
A Rack-Aware Pipeline Repair Scheme for
Erasure-Coded Distributed Storage Systems

Storage Technology and Architecture Research (STAR) Lab
Dept. of Computer and Info. Sciences
Temple University, Philadelphia, USA

Tong Liu Shakeel Alibhai Xubin He
tongliu@temple.edu shakeel.alibhai@temple.edu xubin.he@temple.edu

* This work was supported by the National Science Foundation
(CCF-1717660, CCF-1813081 and CNS-1828363).

Introduction & Background
Erasure coding

• A popular fault-tolerant scheme which provides data reliability by adding data redundancy.
• The Reed-Solomon (RS) code [1] is the most widely used erasure code in practice.
• An RS (n, k) code has n original data chunks and k parity chunks, which are the coded results from

the original n data chunks.
• Any amount of failed chunks less than or equal to k can be recovered by decoding any n of the

remaining available chunks in the stripe.

[1] Reed, I. S., and Solomon, G. Polynomial codes over certain finite
fields. Journal of the society for industrial and applied mathematics 8, 2
(1960), 300–304.

Introduction & Background
Typical top-of-rack (TOR) network connectivity architecture.

• Reconstruction requires heavy data download and consumes a large amount of disk and cross-rack
bandwidth.

• According to Facebook’s report [2], a median of more than 180 Terabytes (TB) of data is transferred
through the top-of-rack switches every day for this purpose.

• The cross-rack bandwidth in production is around 1Gb/s, while the inner-rack bandwidth is 10Gb/s.

[2] K.V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ramchandran. A
solution to the network challenges of data recovery in erasure-coded distributed
storage systems: A study on the Facebook warehouse cluster. In Proc. of USENIX
HotStorage, 2013.
[3] Sathiamoorthy, M., Asteris, M., Papailiopoulos, D., Dimakis, A. G., Vadali, R.,
Chen, S., and Borthakur, D. Xoring elephants: Novel erasure codes for big data. In
Proceedings of the VLDB Endowment (2013), vol. 6, VLDB Endowment, pp. 325–
336.

RPR: inner-rack partial decoding

Partial decoding
• Matrix encoding/decoding process: Galois Field (GF) arithmetic.

• the results of any operation still lie in the field.
• addition is equivalent to XOR.

• Consider an RS (4, 2) code
• With four data chunks {D0, D1, D2, D3} and two parity chunks {P0, P1}. When D2 fails,

assume that D0, D1, D3, and P0 are selected to recover the failed chunk in the recovery
node. Then the recover equation of D2 would be: 𝐷𝐷0 ⊕ 𝐷𝐷1 ⊕𝐷𝐷3 ⊕ 𝑃𝑃0 = 𝐷𝐷2.

• With partial decoding deployed, the default recovery can be divided into two parts:
𝐷𝐷0 ⊕ 𝐷𝐷1 = 𝐼𝐼0, 𝐷𝐷3 ⊕ 𝑃𝑃0 = 𝐼𝐼1, 𝐼𝐼0 ⊕ 𝐼𝐼1 = 𝐷𝐷2.

• With partial decoding, the lost data can be decoded partially and in parallel, thus
mitigating the transfer bottleneck and load imbalance issues.

RPR: inner-rack partial decoding

The Inner algorithm and an example

Traditional repair with an RS (4, 2) code when single-block
failure occurs

Repair with inner-rack partial decoding

Different schedules in more complicated scenario

For simple RS code, after each intermediate block is generated, the cross-rack
transfer schedule would be straightforward.
However, when multiple failures occur, or when there are more nodes involved in

the repair process, the inner-rack and cross-rack transfer schedules would be
much more complex.

RPR: cross-rack pipeline scheduling

To address this issue, we propose a pipeline-based greedy algorithm
Cross, which aims to maintain the data consistency during the entire
repair process as well as achieve the optimal total repair time.
The Cross algorithm works together with the Inner algorithm:

whenever Inner finishes the inner-rack data transfer and produces
the intermediate data, Cross will give the optimal cross-rack transfer
schedule based on the current node and rack transfer status.

RPR: cross-rack pipeline scheduling

Process of Cross algorithm
1. For each rack, if IR decoding can be

conducted, start the IR transfer and
partial decoding.

2. If an IR transfer cannot be scheduled,
then start a CR transfer with any other
rack which currently has no IR transfer.

3. When the IR transfer finishes, start a CR
transfer with any other rack that does
not currently have a CR transfer.

4. If every other rack has a CR transfer,
then wait until the one that finishes first,
and then start the transfer.

5. Repeat recursively until all the racks
finish their CR transfers or the recovery
node receives all the intermediate data.

