |R;1.14i0,1 i.|R;.1F; | Qi |F; | , 1 Kf) € pii A] < i
\ e T (1) (ﬂ'i,j) O,i,j,l A .
Constraints a;;j = [Ap" AL O otherwise
. (..
introduced by)1 @) e Gig . ,
the 1% Wik,j = 1 Subflow (i, j) goes through the o-th link

completeness kO otherwise and is active during the [-th time slot/range
requirements

Subflow (i,j) is involved in the k-th
completeness requirement

Poco: parallelized solver

k k
. xl x2

DF =dlag(s—k, PR)
1 "2

A=

Poco: parallelized solver

| B, B, -

B, I.

» AD*AT=

n
C=)>» B.D'B!+ D
i=1
A Dk AT A\ DFBT 7
A, DY AT A,DYBY

A, DkAT Ak DkBT

| BiDY AT B,DY AT -

" L\L]

T
L,L]

| ML M,L}
G =
i=l1

L,LT LknT
. M,LT @G

B, DkAT C

LM 7

LoMT

M;M/! + L,L]

Poco: parallelized solver

n+l1

C:ZBDkBT+D’<

)) A Dk AT A\ DFBT 7
Al A A, Dk AT A,D¥BI [
_ » AD*AT= . ; e
A A,Dj A, A,D; By | C1: Calc L; via L;LT = A,D¥AT
n B, Dk AT B,DKAT ... B,DKAT C : : : G Sl
L Bl BZ Bl’l I- - =4 1 25 nnstn :Parallel * i=1,2,...,11
! cholesky C2: Cale L1
» i decomposition v =1,2,...
1 B ! C3: Calc M; = B;D*ATLT
! v i=1,2,....n
LT LT - ' | C4: Ccalc L, via L,LT= Dk, + Y™ (B;D*BT — M;MT)
1 1 L o o o o o e
L L,LT LoMT

L,LT LknT
| M, LT ML) - M,L, G

G=) MM +L,L]
i=1

Poco: parallelized solver

Input: A, D% Input: v
CTTTTTTTTooTommmos . AEiaiiiaiiaiaiuiaieie e gy
| C1: Calc L; via L;LT = A;D¥AT |
! Parallel . 4 i=1,2,....n |
' cholesky C2: Calc Lt |
i decomposition v i=1,2.....n !
| C3: Calc M; = B,D*ATL;T |
| pe i=1,2,....n ;
| c4:calc L, viaL.LT=DX,,+ Y2 ,(B:D¥B] — M;MT) |
o, § SSSeeER 2
! Si: Caled,.via L.(LTdy.) = v.— Y- M; Li'v; ||
 Parallel v :
'solving | S2: Caled,; = L7TL7*(v; — A;D¥BTd,,.) :
L e e e B ___ =1.2,...0

Output: d,,

Note: in rare cases the involved matrix is not positive-definite, we can solve the associated d,, with approximated methods

Poco: parallelized solver

Input: A, D% Input: v
R bbbt F N .
| C1: Calc L; via LiLT = A;D¥AT : Benefits:
I Parallel L 4 i=1,2,...,n : ‘/]
| cholesky C2: Cale L7? ! Explore the sparsity of A
:dacomposition ¥ i=1,2,...,0 ! - .
: C3: Calc M; = B;DFATL;” explicitly
: v i=1,2,...,0 :
| C4:CalcL.viaL.LT= DY, + Y (B, DfBT — M;MT) |) v’"Make both Cholesky
R bttt > =~ decompaction and solving
; S1: Calcd., . wvia L, de RERTA Il_ M; L;r,_l . :]
L T) TP SR parallelized
\solving | S2: Calcd,; = L;"L;*(v; — A;D{B’d,.) :
L e e e B ___ =1.2,...0

Output: d,,

Note: in rare cases the involved matrix is not positive-definite, we can solve the associated d,, with approximated methods

Poco: parallelized solver

Block amount: 40 Block size: 200
400 -
© 60 =
© ™ 300
- 50_ | -
o o
= S 200
(4] 40 ()]
3 3
n 30+ n 100
20 - | | | | , ! | , | , | | |
100 120 140 160 180 30 40 50 60 70 80 90 100
Block size Block amount
(a) Under various block size (b) Under various block amount

Parallelization speeds up the solving greatly.

¢ Naive implementations upon scipy/numpy,
s Ubuntu 18.04, Intel Xeon(R) Silver 4210 CPU, 16G RAM, Python3

Evaluation

* Flow-level simulator in Python3

* Inputs
* Synthesized with Facebook traces
 Completeness-requirement: 0.9, deadline: 1 + U[1; 2]

* Baselines
* Con-Myopic
* FS (per-flow fair-sharing)
* Varys

* Metrics

* Percentage of coflows that meet their requirements
* Achieved completions/delivered data volumes

Evaluation

Percentage of coflows

wn 1.0 e L =
£ 1.0 = B STeeeL }
£ 2 0.8 i
€ 0.8- = T e i =t . .
g == s \ Poco outperforms existing
s luti tl
5 Soal -y solutions greatly.
S 4 c ——- Con-Myopic \‘\\
+ %‘ g 024 =" Varys *
8 Qo | e Poco (rejected requests included) |
] 0.2 % o ——- Poco (rejected requests excluded)
gt 0.0 ‘ - . —
8 0.0 | | ‘ | 0.0 0.2 0.4 0.6 0.8091.0
= FS Con-Myopic Varys Poco Achieved completeness level
a) Requirement-satisified coflow b) Achieved completeness
q
1.0
? 2

£ o8] = - 3

335 “—

o 9 o

> N 0.6 [

T = o

o ®© %’ ©

§§04 € 0.4y —Fs S

. . % 8 l v — -~ Con-Myopic -
- l— —:= Varys et
POCO IS Ve ry fleXI ble- % 0.2 E 0.21 Poci(rejected requests included)
ﬁ ' -—- Poco (rejected requests excluded)
0.0 . - . —
0.0 . | | | 0.0 0.2 0.4 0.6 0.80.91.0
' FS Con-Myopic Varys Poco Achieved completeness level

(¢) Transmitted volume (d) Achieved completeness of flow

Summary

Poco

1. Enables distributed applications to specify their requirements
explicitly along with their coflow requests;

2. Explores the trade-offs explicitly with a monolithic (time-slotted)
Linear Program (LP) model;

3. Parallelizes the solving of LP using the specific structure of the model.

Refer to the paper for more details

Join our slack discussion: Parallel Algorithms Il (Thursday, August 20", 12:30pm-1:00pm)

Drop me emails at sxluo[at]swjtu.edu.cn

