Impact of Memory DoS Attacks on Cloud Applications and Real-Time Detection Schemes

<u>Zhuozhao Li*</u>, University of Chicago

Tanmoy Sen and Haiying Shen, University of Virginia Mooi Choo Chuah, Lehigh University

*Work done when Zhuozhao Li was at the University of Virginia

Cloud resources are shared among multi-tenants

- Cloud providers
 - E.g., Amazon AWS, Google Cloud, Microsoft Azure
- Infrastructure-as-a-Service (laaS)
 - Virtualization technique, e.g., hypervisor
 - Virtual machines (VMs)
 - Well isolated resources: CPU, memory pages, etc.

 $_{\odot}\,$ Shared among all VMs: hardware memory resources

Ŷ

VM

Not all hardware memory resources are well isolated

- Dedicated cache per core, E.g., • L1 and L2 cache
- Cache shared among all the cores, E.g.,
 - Last-level cache (LLC)
 - Ring-based bus to interconnect multiple memory resources

Memory DoS attacks

- Severe resource contention on the shared memory resource
 - Memory Denial-of-Service (DoS) attack
- Intentional VM co-location with victim VM on the same physical machine (PM)
 - Achieved using several previous studies in minutes [1]
 - $_{\odot}\,$ Low cost less than \$8

[1] Zhang Xu, Haining Wang, and Zhenyu Wu. A Measurement Study on Coresidence Threat inside the Cloud. In Proceedings of USENIX Security Symposium. 929–944, 2015

- Multi-tenancy public clouds
 - Memory Denial-of-Service (DoS) attack
- VM co-location with victim VM on the same physical machine (PM)
- The VMs from different tenants on the same machine share one LLC and several memory buses even with today's hypervisor techniques

Memory DoS attacks

- LLC cleansing attack

 Evict LLC lines of other VMs
 Could be worse for inclusive CPUs
- Bus locking attack
 - $_{\circ}$ Exotic atomic operations
 - $_{\circ}\,$ Bus lock to block access
- Slowdown distributed applications (e.g., Hadoop MapReduce) up to 3.7 times [2]

[2] Zhang, Tianwei, Yinqian Zhang, and Ruby B. Lee. "Dos attacks on your memory in cloud." Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. 2017

Existing solutions

- Monitor cache statistics [2]
- Two-sample Kolmogorov-Smirnov test (KStest)
 - Determine if two statistics follow the same probability distribution
 - real-time statistics (with attack) vs. referenced statistics (no attack)
 - referenced statistics: throttle all other applications running on a machine
- Assumption: follow certain probability distribution at different times---Not true for all applications

Two-sample Kolmogorov-Smirnov test

Source:<u>https://en.wikipedia.org/wiki/Kolmogorov%E</u> 2%80%93Smirnov_test

[2] Zhang, Tianwei, Yinqian Zhang, and Ruby B. Lee. "Dos attacks on your memory in cloud." Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. 2017.

KStest is insufficient for all applications

Existing solutions

• VM migration

 $_{\odot}\,$ Easily co-locate with the victim VM again

• Hardware or software LLC partition

- Waste the LLC resources significantly
- Cannot defeat the memory bus locking attacks

• Focus on attack detection in this paper

Contributions

- A measurement study of memory DoS attacks
 - How do the attacks impact different applications?
- Design of detection schemes
- Performance evaluation to show effectiveness

Applications and Metrics

- Applications
 - $_{\circ}$ Database
 - $_{\rm \circ}\,$ Machine learning and deep learning
 - Data-intensive
 - $_{\circ}$ Web search

PageRank

- Metrics
 - Collect statistics with Processor Counter Monitor (PCM) every interval
 - The number of LLC accesses
 - The number of LLC misses

Measurement studies – LLC cleansing attack

Measurement studies – Bus locking attack

- Irrespective of applications---regardless of statistics distribution

 High accuracy
- Lightweight---low overhead
- Responsive---low detection delay

Design considerations

- Overall design of the detection scheme:
 - Collect real-time cache statistics with processor counter monitor
 - Responsive and low overhead
 - Use moving average algorithm to smooth the collected sample data
 - Handle fluctuations of cache related statistics
 - Use a simple and efficient approach to analyze data in real-time
 - Low overhead

General for all applications

- Model the probability distributions of cache related statistics
 - $_{\circ}\,$ E.g., Gaussian Distribution
 - $_{\circ}$ Confidence level
 - **Problem:** not general enough for all applications
- Solution: use a model-independent approach
 - $_{\odot}\,$ Chebyshev's inequality, applied to any probability distributions
 - $\circ \mu$ is the expected value, σ is the standard deviation

$$Pr(|X-\mu| \ge k\sigma) \le \frac{1}{k^2}.$$

• The probability that any sample point is greater than the expected value by $\pm k\sigma$ is lower than $\frac{1}{k^2}$

Key rationales

- Multiple consecutive outliners (e.g., 30) is likely to be attack
- Tune k based on confidence level and sensitivity

• Rationale: the memory DoS attacks need to change the cache related statistics to some degree to degrade the performance

Enhancing detection accuracy for periodical applications

LLC cleansing attack

Bus locking attack

- Observation: prolonged periods for periodical applications
- Period detection
 - Discrete Fourier Transform
 - $_{\rm O}\,$ Auto Correlation Function

- Implementation on a server with an Intel CPU---14 cores, 35MB LLC
- KVM hypervisor, 9 VMs: 1 victim, 1 attacker, and 7 benign VMs
- Baseline comparison: KStest
- Metrics
 - Accuracy
 - $_{\circ}$ Detection delay
 - Performance overhead
 - Sensitivity analysis

Accuracy – True positive

Our approach: SDS = SDS/B + SDS/P

Recall for LLC cleansing attack

19/22

Accuracy – False negative

- Specificity: ability to correctly infer no attack
- Our approach outperforms KStest on some applications by 20-65%
- High true negatives and few false positives

Specificity for bus locking attack

Specificity for LLC cleansing attack

Detection delay

• Detection delay: the time to detect an attack

• SDS outperforms KStest

by 3-20 seconds (5-40%)

Our approach: SDS = SDS/B + SDS/P 60 SDS KStest E SDS/B SDS/P Detection 40 delay (s) 20 0 Kmeans Bayes SVM PCA TeraSort Aggre Join Scan PageRank FaceNet Detection delay for bus locking attack 60 SDS KStest SDS/B SDS/P Detection delay (s) 40 20 0

Bayes

SVM

Kmeans

PCA

Detection delay for LLC cleansing attack

Aggre

Join

Scan

TeraSort

21/22

PageRank FaceNet

- Analyze the insufficiency of previous approaches to detect memory DoS attacks
- Conduct measurement studies on how memory DoS attacks impact the cloud applications
- Design lightweight, statistics-based detection schemes to detect memory DoS attacks accurately and responsively
- Future work: more complex attack scenarios

Questions?

Zhuozhao Li Postdoctoral Scholar University of Chicago zhuozhao@uchicago.edu