
Selective Coflow Completion for Time-sensitive
Distributed Applications with Poco

Shouxi Luo

Joint work with Pingzhi Fan, Huanlai Xing, and Hongfang Yu

Outline

• Coflow patterns in DCN

• Existing solutions

• Two trade-offs

• Poco: key designs, service model, and parallelized solver

• Evaluation

• Summary

Coflow patterns in DCN

Source: HotNets (2012) - Coflow: A networking abstraction for cluster applications

Map-reduce Bulk Synchronous Parallel (BSP) Partition-aggregate

“Each coflow is a collection of flows between two groups of
machines with associated semantics.”

Coflow patterns in DCN

In many cases, coflows are bounded with deadlines

1. SLA-requirements

2. Time-slotted fair-sharing for concurrent jobs.

3. …

The problem/design goal:
How to let more coflows meet their deadlines?

Existing solutions

Existing solutions

• Meeting hard deadlines with admission control
• Varys[1]

[1] SIGCOMM (2014) - Efficient Coflow Scheduling with Varys

Existing solutions

• Meeting hard deadlines with admission control
• Varys[1]

• Deal with soft deadlines with preemptive, prioritized scheduling
• D2CAS[2]

[1] SIGCOMM (2014) - Efficient Coflow Scheduling with Varys
[2] IEEE ICC (2016) - Decentralized Deadline-Aware Coflow Scheduling for Datacenter Networks

Existing solutions

• Meeting hard deadlines with admission control
• Varys[1]

• Deal with soft deadlines with preemptive, prioritized scheduling
• D2CAS[2]

Limits: overlooking the fact that, many distributed
applications can tolerate incomplete data delivery by design

Existing solutions

• Meeting hard deadlines with admission control
• Varys[1]

• Deal with soft deadlines with preemptive, prioritized scheduling
• D2CAS[2]

Limits: overlooking the fact that, many distributed
applications can tolerate incomplete data delivery by design

Source

https://www.cpd-india.com/blog/web-search-engine-tool-that-help-you-find-anything-on-the-internet/

Existing solutions

• Meeting hard deadlines with admission control
• Varys[1]

• Deal with soft deadlines with preemptive, prioritized scheduling
• D2CAS[2]

Limits: overlooking the fact that, many distributed
applications can tolerate incomplete data delivery by design

SourceSource

https://medium.com/@Nithanaroy/3-ways-to-design-affective-classes-in-ml-classification-algorithms-57a302e5397b
https://www.cpd-india.com/blog/web-search-engine-tool-that-help-you-find-anything-on-the-internet/

Existing solutions

• Meeting hard deadlines with admission control
• Varys[1]

• Deal with soft deadlines with preemptive, prioritized scheduling
• D2CAS[2]

Limits: overlooking the fact that, many distributed
applications can tolerate incomplete data delivery by design

With erasure code

Source Source

https://www.cpd-india.com/blog/web-search-engine-tool-that-help-you-find-anything-on-the-internet/
https://medium.com/@Nithanaroy/3-ways-to-design-affective-classes-in-ml-classification-algorithms-57a302e5397b

Existing solutions

• Meeting hard deadlines with admission control
• Varys[1]

• Deal with soft deadlines with preemptive, prioritized scheduling
• D2CAS[2]

• Maximize the marginal partial throughput to explore the tolerance of
partial transmission
• Con-myopic[3]

[1] SIGCOMM (2014) - Efficient Coflow Scheduling with Varys
[2] IEEE ICC (2016) - Decentralized Deadline-Aware Coflow Scheduling for Datacenter Networks
[3] IEEE Infocom (2018) - Online Partial Throughput Maximization for Multidimensional Coflow

Existing solutions

• Meeting hard deadlines with admission control
• Varys[1]

• Deal with soft deadlines with preemptive, prioritized scheduling
• D2CAS[2]

• Maximize the marginal partial throughput to explore the tolerance of
partial transmission
• Con-myopic[3]

[1] SIGCOMM (2014) - Efficient Coflow Scheduling with Varys
[2] IEEE ICC (2016) - Decentralized Deadline-Aware Coflow Scheduling for Datacenter Networks
[3] IEEE Infocom (2018) - Online Partial Throughput Maximization for Multidimensional Coflow

