
Large-scale Simulations of 
Peridynamics on Sunway 

TaihuLight Supercomputer
Authors: Xinyuan Li, Huang Ye, Jian Zhang

Reporter: Xinyuan Li Computer Network and Information Center, Chinese 
Academy of Science lixy@sccas.cn



Outline

 Introduction

 Optimizations

 Memory Access

 Vectorization

 Communication

 Performance Evaluation 

 Conclusion

 Future work



Introduction
 Peridynamics models

 Sunway TaihuLight

 Challenges to implement PD applications on Sunway TaihuLight



Peridynamics Models

 Peridynamics (PD) is a non-local mechanics theory proposed by Stewart Silling
in 2000. The models are built based on the idea of non-local behaviors and
describe the mechanical behaviors of solids by solving spatial integral
equations.

 Because of the superiority on simulating the discontinuous problems, in 
recent years, the PD methods have been widely used in material science, 
human health, electromechanics , and disaster prediction , etc.



Peridynamics Models

 The simulation processes update the state of points by solving the mechanical 
equilibrium equation.

 The strong form of the equation is as follows

ρ 𝒙 �̈� 𝒙, 𝑡 = න 𝑇 𝒙, 𝑡 (𝒒 − 𝒙) − 𝑇 𝒒, 𝑡 (𝒙 − 𝒒) 𝑑𝑉
ு௫

+ 𝑏(𝒙, 𝑡)

 Its discrete equation is as follows

ρ 𝒙 �̈� 𝒙, 𝑡 = (𝑇 𝒙, 𝑡 (𝒒 − 𝒙) − 𝑇 𝒒, 𝑡 (𝒙 − 𝒒)

ு௫

)𝑑𝑉 + 𝑏(𝒙, 𝑡)

 In order to describe the crack initiation, propagation until the failure, the 
concept of local damage of the material point is introduced.

𝐷 𝑥, 𝑡 =
∑ (ଵିఝ(௫,,௧))ௗಹೣ

∑ ௗಹೣ
, where 𝜑 𝑥, 𝑞, 𝑡 = ቊ

1 (𝑠 ≤ 𝑠)
0 (𝑠 > 𝑠)



Sunway TaihuLight

 Sunway TaihuLight consists of 40,960 
SW26010 processors.

 A processor consists of four core groups 
(CGs), each including one Management 
Processing Element (MPE) and 64 
Computing Processor Elements (CPEs). 

 DMA is used by CPEs to exchange data 
with MPE in the same core group

 There are two instruction pipelines in 
each CPE, which enables overlapping 
between memory access instructions and 
computation instructions

SW26010 processor



Challenges to implement PD applications 
on Sunway TaihuLight

 DMA requires the data block more than 128 bytes to make data transaction 
between CPEs and MPE efficient, so the data organization should be adjusted.

 Bandwidth between the CPE and MPE is relatively low compare to the 
compute ability, which will make the simulation become memory-bound.

 Data dependencies and high-latency instructions in bond-based part affect 
the throughput of instruction pipelines. 

 The cost of communication between processes may be obvious when facing 
large-scale simulations



Optimizations
 Memory Access

 Vectorization

 Communication



Memory Access
 Data grouping for DMA

 SPM-based cache



Data grouping for DMA
 In the PD simulation, each point consists of six items: x, y, f, m, c, and d. These data are 

grouped based on the data dependencies of algorithms. For examples x and c are always 
needed together.



SPM-based cache strategy
 Each CPE has a 64 KB scratchpad memory(SPM).

 In the PD simulation, during the calculation between bonds, each point is accessed 
multiple times by CPEs. Performance can be improved if CPEs can read most of the 
required data from the SPM. 



Vectorization
 Error-fixed vectorization for kernel functions

 Optimized instruction scheduling

 Vectorized bond damage flag operations



Error-fixed vectorization for kernel functions
 There are invalid bonds which will be 

calculated between two groups.

 Vfcmple is used to get the flag 
represents whether the interaction is 
valid.

 The affect of invalid bonds can be 
eliminated by multiplying the flag.



Optimized instruction scheduling

 To fully utilize the instruction pipelines, we need optimize the scheduling manually. 

 The throughput can be improved from 3 aspects

 Reduce the data dependencies between instructions by inserting independent instructions 
between two dependent instructions. 

 Unroll the loop because the calculations of the bond is independent except the 
reduction step.

