

49th International Conference on Parallel Processing - ICPP

WARWICK

17-20 August 2020, Edmonton, AB, Canada

Developing a Loss Prediction-based Asynchronous Stochastic Gradient Descent Algorithm for Distributed WARWICK **Training of Deep Neural Networks**

Junyu Li¹, Ligang He^{1*}, Shenyuan Ren², Rui Mao³

¹ University of Warwick, Coventry, United Kingdom

² University of Oxford, Oxford, United Kingdom

³ Shenzhen University, Shenzhen, China

* Corresponding author

Contents

Introduction

Motivations

Distributed training with loss compensation

- Workers
- Parameter Server
- □ Loss Compensation Predictor
- Step Predictor

Experiments

- □ Results on CIFAR-10
- Results on ImageNet
- □ Performance of loss predictor and step predictor
- □ Parameter Server Overhead Analysis
- Conclusion

Introduction

- Deep Neural Network (DNN) has shown significant results in image processing^[1].
- Increasing trends in Deep Learning:
 - Size of training datasets
 - Architecture complexity of the neural networks
- Limitations in computing infrastructures:
 - Central Processing Unit (CPU): less computing capacities
 - Graphics Processing Unit (GPU): restricted memory size
 - Tensor Processing Unit (TPU): limited generalization
- Distributed training DNNs is a promising strategy, because:
 - Computing in parallel
 - Utilizing abundant computing resources on demand

Introduction

• An example of the distributed training system

Figure 1. An example of distributed training system

Motivations

• SGD and popular SGD-based optimizers for distributed training:

 $\blacktriangleright \text{ SGD:} \qquad \qquad \omega_{t+1} = \omega_t - \gamma \cdot \nabla_{\omega_t} \ell(f_{\omega_t}(x_i), y_i)$

Single machine

SSGD:
$$\omega_{t+1} = \omega_t - \gamma \cdot \frac{1}{M} \cdot \sum_{j=1}^{M} (\frac{1}{b} \sum_{i=1}^{b} \nabla_{\omega_t} \ell(f_{\omega_t}(x_{i,j}), y_{i,j}))$$
 Synchronous barrier

> ASGD ^[3,4]:
$$\omega_{t+\tau+1} = \omega_{t+\tau} - \gamma \cdot g \frac{1}{b} \sum_{i=1}^{b} \nabla_{\omega_t} \ell(f_{\omega_t}(x_i), y_i)$$
 Delayed update

$$\blacktriangleright \quad \mathsf{DC-ASGD}^{[5]}: \quad \omega_{t+\tau+1} = \omega_{t+\tau} - \gamma \cdot (g_m + \lambda_t g_m \otimes g_m \otimes (w_t - w_{bak}(m)))$$

Remarkable work solving the delay issue in ASGD

Motivations

• The delay issue in ASGD

Parameter Server:

Figure 2. ASGD weight updating procedure

Motivations

• Performance of DC-ASGD with different numbers of workers

Figure 3. Performance of DC-ASGD training ResNet-18 on CIFAR-10 w.r.t. number of workers

Distributed training with loss compensation

- We propose LC-ASGD to address the delayed updating problem in ASGD.
- The trend of loss values during training is modelled as a time series by a loss predictor.
- U We use a **step predictor** to model delayed steps for the loss predictor.
- ❑ We extend regular **batch normalization** to an **asynchronous** version to further improve the performance.

Distributed training with loss compensation

Training processes of each worker

Algorithm 1 The computations performed by a worker, *m*

Initialize:

 $\begin{aligned} state_m &= \{loss: 0, mean: \{ \}, var: \{ \}, t_{comm}: 0, t_{comp}: 0 \}, \\ z &\in \{1, 2, ..., Z\}, t_0, t_1 \end{aligned}$

- 1: Pull w_t from the parameter server at timestamp t_0
- 2: Receive the weights w_t at timestamp t_1

