A\ .

49th International Conference warwick
on Parallel Processing - ICPP

17-20 August 2020, Edmonton, AB, Canada

\‘\\\
\\
Developing a Loss Prediction-based Asynchronous
Stochastic Gradient Descent Algorithm for Distribute
Training of Deep Neural Networks

Junyu Li%, Ligang He®", Shenyuan Ren?, Rui Mao3
L University of Warwick, Coventry, United Kingdom

2 University of Oxford, Oxford, United Kingdom

3 Shenzhen University, Shenzhen, China

* Corresponding author

d WARWICK

O\

\

Contents WARWICK

** Introduction
** Motivations

+¢ Distributed training with loss compensation
O Workers
U Parameter Server
O Loss Compensation Predictor
O Step Predictor

¢ Experiments
U Results on CIFAR-10
O Results on ImageNet
O Performance of loss predictor and step predictor
O Parameter Server Overhead Analysis

** Conclusion

\

AT

Introduction WARWICK

Deep Neural Network (DNN) has shown significant results in image processing [11.

Increasing trends in Deep Learning:
= Size of training datasets
= Architecture complexity of the neural networks

Limitations in computing infrastructures:
= Central Processing Unit (CPU): less computing capacities
= Graphics Processing Unit (GPU): restricted memory size
= Tensor Processing Unit (TPU): limited generalization
Distributed training DNNs is a promising strategy, because:

= Computing in parallel
= Utilizing abundant computing resources on demand

A\

Introduction WARWICK

* An example of the distributed training system

Parameter Server

n~] -0 2] n~J

8 5 8 5 8 5 8 5

3 2 5 2 5 g 3 2

a a =9 o <9 o =9 a

o) a =) g =) g =) g
GPU GPU GPU GPU GPU GPU GPU GPU
GPU GPU GPU GPU GPU GPU GPU GPU
Worker 1 Worker 2 Worker 3 Worker N

Figure 1. An example of distributed training system

N

Motivations WARWICK

* SGD and popular SGD-based optimizers for distributed training:

> SGD: wipr = wr — 7 Vi, U fuw, (i), Yi) Single machine
1 M 1 b
» SSGD: wepr =we =7 g0) (5) Vallfu (i) yi) Synchronous barrier

Jj=1 i=1

b

> ASGD B4l Witrg1 = Wi — 7 - g% D Vel fu (@), y:) Delayed update

i=1

» DC-ASGD Bl wiiri1 =wiir =7+ (g + Mg ® g ® (wy — wpak(m))) Remarkable work solving
the delay issue in ASGD

Motivations WARWICK

* The delay issue in ASGD

Parameter Server:

R T
| ‘L(xi'yi)l | ﬁ(xj,}’j):
: ! = I
: @ :: g:+1 :
‘e AN /

Worker m Worker n

Figure 2. ASGD weight updating procedure

Motivations WARWICK

e Performance of DC-ASGD with different numbers of workers

10— 2

—e— SGD
— 4 DC-ASGD-4
— A DC-ASGD-8
——4—— DC-ASGD-16

Test Error

5= | | | |]
100 120 140 160

Epoch

Figure 3. Performance of DC-ASGD training ResNet-18 on CIFAR-10 w.r.t. number of workers

Distributed training with loss compensation WARWICK
d We propose LC-ASGD to address the delayed updating problem in
ASGD.
d The trend of loss values during training is modelled as a time series by
a loss predictor.
d We use a step predictor to model delayed steps for the loss predictor.
O We extend regular batch normalization to an asynchronous version to

further improve the performance.

Distributed training with loss compensation WARWICK

* Training processes of each worker

Pull
Algorithm 1 The computations performed by a worker, m parameters

from the
server

Initialize:
statey = {loss : 0,mean : { },var : { },tcomm : Ostcomp : 0},
zZE {1,2, ...,Z}, to, 1

Push Compute a
1: Pull w; from the parameter server at timestamp to gradients to loss and
2: Receive the weights w; at timestamp t; the server start update BN
3: Record the pulling time cost state,, [tcomm] =t — to parameters
4: Compute loss £, = €(fi,(xi), yi)
5. Record the local loss state,, [loss] = €,
6: Store mean y, in each BN layer bn, into state,,[mean]
7. Store variance o in each BN layer bn into state,, [var]
8: Push all recordings state,, to the parameter server
9: Receive loss compensation {4, from the parameter server Iossir;ifthN
at timestamp f, Compute parameters
10: Compute gradient g, = Vo, (£ + A - £gelay), finishing at gradients to the
timestamp £3 server
11: Record computational time cost statem[tcomp] = t3 - t2
12: Push the gradients g, to the parameter server Receive
compensated

