
49th International Conference
on Parallel Processing - ICPP
17-20 August 2020, Edmonton, AB, Canada

Developing a Loss Prediction-based Asynchronous
Stochastic Gradient Descent Algorithm for Distributed
Training of Deep Neural Networks
Junyu Li1, Ligang He1*, Shenyuan Ren2, Rui Mao3

1 University of Warwick, Coventry, United Kingdom
2 University of Oxford, Oxford, United Kingdom
3 Shenzhen University, Shenzhen, China
* Corresponding author

Contents
v Introduction
v Motivations
v Distributed training with loss compensation

q Workers
q Parameter Server
q Loss Compensation Predictor
q Step Predictor

v Experiments
q Results on CIFAR-10
q Results on ImageNet
q Performance of loss predictor and step predictor
q Parameter Server Overhead Analysis

v Conclusion

Introduction
• Deep Neural Network (DNN) has shown significant results in image processing [1].
• Increasing trends in Deep Learning:

§ Size of training datasets
§ Architecture complexity of the neural networks

• Limitations in computing infrastructures:
§ Central Processing Unit (CPU): less computing capacities
§ Graphics Processing Unit (GPU): restricted memory size
§ Tensor Processing Unit (TPU): limited generalization

• Distributed training DNNs is a promising strategy, because:
§ Computing in parallel
§ Utilizing abundant computing resources on demand

Introduction
• An example of the distributed training system

Parameter Server

GPU GPU

GPU GPU

U
pd
at
es

Param
eters

Worker 1

GPU GPU

GPU GPU

U
pd
at
es

Worker 2

GPU GPU

GPU GPU

U
pd
at
es

Worker N

GPU GPU

GPU GPU
U
pd
at
es

Worker 3

…

Figure 1. An example of distributed training system

Param
eters

Param
eters

Param
eters

Motivations
• SGD and popular SGD-based optimizers for distributed training:

Ø SGD:

Ø SSGD:

Ø ASGD [3,4]:

Ø DC-ASGD [5]:

!t+1 = !t � � ·r!t`(f!t(xi), yi)

!t+⌧+1 = !t+⌧ � � · g 1
b

bX

i=1

r!t`(f!t(xi), yi)

!t+⌧+1 = !t+⌧ � � · (gm + �tgm ⌦ gm ⌦ (wt � wbak(m)))

!t+1 = !t � � · 1

M
·

MX

j=1

(
1

b

bX

i=1

r!t`(f!t(xi,j), yi,j))

Single machine

Synchronous barrier

Delayed update

Remarkable work solving
the delay issue in ASGD

Motivations
• The delay issue in ASGD

Parameter Server:

Worker m

!"

#"

!"$% !"$&

#"$%

!"$&$%

((), +))((-, +-)

Worker n

Figure 2. ASGD weight updating procedure

Motivations
• Performance of DC-ASGD with different numbers of workers

Figure 3. Performance of DC-ASGD training ResNet-18 on CIFAR-10 w.r.t. number of workers

100 120 140 160

5

6

7

·10�2

Epoch

Te
st

Er
ro

r
SGD

DC-ASGD-4

DC-ASGD-8

DC-ASGD-16

Distributed training with loss compensation

q We propose LC-ASGD to address the delayed updating problem in
ASGD.

q The trend of loss values during training is modelled as a time series by
a loss predictor.

q We use a step predictor to model delayed steps for the loss predictor.

q We extend regular batch normalization to an asynchronous version to
further improve the performance.