3: Record the pulling time cost
$$state_m[t_{comm}] = t_1 - t_0$$

- 4: Compute loss $\ell_m = \ell(f_{w_t}(x_i), y_i)$
- 5: Record the local loss $state_m[loss] = \ell_m$
- 6: Store mean μ_z in each BN layer bn_z into $state_m[mean]$
- 7: Store variance σ_z in each BN layer bn_z into $state_m[var]$
- 8: Push all recordings *state*_m to the parameter server
- Receive loss compensation l_{delay} from the parameter server at timestamp t₂
- 10: Compute gradient $g_m = \nabla_{w_t}(\ell_m + \lambda \cdot \ell_{delay})$, finishing at timestamp t_3
- 11: Record computational time cost $state_m[t_{comp}] = t_3 t_2$
- 12: Push the gradients g_m to the parameter server

Distributed training with loss compensation

• Training processes of the parameter server

Algorithm 2 LC-ASGD: parameter server
Input: learning rate γ
Initialize : $t = 0, E_{bn_z} = 0, Var_{bn_z} = 1, w_0$ is initialized randomly
<i>iter</i> = [], $m \in \{1, 2,, M\}, z \in \{1, 2,, Z\}$
repeat
1: if receive <i>state_m</i> then
2: Append <i>m</i> to <i>iter</i>
3: Predict step $k_m =$
$stepPredictor(m, state_m[t_{comm}, state_m[t_{comp}], iter)$
4: Predict loss ℓ_{delay} for the next k_m steps by
$lossPred(state_m[loss], k)$
5: Send ℓ_{delay} to worker m
6: Update $E_z = (1 - d) * E_z + d * state_m[mean_z]$
7: Update $Var_z = (1 - d) * Var_z + d * state_m[var_z]$
8: else if receive g_m then
9: $w_{t+1} = w_t - \gamma \cdot g_m$
10: $t = t + 1$
11: else if receive pull request from worker <i>m</i> then
12: Send w_t to worker m
13: end if

until forever

Distributed training with loss compensation

Algorithm 3 LC-ASGD: loss predictor Input: loss ℓ_m (the loss received from worker m), step k_m Initialize: ℓ_t (the latest loss of the network) 1: Train lossPred with (data = ℓ_t , label = ℓ_m) 2: predictions = lossPred(data = ℓ_m , future = k)

3: $\ell_{delay} = sum(predictions)$ 4: $\ell_t = \ell_m$

Return: *l*_{delay}

Algorithm 4 LC-ASGD: step predictor

Input: worker rank m, t_{comm} , t_{comp} , iteration recording *iter* **Initialize**: $step_m = 0$, t_{comm}^m , t_{comp}^m , $m \in \{1, 2, ..., M\}$

- 1: Extract the last iteration $step_t$ of worker *m* from *iter*
- 2: Train stepPred with
 - $(data = \{step_m, t^m_{comm}, t^m_{comp}\}, \ label = step_t)$
- 3: $k_m = stepPred(data = \{step_t, t_{comm}, t_{comp}\}, future = 1)$
- 4: t_{comm}^m , t_{comp}^m , $step_m = t_{comm}$, t_{comp} , $step_t$

Return: k_m

Experiments

- ✓ We evaluated the proposed LC-ASGD on CIFAR-10 and ImageNet benchmark datasets.
- ✓ The experiments were carried out on a GPU cluster equipped with NVIDIA Tesla V100 GPUs.
- \checkmark The hyper-parameters followed the settings in the original works ^[5,6].
- ✓ The results demonstrate that LC-ASGD delivers significant results outperforming other distributed training algorithms.

Experiments

• Learning curves of ResNet-18 with Async-BN on CIFAR-10 dataset

Figure 4. Error rates of the global model ResNet-18 with Async-BN as the training progresses on CIFAR-10

Experiments

• Evaluation results of ResNet-18 on CIFAR-10 dataset

# Workers	Algorithm	CIFAR-10 BN		CIFAR-10 Async-BN	
		Test Error (%)	Perf. Deg. (%)	Test Error (%)	Perf. Deg. (%)
1	SGD	5.15	Baseline	5.15	Baseline
4	SSGD	5.67	10.10	5.57	8.16
	ASGD	5.73	11.26	5.65	9.71
	DC-ASGD	5.33	3.50	5.22	1.36
	LC-ASGD	4.98	-3.3	4.87	-5.44
8	SSGD	6.19	20.19	6.01	16.70
	ASGD	6.38	23.88	6.27	21.75
	DC-ASGD	5.72	11.07	5.58	8.35
	LC-ASGD	5.11	-0.78	4.96	-3.69
16	SSGD	6.41	24.47	6.20	20.39
	ASGD	6.59	27.96	6.41	24.47
	DC-ASGD	6.05	17.48	5.83	13.20
	LC-ASGD	5.76	11.84	5.52	7.18

Table 3. Training performance of ResNet-18 on CIFAR-10.