 Reorder the instruction sequence can further reduce the dependencies

 Overlapping the memory access instructions with floating-point instructions

 The computation instructions are much more than the memory access instructions

 Reduce the high-latency instructions

 Refine the calculation algorithms, e.g. replacing the division with multiplying the 
reciprocal of the divisor

 Replace the high-latency instructions (i.e. sqrt, div, rsqrt) with software-implement 
versions



Vectorized bond damage flag operations
 Vectorization of decompression of bond damage flags

 The binary code of 35394 is 1000101001000010



Vectorized bond damage flag operations

 Vectorization of compression of bond damage flags



Overlapping strategies
 Process-level overlapping strategy

 Double buffer-based overlapping strategy



Process-level overlapping strategy
 Overlapping happens between:

 Data exchange and Data packing

 Tasks on MPEs and tasks on CPEs



Double buffer-based overlapping 
strategy
 In order to achieve the overlapping between calculation and DMA, besides the 

SPM-based cache on CPE, we set an additional buffer (namely DMA buffer) to 
store DMA data for next calculation. 

 Cache and DMA buffer form double buffers on CPE.



Performance 
Evaluation



Experiment Setup

Material Elastic

Density 7800.0 kg/m3

Bulk Modulus 130*e9 Pa

Shear Modulus 78*e9 Pa

Critical elongation 0.02

Horizon 0.00417462 m

Timestep 0.26407 us

Start time - End time 0.0 us – 250 us

 The test cases are taken from the examples of Peridigm, which simulates the 
fragment process of a cylinder.

 All test cases are generated by a generator provided by Peridigm.



Experiment Setup



Single Core Group Evaluation

 A speedup of 181.4 times is achieved compared to serial version run on MPE 
when run with the example with 36160 points.

SER: serial version run on 1 
MPE
PAR: parallel version with 
memory access and 
overlapping optimizations
REO: PAR + instruction 
reordering
SOFT IMPLE: REO + software 
implement instructions 
BONDS: Adopt all 
optimizations



Single Core Group Evaluation

Function Total bonds kernel DMA other

(#5)Dilatation 5.636 0.931 4.049 0.502 0.487

(#6)Force 8.097 0.529 6.828 0.611 0.355

Update 0.332 \ 0.012 0.329 0.003

Time taken by each part in a timestep of 
PAR version(msec) 

Function total bonds kernel DMA other

(#5)Dilatation 2.434 0.489 1.361 0.502 0.487

(#6)Force 2.874 0.160 2.069 0.611 0.355

Update 0.332 \ 0.012 0.329 0.003

Time taken by each part in a timestep of 
BONDS version (msec)

 During the compression of bond damage flags, the data dependencies are more 
serious than the decompression, which causes that the acceleration for 
compression is not as good as decompression.



Single Core Group Evaluation

Points 
number

Bonds/ 
point

Cache hit 
ratio (%) 

Time/step
(msec)

Performance
ratio (%)

36160 145 90.31 5.7 18.73

87000 367 96.22 30.06 21.62

141000 332 95.01 44.46 21.43

144640 147 90.47 21.61 20.17

Performance of four examples



Single Core Group Evaluation

Evaluation Platform Scale Frequency Memory

Intel-SER Xeon E5-2680 V3 1 process 2.5GHz 8G

Intel-PAR Xeon E5-2680 V3 1 CPU 2.5GHz 8G

SW-OPT SW26010 1 group 1.45GHz 8G

 We compare our application with Peridigm. 

 Considering the differences in computing power, we choose a computing 
environment with similar power consumption for the application.

 Intel Xeon E5-2680 V3: 120W

 A core group of SW26010: 94W



Single Core Group Evaluation



Scalability Evaluation
 For the weak scaling test:

 The size of points assigned to each process stays constant (i.e., 36160) and the 
number of processes is from 64 to 8192.

 The results show that the parallel efficiency is almost ideal.



Scalability Evaluation
 For the strong scaling test:

 we fix the problem size to 148,111,360 points and execute the example using 
different number of processes (64-4096).

 The parallel efficiency is over 90% when the number of processes scales 64 times.

 The parallel efficiency decreases because of the cache misses happen at the early stage of 
the simulation. The smaller the problem size per process is, the higher the proportion of 
time it takes to read data through DMA at the beginning is.



Conclusion

 Our optimization techniques greatly improve the efficiency of the large-scale 
PD simulation and provide an efficient application on the Sunway TaihuLight. 

 Our work can offer insight into similar applications on other heterogeneous 
manycore platforms.



Future work

 Do larger-scale PD simulations

 Transplant Peridigm to Sunway TaihuLight

 Implement efficient PD simulation software on the GPU cluster



Thanks!
Looking forward to your questions!