Distributed training with loss compensation

• Training processes of each worker
Pull

parameters
from the

server

Compute a
loss and

update BN
parameters

Send the
loss and BN
parameters

to the
server

Receive
compensated

loss

Compute
gradients

Push
gradients to
the server Start

Distributed training with loss compensation

• Training processes of the parameter server

Pull request
Send

parameters to
the worker

Receive a loss and
BN parameters

Predict delayed
step k

Compensate for
the loss

Send the loss to
the worker

Update global
BN parameters

Receive gradients
Update weights

with the
gradients

Distributed training with loss compensation

• Loss predictor

Train loss predictor
with the latest loss

value from worker m

Predict the next k steps
of loss for worker m

Compensate for the
loss

Update the training
data of loss predictor

• Step predictor

Extract the last
iteration step for

worker m

Train step predictor
with worker m status

(incl. iteration step, computing
capacity, communication

latency)

Predict the step k for
the work m

Update the training
data of step predictor

Experiments
ü We evaluated the proposed LC-ASGD on CIFAR-10 and ImageNet

benchmark datasets.

ü The experiments were carried out on a GPU cluster equipped with NVIDIA
Tesla V100 GPUs.

ü The hyper-parameters followed the settings in the original works [5,6].

ü The results demonstrate that LC-ASGD delivers significant results
outperforming other distributed training algorithms.

Experiments
• Learning curves of ResNet-18 with Async-BN on CIFAR-10 dataset

20 40 60 80 100 120 140 160

0

5 · 10�2

0.1

0.15

Epoch

T
ra

in
in

g
E

rr
or

SGD

SSGD

ASGD

DC-ASGD

LC-ASGD

(a) M = 4

20 40 60 80 100 120 140 160

0

0.1

0.2

Epoch

T
ra

in
in

g
E

rr
or

(b) M = 8

20 40 60 80 100 120 140 160

0

0.1

0.2

Epoch

T
ra

in
in

g
E

rr
or

(c) M = 16

20 40 60 80 100 120 140 160

5 · 10�2

0.1

0.15

0.2

Epoch

T
es

t
E

rr
or

(d) M = 4

20 40 60 80 100 120 140 160

0.1

0.2

Epoch

T
es

t
E

rr
or

(e) M = 8

20 40 60 80 100 120 140 160

0.1

0.2

0.3

0.4

Epoch

T
es

t
E

rr
or

(f) M = 16

Figure 4. Error rates of the global model ResNet-18 with Async-BN as the training progresses on CIFAR-10

Experiments
• Evaluation results of ResNet-18 on CIFAR-10 dataset

Workers Algorithm CIFAR-10 BN CIFAR-10 Async-BN

Test Error (%) Perf. Deg. (%) Test Error (%) Perf. Deg. (%)

1 SGD 5.15 Baseline 5.15 Baseline

4

SSGD 5.67 10.10 5.57 8.16
ASGD 5.73 11.26 5.65 9.71

DC-ASGD 5.33 3.50 5.22 1.36
LC-ASGD 4.98 -3.3 4.87 -5.44

8

SSGD 6.19 20.19 6.01 16.70
ASGD 6.38 23.88 6.27 21.75

DC-ASGD 5.72 11.07 5.58 8.35
LC-ASGD 5.11 -0.78 4.96 -3.69

16

SSGD 6.41 24.47 6.20 20.39
ASGD 6.59 27.96 6.41 24.47

DC-ASGD 6.05 17.48 5.83 13.20
LC-ASGD 5.76 11.84 5.52 7.18

Table 3. Training performance of ResNet-18 on CIFAR-10.

Experiments
• Learning curves of ResNet-50 with Async-BN on ImageNet dataset

60 70 80 90 100 110 120

0.2

0.25

0.3

0.35

Epoch

T
ra

in
in

g
E

rr
or

SSGD

ASGD

DC-ASGD

LC-ASGD

(a) M = 4

60 70 80 90 100 110 120

0.2

0.25

0.3

0.35

Epoch

T
ra

in
in

g
E

rr
or

(b) M = 8

60 70 80 90 100 110 120

0.2

0.25

0.3

0.35

0.4

Epoch

T
ra

in
in

g
E

rr
or

(c) M = 16

60 70 80 90 100 110 120

0.25

0.3

Epoch

T
es

tE
rr

or

(d) M = 4

60 70 80 90 100 110 120

0.25

0.3

0.35

Epoch

T
es

tE
rr

or

(e) M = 8

60 70 80 90 100 110 120

0.25

0.3

0.35

Epoch

T
es

tE
rr

or

(f) M = 16

Figure 5. Error rates of the global model ResNet-50 with Async-BN as the training progresses on ImageNet

