Deep Reinforcement Learning based Elasticity-compatible Heterogeneous Resource Management for Time-critical Computing

Zixia Liu, University of Central Florida Liqiang Wang, University of Central Florida Gang Quan, Florida International University

Background

- Expanding needs for data analytics call for greater scale computing infrastructure, multi-cluster computing environment shows its benefits and necessity in this.
 - Example: institution-owned geo-distributed clusters, hybrid-cloud, etc.
- An efficient resource management is needed.
- Many features to consider for resource management, also including cluster heterogeneity and elasticity.
- To consider features in an integration, We presents a DRL based resource management in such environment.

Contribution

- We propose a DRL based approach utilizing:
 - LSTM model and
 - multi-target regression with partial model sharing mechanism

and compare its effectiveness with baselines and another RL approach.

- The approach is designed for distributed multi-cluster computing environments considering:
 - its heterogeneity and
 - being elasticity-compatible.
- It provides scheduling support for time-critical computing in such a multi-cluster environment.

Problem Description

- Cluster in environment expresses its computing resources as the number of executors it could provide.
- Executors of different clusters may have different computing capabilities.
- Some clusters may be elastic.
- Goals for resource management:
 - (1) Reducing occurrences of missing temporal deadline events.
 - (2) Maintaining a low average execution time ratio for a hybrid workload containing multiple timecritical and general jobs.

• Brief introduction of Reinforcement learning

- We are using:
 - Reinforcement learning on deep neural networks
 - With neural networks serving as value estimators.

- Challenges:
 - How to represent system status and job information as state for such environment?
 - How should we define value?
 - Effective value estimator?
 - Environment
 - Action set
 - Episode
 - State
 - Computing system features and status
 - Scheduling job information

Table 1: State representation in our deep reinforcement learning model for 5 clusters

Vector Component	Dimensions			
Cluster $(i = 15)$				
Cluster sequence number	1			
Normal capacity	1			
Maximum capacity if elastic	1			
Cluster heterogeneity factor	1			
Occupation status (latest 105 steps)*	$105 \rightarrow 150$			
Current total missing deadlines	1			
	775 (155 × 5)			
Job				
Category	1			
Expected heterogeneity factor	1			
Heterogeneity sensitivity	1			
Discrete resource request distribution	10×5			
Standard execution time	1×5			
Execution deadline	1×5			
Duration	1			
	64			
Overall state vector	839 (775 + 64)			
Only * row includes temporal information				

- Value definition ideas:
 - Attend to causes of missing deadlines.
 - Attend to job's influence on resource competition.
 - Attend to mutual influences among jobs in cluster.
 - Attend to influences of heterogeneity and elasticity.
 - Attend to both missing deadlines and execution delay ratio.

• Value formula:
$$v^{(j)} = \frac{\eta_c \cdot m_{ih} \cdot m_{ic}}{-\eta_j} \left[M_j + \sum_{t=t_s}^{t_e} \beta^{D_t} \left(W_j^{(t)} + W_{cl}^{(t)} \right) \right] - \psi_{ih} \cdot \psi_{ic} \cdot R_j$$

 η_c : The heterogeneity factor of the cluster.

 η_j : The expected heterogeneity factor of the job.

 M_j : The number of missing deadlines of job j without resource waiting.

 $W_j^{(t)}$: The happening of each missing deadline event of job j at moment t, if not in M_j .

 $W_{cl}^{(t)}$: The number of missing deadlines of all jobs in the cluster at t if with resource waiting.

 t_s and t_e : The deployment and termination moment of job j.

eta : The decay factor.

 D_t : Number of new jobs deployed to the cluster after t_s , till moment t. R_j : The overall average execution delay ratio of job j.

 $m_{ih}, m_{ic}, \psi_{ih}$ and ψ_{ic} : penalty terms w.r.t. Improper Heterogeneity and Initial Competition.