IR = inner-rack, CR = cross-rack

RPR: data pre-placement

Intuitively, to reduce the cross-rack data transfer, it would be better to
transfer as much information as possible in each cross-rack transfer.
Thus, to reduce the amount of cross-rack transfers and avoid building the

decoding matrix, the best way is to put P0 with data blocks instead of parity
blocks in the same rack.
For an RS (n, k) code, if the first parity block P0 is placed with all data blocks

in the same rack, then, assuming the block failure rate is same for all
blocks, there is a 1/n chance that there is no need to build the decoding
matrix when a single-block failure occurs.
Our experiments show that building the decoding matrix takes 80% of the

total decoding time.

Extension to multi-block failures

When multiple failures occur, the repair procedure becomes more
complicated since multiple decoding equations are required.
Existing cross-rack repair scheme, such as CAR [4] can only tolerate

single-failure scenario.
Similar to Inner and Cross, we propose Inner-multi and Cross-multi

algorithms which can reduce the cross-rack traffic and total repair
time when multiple failures occur.

[4] Shen, Z., Shu, J., and Lee, P. P. Reconsidering single failure recovery in
clustered file systems. In 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN) (2016), IEEE, pp. 323–334.

Extension to multi-block failures

Assume an (n, k) erasure coded system:

Assume there are k failed blocks

To recover, data on the left side of each equation is needed.

Extension to multi-block failures

Assume that the stripe is distributed across q racks, then every rack
can only transfer an intermediate data block to the recovery
node/rack:

Similarly, Inner-multi and Cross-multi algorithms can be applied.

Evaluation setup

Simics simulation
• Simics is a platform for full-system simulation
• Each node/server has a single-core Intel(R) Core(TM)-i7 CPU @ 2.00 GHz with

4GB RAM running on Ubuntu 16.04.4 LTS.
• Wondershaper is applied to achieve the different inner-rack transfer and

cross-rack transfer bandwidth. Inner-rack bandwidth is set to be 1Gb/s, and
cross-rack bandwidth is set to be 0.1Gb/s.

• The erasure-coded RPR prototype is built based on the Jerasure Library v2.0.
• Each data/parity block is 256MB.

Evaluation setup

Amazon Web Service EC2 Evaluation
• To validate that RPR works in real-world systems, we also evaluate RPR in AWS EC2.
• To simulate the rack-level data transfer, we launch instances (virtual machines) in five

different continents.
• Each virtual machine is created based on a t2.micro type Linux Kernel 4.14 Amazon Linux 2

AMI with 1 vCPU, 1 GB RAM, and 8 GB SSD.
• Other settings same as Simics simulation.

Inter- and intra-bandwidths (Mbps) across regions

Experimental results

• Single-block failure (Simics simulation)

Cross-rack traffic Total repair time

Experimental results

• Single-block failure (EC2 evaluation)

Cross-rack traffic Total repair time

Experimental results

• Multi-block failure (Simics simulation)

Cross-rack traffic Total repair time

Experimental results

• Multi-block failure (EC2 evaluation)

Cross-rack traffic Total repair time

Conclusion

We propose RPR, a rack-aware pipeline repair scheme comprised of three
techniques

• inner-rack partial decoding
• cross-rack pipeline scheduling
• data-parity placement

RPR supports both single-block and multi-block failures.
We conduct experiments on both Simics and AWS EC2, results from both

platforms show that,
• In single-block failure scenario, RPR significantly improves the repair performance compared to the

traditional RS code as well as CAR, with total repair time reductions of up to 81.5% and 50.2%,
respectively.

• When multiple blocks fail, RPR also improves the repair performance compared to the traditional RS
code repair with total repair time reductions of up to 64.5% and cross-rack data transfer reductions of
up to 50%.

Thank You & Questions?

	A Rack-Aware Pipeline Repair Scheme for Erasure-Coded Distributed Storage Systems
	Introduction & Background
	Introduction & Background
	RPR: inner-rack partial decoding
	RPR: inner-rack partial decoding
	Different schedules in more complicated scenario
	RPR: cross-rack pipeline scheduling
	RPR: cross-rack pipeline scheduling
	RPR: data pre-placement
	Extension to multi-block failures
	Extension to multi-block failures
	Extension to multi-block failures
	Evaluation setup
	Evaluation setup
	Experimental results
	Experimental results
	Experimental results
	Experimental results
	Conclusion
	Thank You & Questions?

