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Background

* Expanding needs for data analytics call for greater scale computing infrastructure, multi-cluster
computing environment shows its benefits and necessity in this.

* Example: institution-owned geo-distributed clusters, hybrid-cloud, etc.

* An efficient resource management is needed.

* Many features to consider for resource management, also including cluster heterogeneity and
elasticity.

* To consider features in an integration, We presents a DRL based resource management in such
environment.

An institution

An example of a multi-cluster environment: ‘
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Contribution

* We propose a DRL based approach utilizing:
* LSTM model and

* multi-target regression with partial model sharing mechanism
and compare its effectiveness with baselines and another RL approach.

* The approach is designed for distributed multi-cluster computing environments
considering:

* its heterogeneity and
* being elasticity-compatible.

* |t provides scheduling support for time-critical computing in such a multi-cluster
environment.




Problem Description

e Cluster in environment expresses its computing
system resources as the number of executors it could
provide.

O (O | * Executors of different clusters may have different
TW | _j " aregores computing capabilities.
* Some clusters may be elastic.

Workload of
jobs

e Goals for resource management:

been AL based (1) Reducing occurrences of missing temporal
deadline events.

(2) Maintaining a low average execution time ratio
for a hybrid workload containing multiple time-
critical and general jobs.

Multi-cluster
computing

environment




DRL based Approach

 Brief introduction of Reinforcement learning

* We are using:

* Reinforcement learning on deep neural
State_{t+1] networks

E
* With neural networks serving as value
State_tand estimators.
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DRL based Approach

¢ Challenges: Table 1: State representation in our deep reinforcement

learning model for 5 clusters
* How to represent system status and &

job information as state for such
environment?

Vector Component Dimensions
Cluster (i =1...5)

Cluster sequence number 1
* How should we define value? Normal capacity 1
e Effective value estimator? Ig[lmmum capacity if elastic !
uster heterogeneity factor 1
Occupation status (latest 105 steps)* 105 — 150
* Environment Current total missing deadlines 1
775 (155 X 5)
* Action set Job
Category 1
e E P isode Expected heterogeneity factor 1
Heterogeneity sensitivity 1
* State Discrete resource request distribution 10 X 5
« Computing system features and Standard exccution time X
Execution deadline 1X5
status Duration 1
* Scheduling job information 64
Overall state vector 839 (775 + 64)

Only * row includes temporal information




DRL based Approach

e Value definition ideas:

tt:'
* - m ® m
* Value formula: o0 = Je Tk "Tic |y, Z D
1 =T
Nc: The heterogeneity factor of the W(t): The happening of each
cluster. J

Attend to causes of missing deadlines.

Attend to job’s influence on resource competition.
Attend to mutual influences among jobs in cluster.
Attend to influences of heterogeneity and elasticity.

Attend to both missing deadlines and execution delay ratio.

missing deadline event of job j at
moment t, if not in M;.

nj: The expected heterogeneity

factor of the job. )
W.; ”: The number of missing
deadlines of all jobs in the cluster
Mj: The number of missing deadlines at t if with resource waiting.

of job j without resource waiting.

(w0 + W) | e 8

ts and t,: The deployment
and termination moment of
jobj.

[: The decay factor.

D¢: Number of new jobs
deployed to the cluster after
t, tillmoment t.

Rj: The overall average
execution delay ratio of job
j.

Mip, My, d)ihand l/}ic:
penalty terms w.r.t.
Improper Heterogeneity

and Initial Competition.




DRL based Approach

* DRL model structure and value definition decomposition
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DRL based Approach

* Training Enhancement Skills
e Cluster occupation status traverse.

* Towards better cooperation with LSTM.
Training with decayed learning rate.

e Towards finer model adjustment at later
episodes in training.

Training with randomized workload.

* Towards more general knowledge from
various workloads.

Modified e-greedy exploration. l

* Towards utilizing knowledge of rule-based Traverse to generate 10 vectors of length 15
. . . Each box represents 5 elements in the vector
model to partially guide exploration.

Solving multi-job selection dilemma
e Towards coping with jobs in the job buffer.