• DRL model structure and value definition decomposition

- Training Enhancement Skills
 - Cluster occupation status traverse.
 - Towards better cooperation with LSTM.
 - Training with decayed learning rate.
 - Towards finer model adjustment at later episodes in training.
 - Training with randomized workload.
 - Towards more general knowledge from various workloads.
 - Modified ε-greedy exploration.
 - Towards utilizing knowledge of rule-based model to partially guide exploration.
 - Solving multi-job selection dilemma
 - Towards coping with jobs in the job buffer.

Cluster occupation status traverse:

Each box represents 5 elements in the vector

• Training architecture

- Introduction
 - Experiment via simulation with a testing environment of 5 clusters. Clusters in this environment are heterogeneous and 2 of the clusters have elasticity as well.
- Elasticity controller
- Local intra-cluster scheduler

- Comparison:
 - Rule-based baselines:
 - Random (RAN)
 - Round-Robin (RR)
 - Most Available First (MAF)
 - Another RL approach:
 - RL-FC
- Job arriving patterns:
 - Uniform, Bernoulli and Beta

- Performance metrics:
 - TMDL:
 - Total number of occurrences of missing deadlines for all jobs in all clusters during the execution of the workload.
 - AJER:
 - Average job execution time ratio among all clusters
 - S_log

 $S_{log} = sign(S) * log_{10}(max(|S|, 1))$ as S = -TMDL + 50 * (100 - AJER)

Performance comparison (S_{log}) of our deep RL approach RL-LSFC and baseline approaches in different training episodes.

Comparison of RL-LSFC and MAF for 50 testing episodes. (L) lower is better. (H) higher is better. Fully-dominant(F), Semi-dominant(S) or Non-dominant(N) receives score 1 in an episode, if our approach is better than MAF in both, only one or none of the two metrics (TMDL and AJER).

	TMDL (L)	AJER (L)	S_{log} (H)	F/S/N
RL-LSFC	61.70	90.30	2.57	46/4/0
MAF	343.84	93.22	-0.28	-

Comparison of RL-LSFC and MAF in variant workloads. (a)-(c) are related to b=36 scenario. (d)-(f) are related to b=40. Here b is a parameter in Uniform job pattern.

(a)-(c)	TMDL (L)	AJER (L)	S_{log} (H)	F/S/N
RL-LSFC	37.66	88.32	2.73	50/0/0
MAF	311.44	92.35	0.87	-
(d)-(f)	TMDL (L)	AJER (L)	S_{log} (H)	F/S/N
RL-LSFC	19.76	87.12	2.79	50/0/0
MAF	276.1	91.95	1.55	-

Comparison of RL-LSFC and MAF in other job arriving patterns. (a)-(c): Bernoulli pattern. (d)-(f): Beta pattern.

Comparison of three RL models w.r.t. MAF. In (b), we give F:2, S:1 and N:0 for scoring to show a dominant area (larger is better) of RL-LSFC (RL-LSFCb is very similar to RL-LSFC here, so omitted for viewing) and RL-FC.

(a) S_{log} (H)

(b) Dominant area

(c) F/S/N distribution

	TMDL (L)	AJER (L)	S_{log} (H)	F/S/N
RL-LSFC*	36.84	88.71	2.71	50/0/0
RL-LSFCb*	14.74	90.13	2.67	49/1/0
RL-FC	15.28	92.79	2.24	29/21/0
MAF	305.02	92.67	0.65	-

Job-Cluster scheduling patterns for RL-LSFC and MAF in one testing episode. One point for each job and one color for each job category. Vertical axis 1-5 is referring to cluster sequence number. Horizontal axis is time slice.

Comparison of Job-Cluster scheduling pattern with respect to different job categories under RL-LSFC control. Value axis is on logarithmic scale of job counts; angle axis is time slice. One color for each cluster.

Conclusion

- Obtained an elasticity-compatible resource management via DRL for a heterogeneous multi-cluster environment.
- Comparing to the best baseline, it
 - reduces the occurrence of missing execution deadline events for workloads of 1000 jobs by around 5x to 18x,
 - and reduces average execution time ratio by around 2% to 5%.
- Also shows better performance than a previous reinforcement learning based approach with fully-connected layers.