Experiments
• Evaluation results of ResNet-50 on ImageNet dataset

Workers Algorithm ImageNet BN ImageNet Async-BN

Test Error (%) Perf. Deg. (%) Test Error (%) Perf. Deg. (%)

4

SSGD 24.61 Baseline 24.49 Baseline
ASGD 24.99 1.54 24.90 1.67

DC-ASGD 24.53 -0.33 24.46 -0.12
LC-ASGD 23.91 -2.84 23.86 -2.57

8

SSGD 25.24 2.56 25.11 2.53
ASGD 25.71 4.47 25.64 4.70

DC-ASGD 25.98 5.57 24.89 1.63
LC-ASGD 24.17 -1.79 24.07 -1.71

16

SSGD 25.80 4.84 25.62 4.61
ASGD 25.96 5.49 25.81 5.39

DC-ASGD 25.41 3.25 25.23 3.02
LC-ASGD 24.99 1.54 24.82 1.35

Table 4. Training performance of ResNet-50 on ImageNet.

Experiments
• Performance of the loss predictor and the step predictor

0 20 40 60 80

3.15

3.16

3.17

3.18

Iteration

Lo
ss

Loss

Loss Predictor

0 20 40 60 80
0

5

10

15

20

Iteration

W
o

rk
e
r

R
a
n

k

Finishing Order

Step Predictor

Figure 6. Performance of the loss predictor for ResNet-50 w.r.t.
number of iterations on ImageNet training with 16 workers

Figure 7. Performance of the step predictor for ResNet-50 w.r.t.
number of iterations on ImageNet training with 16 workers

Experiments
• Overhead analysis of training on CIFAR-10 and ImageNet

Workers 4 8 16

Loss Pred. (ms) 1.28 1.29 1.30

Step Pred. (ms) 1.37 1.43 1.48

Total Training (ms) 32.23 32.84 34.64

Overhead (%) 8.22 8.28 8.03

Workers 4 8 16

Loss Pred. (ms) 1.27 1.29 1.33

Step Pred. (ms) 1.36 1.45 1.50

Total Training (ms) 183.23 185.68 188.71

Overhead (%) 1.44 1.48 1.50

Table 5. Average time of a training iteration on CIFAR-10. Table 6. Average time of a training iteration on ImageNet.

Conclusion
v In this work, we discussed:

q The issue of synchronization barrier in SSGD
q The delayed gradient updating in ASGD
q The limitation of DC-ASGD

v We proposed a novel distributed training algorithm with following
components:

q Workers
q Parameter server with asynchronous batch normalization
q Loss predictor
q Step predictor

v Experiment results show that our LC-ASGD delivers outstanding accuracy
compared with other algorithms.

References
1. LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature, 521(7553), pp.436-444.
2. Sovrasov, V., 2020. Sovrasov/Flops-Counter.Pytorch. [online] GitHub. Available at:

<https://github.com/sovrasov/flops-counter.pytorch> [Accessed 6 August 2020].
3. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M.A., Senior, A.,

Tucker, P., Yang, K. and Le, Q.V., 2012. Large scale distributed deep networks. In Advances in
neural information processing systems (pp. 1223-1231).

4. Srinivasan, A., Jain, A. and Barekatain, P., 2018. An analysis of the delayed gradients problem
in asynchronous sgd.

5. Zheng, S., Meng, Q., Wang, T., Chen, W., Yu, N., Ma, Z.M. and Liu, T.Y., 2017, July.
Asynchronous stochastic gradient descent with delay compensation. In International
Conference on Machine Learning (pp. 4120-4129).

6. He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-
778).

Thank you!