Cluster occupation status traverse:

Cluster occupation status in last 105 time steps




DRL based Approach

* Training architecture

Job Generation Module
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Experiments

* Introduction

* Experiment via simulation with a testing environment of 5 clusters. Clusters in
this environment are heterogeneous and 2 of the clusters have elasticity as

well.
e Elasticity controller
e Local intra-cluster scheduler




Experiments

* Comparison: e Performance metrics:
* Rule-based baselines: e TMDL:
 Random (RAN) e Total number of occurrences of missing
« Round-Robin (RR) deadlines for all jobs in all clusters during the

e Another RL approach: * AlER:
* Average job execution time ratio among all
e RL-FC
clusters
* Job arriving patterns: * S log

e Uniform, Bernoulli and Beta

Slog = sign(S)*log,,(max(|S], 1)) asS = =TMDL+50%(100—AJER)




Experiments
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Performance comparison (S, 4) of our deep RL approach RL-
LSFC and baseline approaches in different training episodes.




Experiments

Comparison of RL-LSFC and MAF for 50 testing episodes. (L) lower is better. (H) higher is better.
Fully-dominant(F), Semi-dominant(S) or Non-dominant(N) receives score 1 in an episode, if our
approach is better than MAF in both, only one or none of the two metrics (TMDL and AJER).
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(b) AJER (L)
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(c) S;’ﬂg (H)

TMDL (L) [ AJER (L) | S, (H) | F/S/N
RL-LSFC | 61.70 90.30 2.57 46/4/0
MAF 343.84 93.22 —0.28 | -
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Experiments

Comparison of RL-LSFC and MAF in variant workloads.
(a)-(c) are related to b=36 scenario. (d)-(f) are related
to b=40. Here b is a parameter in Uniform job pattern.
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(c) Slog (H)
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(f) Siog (H)

(a)-(c) TMDL (L) | AJER (L) | Sjoy (H) | F/S/N
RL-LSFC | 37.66 88.32 2.73 50/0/0
MAF 311.44 92.35 0.87 -
(d)-(D) TMDL (L) | AJER (L) | Sjo, (H) [ F/S/N
RL-LSFC | 19.76 87.12 2.79 50/0/0
MAF 276.1 91.95 1.55 -
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Experiments

Comparison of RL-LSFC and MAF in other job arriving
patterns. (a)-(c): Bernoulli pattern. (d)-(f): Beta pattern.
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(c) Slog (H)
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(f) Slog (H)

(@)-(c) TMDL (L) [ AJER (L) | Sjo, (H) [ F/S/N
RL-LSFC | 13.32 86.67 2.81 50/0/0
MAF 243.18 91.75 1.92 -
(d)-(f) TMDL (L) | AJER (L) | S;,, (H) | F/S/N
RL-LSFC | 39.14 88.68 2.71 50/0/0
MAF 295.66 92.41 1.11 -




Experiments
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(a) Slog (H)

Comparison of three RL models w.r.t. MAF. In (b), we give F:2, S:1 and N:0
for scoring to show a dominant area (larger is better) of RL-LSFC (RL-LSFCb
is very similar to RL-LSFC here, so omitted for viewing) and RL-FC.

Semi-dominant

B RL-LSFC M RL-LSFCb MRL-FC

(c) F/S/N distribution
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(b) Dominant area
TMDL (L) | AJER (L) Slog (H) | F/S/N
RL-LSFC* 36.84 88.71 2.71 50/0/0
RL-LSFCb* | 14.74 90.13 2.67 49/1/0
RL-FC 15.28 92.79 2.24 29/21/0
MAF 305.02 92.67 0.65 -
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(d) MAF Cate-1
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(h) MAF Cate-3

Job-Cluster scheduling patterns for RL-LSFC and MAF in one testing episode.
One point for each job and one color for each job category. Vertical axis 1-5

is referring to cluster sequence number. Horizontal axis is time slice.




Experiments
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Comparison of Job-Cluster scheduling pattern with respect to different job
categories under RL-LSFC control. Value axis is on logarithmic scale of job
counts; angle axis is time slice. One color for each cluster.




Conclusion

e Obtained an elasticity-compatible resource management via DRL for a
heterogeneous multi-cluster environment.

* Comparing to the best baseline, it

* reduces the occurrence of missing execution deadline events for workloads of 1000 jobs
by around 5x to 18x,

* and reduces average execution time ratio by around 2% to 5%.

* Also shows better performance than a previous reinforcement learning based
approach with fully-connected layers.




