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Cloud resources are shared among multi-tenants

* Cloud providers

o E.g., Amazon AWS, Google Cloud, Microsoft Azure 3 Google Cloud

dWS$s

/ Microsoft
Azure

* Infrastructure-as-a-Service (laaS)
o Virtualization technique, e.g., hypervisor @

= Virtual machines (VMs) VM

o Well isolated resources: CPU, memory pages, etc.

o Shared among all VMs: hardware memory resources ORACLE

CLOUD
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Not all hardware memory resources are well isolated

* Dedicated cache per core, E.g., QP PCle
o L1 and L2 cache

* Cache shared among all the cores,

E.g.,
o Last-level cache (LLC)

o Ring-based bus to interconnect multiple
memory resources

IMC -Memory
Controller
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Memory DoS attacks

e Severe resource contention on the shared
memory resource

o Memory Denial-of-Service (DoS) attack VM1 VM2 VM3

Physical machine

Attacker Victim Victim

* Intentional VM co-location with victim VM
on the same physical machine (PM) Hypervisor

o Achieved using several previous studies in
minutes [1]

o Low cost — less than S8

[1] Zhang Xu, Haining Wang, and Zhenyu Wu. A Measurement Study on Coresidence Threat inside the Cloud. In
Proceedings of USENIX Security Symposium. 929-944, 2015 3/22



Threat model

* Multi-tenancy public clouds
o Memory Denial-of-Service (DoS) attack

* VM co-location with victim VM on the same physical machine (PM)

* The VMs from different tenants on the same machine share one LLC
and several memory buses even with today’s hypervisor techniques
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Memory DoS attacks

* LLC cleansing attack
o Evict LLC lines of other VMs
o Could be worse for inclusive CPUs

* Bus locking attack
o Exotic atomic operations
o Bus lock to block access

* Slowdown distributed applications
(e.g., Hadoop MapReduce) up to 3.7
times [2]

[2] Zhang, Tianwei, Yingian Zhang, and Ruby B. Lee. "Dos attacks on your memory in cloud." Proceedings of the 2017

ACM on Asia Conference on Computer and Communications Security. 2017

QPI

PCle

IMC -Memory

Controller

5/22



Existing solutions

=k

* Monitor cache statistics [2]

E 08

I
* Two-sample Kolmogorov-Smirnov test (KStest) 2 o6

o Determine if two statistics follow the same 2
probability distribution g 04
o real-time statistics (with attack) vs. referenced E 05
statistics (no attack) o

o referenced statistics: throttle all other applications 0
running on a machine ‘

Two-sample Kolmogorov-Smirnov test

° Assumption: fO”OW Certain prOba b|||ty Source:https:.//en.wikipedia.org/wiki/KoImogorov%E
distribution at different times---Not true for all AAEDES3SmIMmOY test
applications

[2] Zhang, Tianwei, Yingian Zhang, and Ruby B. Lee. "Dos attacks on your memory in cloud." Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security. 2017. 6/22


https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

KStest is insufficient for all applications
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Figure 1: KStest results of TeraSort { no attack laun@

Even when there is no attack, the application may not follow the same probability
distribution
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Existing solutions

* VM migration
o Easily co-locate with the victim VM again

* Hardware or software LLC partition
o Waste the LLC resources significantly
o Cannot defeat the memory bus locking attacks

* Focus on attack detection in this paper
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Contributions

* A measurement study of memory DoS attacks
 How do the attacks impact different applications?

* Design of detection schemes

 Performance evaluation to show effectiveness
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Applications and Metrics

* Applications
o Database
o Machine learning and deep learning

o Data-intensive *
’ =Ta/alo p GO /816

o Web search PageRank

* Metrics

 Collect statistics with Processor Counter Monitor (PCM) every interval
* The number of LLC accesses
 The number of LLC misses
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Measurement studies — LLC cleansing attack
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Measurement studies — Bus locking attack
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Design goals

* Irrespective of applications---regardless of statistics distribution
o High accuracy

* Lightweight---low overhead

* Responsive---low detection delay
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Design considerations

* Overall design of the detection scheme:

o Collect real-time cache statistics with processor counter monitor
= Responsive and low overhead

o Use moving average algorithm to smooth the collected sample data
= Handle fluctuations of cache related statistics

o Use a simple and efficient approach to analyze data in real-time
= Low overhead
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General for all applications

* Model the probability distributions of cache related statistics
o E.g., Gaussian Distribution
o Confidence level
o Problem: not general enough for all applications

* Solution: use a model-independent approach
o Chebyshev’s inequality, applied to any probability distributions
o U is the expected value, o is the standard deviation

1
Pr(lX —p| z ko) < 7

* The probability that any samPIe point is greater than the expected
value by +ko is lower than =
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Key rationales
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* Multiple consecutive outliners
(e.g., 30) is likely to be attack

 Tune k based on confidence level
and sensitivity

* Rationale: the memory DoS attacks need to change the cache related
statistics to some degree to degrade the performance
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Enhancing detection accuracy for periodical applications

The number of LLC misses

The number of LLC accesses

g * Observation: prolonged periods
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Evaluation

* Implementation on a server with an Intel CPU---14 cores, 35MB LLC
 KVM hypervisor, 9 VMs: 1 victim, 1 attacker, and 7 benign VMs
* Baseline comparison: KStest

* Metrics

o Accuracy
o Detection delay
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Accuracy — True positive

Our approach: SDS = SDS/B + SDS/P
* Recall: ability to correctly OSDS  EKStest  ESDS/B ESDS/P

1 : 3 5
detect an attack — 0.75 7 i
G 05 37
o 0.25 E i Ef
0 r i
° A” approaChes ShOW h|gh Bayes  SVM  Kmeans PCA  Terabort Aggre Join Scan  PageRank FaceNet
recall Recall for bus locking attack
, .. _0sps OKStest ~ ESDS/B  @SDS/P
) - — 0.75 - /
* High true positives and 3 05 H | H
few false negatives = 0.0 al ’

Bayes  SVM  Kmeans PCA  TeraSort Aggre Join Scan PageRank FaceNet

Recall for LLC cleansing attack
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Accuracy — False negative

Our approach: SDS = SDS/B + SDS/P
E15DS/B 7 SDS/P
h I

 Specificity: ability to { msDs . WKstest -
correctly infer no attack 2 0.75 W ” H ;‘ H
= v HE ; ' :'

a 0.25 317 - :

8% 7 i ﬂ ﬂ W

° O ur a p p roac h o) Ut pe rfo rms Bayes  SVM  Kmeans PE!'!.'. TeraSort  Aggre Join Scan  PageRank FaceNet

KStest on some applications
by 20-65% OSDS  mKStest  @SDS/B  @SDS/P )

Specificity for bus locking attack
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Specificity for LLC cleansing attack
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Detection delay

* Detection delay: the
time to detect an attack

* SDS outperforms KStest
by 3-20 seconds (5-40%)

Our approach: SDS = SDS/B + SDS/P

60 005 miStest DSB8 mSDS/P |
e TER R

=

Bayes SVM  Kmeans PCA TeraSort Aggre  Join Scan  PageRank FaceNet

Detection delay for bus locking attack
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=

Bayes  SVM  Kmeans PCA TeraSort Aggre  Join Scan  PageRank FaceNet

Detection delay for LLC cleansing attack
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Conclusions

* Analyze the insufficiency of previous approaches to detect memory
DoS attacks

e Conduct measurement studies on how memory DoS attacks impact
the cloud applications

* Design lightweight, statistics-based detection schemes to detect
memory DoS attacks accurately and responsively

* Future work: more complex attack scenarios
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