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Background
• Expanding needs for data analytics call for greater scale computing infrastructure, multi-cluster 

computing environment shows its benefits and necessity in this.
• Example: institution-owned geo-distributed clusters, hybrid-cloud, etc.
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An example of a multi-cluster environment:

• An efficient resource management is needed.

• Many features to consider for resource management, also including cluster heterogeneity and 
elasticity.

• To consider features in an integration, We presents a DRL based resource management in such 
environment.



Contribution

• We propose a DRL based approach utilizing:
• LSTM model and 

• multi-target regression with partial model sharing mechanism 

and compare its effectiveness with baselines and another RL approach.
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• The approach is designed for distributed multi-cluster computing environments 
considering:
• its heterogeneity and 

• being elasticity-compatible.

• It provides scheduling support for time-critical computing  in such a multi-cluster 
environment.



Problem Description

• Goals for resource management:
(1) Reducing occurrences of missing temporal 

deadline events.

(2) Maintaining a low average execution time ratio 
for a hybrid workload containing multiple time-
critical and general jobs.
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• Cluster in environment expresses its computing 
resources as the number of executors it could 
provide.

• Executors of different clusters may have different 
computing capabilities.

• Some clusters may be elastic.



DRL based Approach

• Brief introduction of Reinforcement learning
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• We are using:
• Reinforcement learning on deep neural 

networks

• With neural networks serving as value 
estimators.



DRL based Approach

• Environment

• Action set

• Episode

• State
• Computing system features and 

status

• Scheduling job information
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• Challenges:
• How to represent system status and 

job information as state for such 
environment? 

• How should we define value?

• Effective value estimator?



DRL based Approach

• Value formula:
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𝜂𝑐: The heterogeneity factor of the 
cluster.

𝜂𝑗: The expected heterogeneity 

factor of the job.

𝑀𝑗: The number of missing deadlines 

of job j without resource waiting.

𝑊𝑗
(𝑡)
: The happening of each 

missing deadline event of job j at 

moment t, if not in 𝑀𝑗.

𝑊𝑐𝑙
(𝑡)
: The number of missing 

deadlines of all jobs in the cluster 
at t if with resource waiting.

𝑡𝑠 and 𝑡𝑒 : The deployment 
and termination moment of 
job j.

𝛽: The decay factor.

𝐷𝑡: Number of new jobs 
deployed to the cluster after 
𝑡𝑠, till moment t.

𝑅𝑗: The overall average 

execution delay ratio of job 
j.

𝑚𝑖ℎ,𝑚𝑖𝑐 , 𝜓𝑖ℎand 𝜓𝑖𝑐: 
penalty terms w.r.t.
Improper Heterogeneity 
and Initial Competition.

• Value definition ideas:
• Attend to causes of missing deadlines.
• Attend to job’s influence on resource competition.
• Attend to mutual influences among jobs in cluster.
• Attend to influences of heterogeneity and elasticity.
• Attend to both missing deadlines and execution delay ratio.



DRL based Approach

• DRL model structure and value definition decomposition
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DRL based Approach

• Training Enhancement Skills
• Cluster occupation status traverse.

• Towards better cooperation with LSTM.

• Training with decayed learning rate.
• Towards finer model adjustment at later 

episodes in training.

• Training with randomized workload.
• Towards more general knowledge from 

various workloads.

• Modified ε-greedy exploration.
• Towards utilizing knowledge of rule-based 

model to partially guide exploration.

• Solving multi-job selection dilemma
• Towards coping with jobs in the job buffer.
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Cluster occupation status traverse:



DRL based Approach

• Training architecture
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Experiments

• Introduction
• Experiment via simulation with a testing environment of 5 clusters. Clusters in 

this environment are heterogeneous and 2 of the clusters have elasticity as 
well.

• Elasticity controller

• Local intra-cluster scheduler
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Experiments

• Comparison:
• Rule-based baselines:

• Random (RAN)

• Round-Robin (RR)

• Most Available First (MAF)

• Another RL approach:
• RL-FC

• Job arriving patterns: 
• Uniform, Bernoulli and Beta

• Performance metrics:
• TMDL:

• Total number of occurrences of missing 
deadlines for all jobs in all clusters during the 
execution of the workload.

• AJER:
• Average job execution time ratio among all 

clusters

• S_log
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Experiments
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Performance comparison (𝑆𝑙𝑜𝑔) of our deep RL approach RL-

LSFC and baseline approaches in different training episodes.



Experiments
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Comparison of RL-LSFC and MAF for 50 testing episodes. (L) lower is better. (H) higher is better. 
Fully-dominant(F), Semi-dominant(S) or Non-dominant(N) receives score 1 in an episode, if our 
approach is better than MAF in both, only one or none of the two metrics (TMDL and AJER).



Experiments
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Comparison of RL-LSFC and MAF in variant workloads. 
(a)-(c) are related to b=36 scenario. (d)-(f) are related 
to b=40. Here b is a parameter in Uniform job pattern.



Experiments
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Comparison of RL-LSFC and MAF in other job arriving 
patterns. (a)-(c): Bernoulli pattern. (d)-(f): Beta pattern.



Experiments

17

Comparison of three RL models w.r.t. MAF. In (b), we give F:2, S:1 and N:0 
for scoring to show a dominant area (larger is better) of RL-LSFC (RL-LSFCb
is very similar to RL-LSFC here, so omitted for viewing) and RL-FC. 



Experiments
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(a) RL-LSFC overall (c) RL-LSFC Cate-1 (e) RL-LSFC Cate-2 (g) RL-LSFC Cate-3

(b) MAF overall (d) MAF Cate-1 (f) MAF Cate-2 (h) MAF Cate-3

Job-Cluster scheduling patterns for RL-LSFC and MAF in one testing episode. 
One point for each job and one color for each job category. Vertical axis 1-5 
is referring to cluster sequence number. Horizontal axis is time slice.



Experiments
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RL-LSFC Cate-1 RL-LSFC Cate-2 RL-LSFC Cate-3

Comparison of Job-Cluster scheduling pattern with respect to different job 
categories under RL-LSFC control. Value axis is on logarithmic scale of job 
counts; angle axis is time slice. One color for each cluster.



Conclusion

• Obtained an elasticity-compatible resource management via DRL for a 
heterogeneous multi-cluster environment.

• Comparing to the best baseline, it
• reduces the occurrence of missing execution deadline events for workloads of 1000 jobs 

by around 5x to 18x, 

• and reduces average execution time ratio by around 2% to 5%.

• Also shows better performance than a previous reinforcement learning based 
approach with fully-connected layers. 
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