Experiments

• Learning curves of ResNet-50 with Async-BN on ImageNet dataset

Figure 5. Error rates of the global model ResNet-50 with Async-BN as the training progresses on ImageNet

Experiments

• Evaluation results of ResNet-50 on ImageNet dataset

# Workers	Algorithm	ImageNet BN		ImageNet Async-BN	
		Test Error (%)	Perf. Deg. (%)	Test Error (%)	Perf. Deg. (%)
4	SSGD	24.61	Baseline	24.49	Baseline
	ASGD	24.99	1.54	24.90	1.67
	DC-ASGD	24.53	-0.33	24.46	-0.12
	LC-ASGD	23.91	-2.84	23.86	-2.57
8	SSGD	25.24	2.56	25.11	2.53
	ASGD	25.71	4.47	25.64	4.70
	DC-ASGD	25.98	5.57	24.89	1.63
	LC-ASGD	24.17	-1.79	24.07	-1.71
16	SSGD	25.80	4.84	25.62	4.61
	ASGD	25.96	5.49	25.81	5.39
	DC-ASGD	25.41	3.25	25.23	3.02
	LC-ASGD	24.99	1.54	24.82	1.35

Table 4. Training performance of ResNet-50 on ImageNet.

Experiments

• Performance of the loss predictor and the step predictor

Figure 6. Performance of the loss predictor for ResNet-50 w.r.t. number of iterations on ImageNet training with 16 workers

Experiments

Overhead analysis of training on CIFAR-10 and ImageNet

# Workers	4	8	16
Loss Pred. (ms)	1.28	1.29	1.30
Step Pred. (ms)	1.37	1.43	1.48
Total Training (ms)	32.23	32.84	34.64
Overhead (%)	8.22	8.28	8.03

Table 5. Average time of a training iteration on CIFAR-10.

# Workers	4	8	16
Loss Pred. (ms)	1.27	1.29	1.33
Step Pred. (ms)	1.36	1.45	1.50
Total Training (ms)	183.23	185.68	188.71
Overhead (%)	1.44	1.48	1.50

Table 6. Average time of a training iteration on ImageNet.

Conclusion

In this work, we discussed:

- □ The issue of synchronization barrier in SSGD
- □ The delayed gradient updating in ASGD
- □ The limitation of DC-ASGD
- We proposed a novel distributed training algorithm with following components:
 - □ Workers
 - Parameter server with asynchronous batch normalization
 - Loss predictor
 - □ Step predictor
- Experiment results show that our LC-ASGD delivers outstanding accuracy compared with other algorithms.

References

- 1. LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. *Nature*, 521(7553), pp.436-444.
- 2. Sovrasov, V., 2020. *Sovrasov/Flops-Counter.Pytorch*. [online] GitHub. Available at: https://github.com/sovrasov/flops-counter.pytorch> [Accessed 6 August 2020].
- 3. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M.A., Senior, A., Tucker, P., Yang, K. and Le, Q.V., 2012. Large scale distributed deep networks. *In Advances in neural information processing systems* (pp. 1223-1231).
- 4. Srinivasan, A., Jain, A. and Barekatain, P., 2018. An analysis of the delayed gradients problem in asynchronous sgd.
- 5. Zheng, S., Meng, Q., Wang, T., Chen, W., Yu, N., Ma, Z.M. and Liu, T.Y., 2017, July. Asynchronous stochastic gradient descent with delay compensation. *In International Conference on Machine Learning* (pp. 4120-4129).
- 6. He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. *In Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 770-778).

Thank you!