Limits: inflexible, no performance guarantee

Two trade-offs

Two trade-offs

Two trade-offs

#1 Timeliness completeness

#2 The completeness of (co)flow A that of (co)flow B

Poco: a POlicy-based COflow scheduler

Poco: key designs

Two key designs

Poco: key designs

Two key designs

1. Enable applications to specify
coflow requirements explicitly.
✓Timeliness/deadlines

✓Completeness/level of tolerance

Poco: key designs

Two key designs

1. Enable applications to specify
coflow requirements explicitly.
✓Timeliness/deadlines

✓Completeness/level of tolerance

2. Explore the trade-offs explicitly
with a monolithic (time-slotted)
Linear Program model.
✓Requirements → linear constraints

Poco: service model

Provide guaranteed performance with admission control

Solve the
involved LP

Challenge:
How to solve large-scale LPs efficiently?

Parallelize the computation by leveraging the
specific structure of the LPs

Challenge:
How to solve large-scale LPs efficiently?

Poco: parallelized solver

Poco: parallelized solver

Poco: parallelized solver

The core of interior-point method:
solve equations iteratively

Poco: parallelized solver

Obviously, 𝑨𝑫𝒌𝑨𝑻 is positive-semidefinite, having the Cholesky decomposition of 𝑳𝑳𝑻 in most cases.

Accordingly, the original problem can be solved efficiently via 𝑳𝒈 = 𝒗. then 𝑳𝑻𝒅𝒚 = 𝒈.

In case it is not positive-definite, the equations can be solve with other approximated methods.

The core of interior-point method:
solve equations iteratively

Poco: parallelized solver

Solution: parallelize the computation by leveraging the specific structure of the LP

#1 Constraints introduced by the
timeliness and completeness

requirements of the 1st coflow

Poco: parallelized solver

Solution: parallelize the computation by leveraging the specific structure of the LP

#2 Constraints of link capacities
involved in the 1st coflow.

Poco: parallelized solver
Constraints introduced by

the 1st subflow’s total volume

Constraints
introduced by

the 1st

completeness
requirements

Subflow (𝑖, 𝑗) goes through the o-th link
and is active during the 𝑙-th time slot/range

Subflow (i,j) is involved in the k-th
completeness requirement

Poco: parallelized solver
Constraints introduced by

the 1st subflow’s total volume

Subflow (i,j) is involved in the k-th
completeness requirement

Constraints
introduced by

the 1st

completeness
requirements

Subflow (𝑖, 𝑗) goes through the o-th link
and is active during the 𝑙-th time slot/range

Poco: parallelized solver

Poco: parallelized solver

Poco: parallelized solver

Poco: parallelized solver

Note: in rare cases the involved matrix is not positive-definite, we can solve the associated 𝒅𝒚 with approximated methods

Poco: parallelized solver

Benefits:

✓Explore the sparsity of A
explicitly

✓Make both Cholesky
decompaction and solving
parallelized

Note: in rare cases the involved matrix is not positive-definite, we can solve the associated 𝒅𝒚 with approximated methods

Poco: parallelized solver

❖ Naive implementations upon scipy/numpy,
❖ Ubuntu 18.04, Intel Xeon(R) Silver 4210 CPU, 16G RAM, Python3

Parallelization speeds up the solving greatly.

Evaluation

• Flow-level simulator in Python3

• Inputs
• Synthesized with Facebook traces
• Completeness-requirement: 0.9, deadline: 1 + U[1; 2]

• Baselines
• Con-Myopic
• FS (per-flow fair-sharing)
• Varys

• Metrics
• Percentage of coflows that meet their requirements
• Achieved completions/delivered data volumes

Evaluation

Poco outperforms existing
solutions greatly.

Poco is very flexible.

Summary

Poco

1. Enables distributed applications to specify their requirements
explicitly along with their coflow requests;

2. Explores the trade-offs explicitly with a monolithic (time-slotted)
Linear Program (LP) model;

3. Parallelizes the solving of LP using the specific structure of the model.

Refer to the paper for more details

Join our slack discussion: Parallel Algorithms II (Thursday, August 20th, 12:30pm-1:00pm)

Drop me emails at sxluo[at]swjtu.edu.cn