loss

Distributed training with loss compensation WARWICK

* Training processes of the parameter server

Send
Pull request parameters to
the worker

Receive a loss and Predict delayed Compensate for
BN parameters step k the loss

Update weights
Receive gradients with the
gradients

Send the loss to
the worker

Update global
BN parameters

Algorithm 2 LC-ASGD: parameter server

Input: learning rate y
Initialize: t = 0, Ep,, . = 0, Vary,_ = 1, wy is initialized randomly,
iter=[],me{1,2,...M},ze {1,2,....Z}
repeat
1: if receive state,, then
2. Append m to iter
3 Predict step k,, =
stepPredictor(m, state, [tcomms, Statem[tcomp), iter)
4 Predict loss £y.]q, for the next ky, steps by
lossPred(state,, [loss], k)
5: Send {ge1qy to worker m
6. Update E; = (1 —d) * E; + d * state,,[mean;]
7. Update Var; = (1 —d) = Var; +d = statem[var:]
8: else if receive gm then
9 Wi+l =Wt —Y *Gm
10: t=t+1
11: else if receive pull request from worker m then
122 Send w; to worker m

13: end if

until forever

Distributed training with loss compensation WARWICK

* Loss predictor

Algorithm 3 LC-ASGD: loss predictor

Input: loss £, (the loss received from worker m), step k,,
Initialize: {; (the latest loss of the network)

1: Train lossPred with (data = {;, label = {1,)

2: predictions = lossPred(data = {m, future = k)

3: Ldelay = sum(predictions)

4: [t = fm
Return: £4¢1qy

Train loss predictor . L
with the latest loss Predict the next k steps Compensate for the Update the training

of loss for worker m loss data of loss predictor
value from worker m

* Step predictor

Algorithm 4 LC-ASGD: step predictor

Input: worker rank m, tcomm, tcomp, iteration recording iter
Initialize: stepy = 0, teomm: teomp» M € {1,2, ..., M}

Train step predictor

Extract the last !) o 1: Extract the last iteration step; of worker m from iter
) ! with worker m status Predict the step k for Update the trainin . .
iteration step for (incl. teration step, computing the work r?1 datrfal of step predictgr 2: Train stepPred with

worker m capacity, communication

oo (data = {stepm,tg'{,mm,tg’(’,mp }, label = step;)

atency
3: kmm = stepPred(data = {stept,tcomm-tcomp }» future =1)
4 Lomm> Liomps St€Pm = tcomm. Tcomp, St€P:

Return: k,,

Experiments WARWICK

v

We evaluated the proposed LC-ASGD on CIFAR-10 and ImageNet
benchmark datasets.

The experiments were carried out on a GPU cluster equipped with NVIDIA
Tesla V100 GPUs.

The hyper-parameters followed the settings in the original works [>:6],

The results demonstrate that LC-ASGD delivers significant results
outperforming other distributed training algorithms.

Experiments WARWICK

* Learning curves of ResNet-18 with Async-BN on CIFAR-10 dataset

[02 T
0.15 |-
I = 22 -
2 e 2
= £
@1 o o
o0 L o0
z o 2L
g E 2
5.1082 [5 3
] & =
= = 3
s 0 0l
| | |
20 20 20
T T T
0.2 |- 0.4 n
" Q2 - [B
0ds |- g 8
= =1 =
£ £
53} 53})
.
¢ il a
0.1 - -
1072 -
| | | |
20 20 20 40 60 80 100 120 40 160
Epoch
HM=16

Figure 4. Error rates of the global model ResNet-18 with Async-BN as the training progresses on CIFAR-10

Experiments WARWICK

e Evaluation results of ResNet-18 on CIFAR-10 dataset

Table 3. Training performance of ResNet-18 on CIFAR-10.

Workers Algorithm CIFAR-10 BN CIFAR-10 Async-BN
Test Error (%) Perf. Deg. (%) Test Error (%) Perf. Deg. (%)
1 SGD 5.15 Baseline 5.15 Baseline
SSGD 5.67 10.10 5.57 8.16
4 ASGD 5.73 11.26 5.65 9.71
DC-ASGD 5.33 3.50 5.22 1.36
LC-ASGD 4.98 -3.3 4.87 -5.44
SSGD 6.19 20.19 6.01 16.70
] ASGD 6.38 23.88 6.27 21.75
DC-ASGD 5.72 11.07 5.58 8.35
LC-ASGD 5.11 -0.78 4.96 -3.69
SSGD 6.41 24.47 6.20 20.39
16 ASGD 6.59 27.96 6.41 24.47
DC-ASGD 6.05 17.48 5.83 13.20

LC-ASGD 5.76 11.84 5.52 7.18

Experiments WARWICK

* Learning curves of ResNet-50 with Async-BN on ImageNet dataset

0.35 [L o035
: :
=
SRS - ms
&0 0
£ £
E =}
025 - - 0@s
= i1
= =
0.2 - | 0.2
60 70 80 90 100 110 120
Epoch
(a) M=4

w
T
°
@
T

Test Error

- Test Error;
8 e
T

2
i
&
T
o
i
T

Figure 5. Error rates of the global model ResNet-50 with Async-BN as the training progresses on ImageNet

Experiments

* Evaluation results of ResNet-50 on ImageNet dataset

Table 4. Training performance of ResNet-50 on ImageNet.

Workers Algorithm ImageNet BN ImageNet Async-BN
Test Error (%) Perf. Deg. (%) Test Error (%) Perf. Deg. (%)
SSGD 24.61 Baseline 24.49 Baseline
4 ASGD 24.99 1.54 24.90 1.67
DC-ASGD 24.53 -0.33 24.46 -0.12
LC-ASGD 2391 -2.84 23.86 -2.57
SSGD 25.24 2.56 25.11 2.53
3 ASGD 25.71 4.47 25.64 4.70
DC-ASGD 25.98 5.57 24.89 1.63
LC-ASGD 24.17 -1.79 24.07 -1.71
SSGD 25.80 4.84 25.62 4.61
16 ASGD 25.96 5.49 25.81 5.39
DC-ASGD 25.41 3.25 25.23 3.02
LC-ASGD 24.99 1.54 24.82 1.35

WARWICK

Experiments WARWICK

Performance of the loss predictor and the step predictor

3.18
Loss 20 Finishing Order | |
Loss Predictor Step Predictor
3.17
v 15 "‘
=
< / \ Il
. & o\ I
Q 3.16 8 10 ‘ [\ ‘
— e~ \ /
<} N |
g I | | |
3.15 5 | } ‘ V " \
\
| | | | 0 | | | | |
0 20 40

Iteration

Figure 6. Performance of the loss predictor for ResNet-50 w.r.t.

80

number of iterations on ImageNet training with 16 workers

Iteration

Figure 7. Performance of the step predictor for ResNet-50 w.r.t.
number of iterations on ImageNet training with 16 workers

O\

\

Experiments WARWICK

e Overhead analysis of training on CIFAR-10 and ImageNet

Table 5. Average time of a training iteration on CIFAR-10. Table 6. Average time of a training iteration on ImageNet.
Workers 4 8 16 # Workers 4 8 16
Loss Pred. (ms) 1.28 1.29 1.30 Loss Pred. (ms) 1.27 1.29 1.33
Step Pred. (ms) 1.37 1.43 1.48 Step Pred. (ms) 1.36 1.45 1.50
Total Training (ms) 32.23 32.84 34.64 Total Training (ms) 183.23 185.68 188.71

Overhead (%) 822 828 8.03 Overhead (%) 1.44 1.48 1.50

N
_‘\\\
\
\\
\

Conclusion WARWICK

+** In this work, we discussed:

U The issue of synchronization barrier in SSGD
U The delayed gradient updating in ASGD
U The limitation of DC-ASGD

** We proposed a novel distributed training algorithm with following
components:

O Workers

U Parameter server with asynchronous batch normalization
U Loss predictor

U Step predictor

+* Experiment results show that our LC-ASGD delivers outstanding accuracy
compared with other algorithms.

\

References WARWICK

1. LeCun,Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature, 521(7553), pp.436-444.

Sovrasov, V., 2020. Sovrasov/Flops-Counter.Pytorch. [online] GitHub. Available at:
<https://github.com/sovrasov/flops-counter.pytorch> [Accessed 6 August 2020].

3. Dean, ., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M.A., Senior, A,
Tucker, P., Yang, K. and Le, Q.V., 2012. Large scale distributed deep networks. In Advances in
neural information processing systems (pp. 1223-1231).

4. Srinivasan, A., Jain, A. and Barekatain, P., 2018. An analysis of the delayed gradients problem
in asynchronous sgd.

5. Zheng, S., Meng, Q., Wang, T., Chen, W., Yu, N., Ma, Z.M. and Liu, T.Y., 2017, July.
Asynchronous stochastic gradient descent with delay compensation. In International
Conference on Machine Learning (pp. 4120-4129).

6. He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-
778).

\ Y

IIIIIIIQNIIIIIIIIIIIII."IIII

WARWICK

Thank you!

