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Introduction
• Deep Neural Network (DNN) has shown significant results in image processing [1].
• Increasing trends in Deep Learning:

§ Size of training datasets
§ Architecture complexity of the neural networks

• Limitations in computing infrastructures:
§ Central Processing Unit (CPU): less computing capacities
§ Graphics Processing Unit (GPU): restricted memory size
§ Tensor Processing Unit (TPU): limited generalization

• Distributed training DNNs is a promising strategy, because:
§ Computing in parallel
§ Utilizing abundant computing resources on demand



Introduction
• An example of the distributed training system
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Figure 1. An example of distributed training system
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Motivations
• SGD and popular SGD-based optimizers for distributed training:

Ø SGD: 

Ø SSGD:

Ø ASGD [3,4]:

Ø DC-ASGD [5]:
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Motivations
• The delay issue in ASGD
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Figure 2. ASGD weight updating procedure



Motivations
• Performance of DC-ASGD with different numbers of workers

Figure 3. Performance of DC-ASGD training ResNet-18 on CIFAR-10 w.r.t. number of workers
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Distributed training with loss compensation

q We propose LC-ASGD to address the delayed updating problem in 
ASGD.

q The trend of loss values during training is modelled as a time series by 
a loss predictor.

q We use a step predictor to model delayed steps for the loss predictor.

q We extend regular batch normalization to an asynchronous version to 
further improve the performance.



Distributed training with loss compensation

• Training processes of each worker
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Distributed training with loss compensation

• Training processes of the parameter server
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Distributed training with loss compensation

• Loss predictor

Train loss predictor 
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Experiments
ü We evaluated the proposed LC-ASGD on CIFAR-10 and ImageNet 

benchmark datasets.

ü The experiments were carried out on a GPU cluster equipped with NVIDIA 
Tesla V100 GPUs.

ü The hyper-parameters followed the settings in the original works [5,6].

ü The results demonstrate that LC-ASGD delivers significant results 
outperforming other distributed training algorithms.



Experiments
• Learning curves of ResNet-18 with Async-BN on CIFAR-10 dataset

20 40 60 80 100 120 140 160

0

5 · 10�2

0.1

0.15

Epoch

T
ra

in
in

g
E

rr
or

SGD

SSGD

ASGD

DC-ASGD

LC-ASGD

(a) M = 4

20 40 60 80 100 120 140 160

0

0.1

0.2

Epoch

T
ra

in
in

g
E

rr
or

(b) M = 8

20 40 60 80 100 120 140 160

0

0.1

0.2

Epoch

T
ra

in
in

g
E

rr
or

(c) M = 16

20 40 60 80 100 120 140 160

5 · 10�2

0.1

0.15

0.2

Epoch

T
es

t
E

rr
or

(d) M = 4

20 40 60 80 100 120 140 160

0.1

0.2

Epoch

T
es

t
E

rr
or

(e) M = 8

20 40 60 80 100 120 140 160

0.1

0.2

0.3

0.4

Epoch

T
es

t
E

rr
or

(f) M = 16

Figure 4. Error rates of the global model ResNet-18 with Async-BN as the training progresses on CIFAR-10



Experiments
• Evaluation results of ResNet-18 on CIFAR-10 dataset

# Workers Algorithm CIFAR-10 BN CIFAR-10 Async-BN

Test Error (%) Perf. Deg. (%) Test Error (%) Perf. Deg. (%)

1 SGD 5.15 Baseline 5.15 Baseline

4

SSGD 5.67 10.10 5.57 8.16
ASGD 5.73 11.26 5.65 9.71

DC-ASGD 5.33 3.50 5.22 1.36
LC-ASGD 4.98 -3.3 4.87 -5.44

8

SSGD 6.19 20.19 6.01 16.70
ASGD 6.38 23.88 6.27 21.75

DC-ASGD 5.72 11.07 5.58 8.35
LC-ASGD 5.11 -0.78 4.96 -3.69

16

SSGD 6.41 24.47 6.20 20.39
ASGD 6.59 27.96 6.41 24.47

DC-ASGD 6.05 17.48 5.83 13.20
LC-ASGD 5.76 11.84 5.52 7.18

Table 3. Training performance of ResNet-18 on CIFAR-10.



Experiments
• Learning curves of ResNet-50 with Async-BN on ImageNet dataset
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Figure 5. Error rates of the global model ResNet-50 with Async-BN as the training progresses on ImageNet



Experiments
• Evaluation results of ResNet-50 on ImageNet dataset

# Workers Algorithm ImageNet BN ImageNet Async-BN

Test Error (%) Perf. Deg. (%) Test Error (%) Perf. Deg. (%)

4

SSGD 24.61 Baseline 24.49 Baseline
ASGD 24.99 1.54 24.90 1.67

DC-ASGD 24.53 -0.33 24.46 -0.12
LC-ASGD 23.91 -2.84 23.86 -2.57

8

SSGD 25.24 2.56 25.11 2.53
ASGD 25.71 4.47 25.64 4.70

DC-ASGD 25.98 5.57 24.89 1.63
LC-ASGD 24.17 -1.79 24.07 -1.71

16

SSGD 25.80 4.84 25.62 4.61
ASGD 25.96 5.49 25.81 5.39

DC-ASGD 25.41 3.25 25.23 3.02
LC-ASGD 24.99 1.54 24.82 1.35

Table 4. Training performance of ResNet-50 on ImageNet. 



Experiments
• Performance of the loss predictor and the step predictor
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Figure 6. Performance of the loss predictor for ResNet-50 w.r.t.
number of iterations on ImageNet training with 16 workers

Figure 7. Performance of the step predictor for ResNet-50 w.r.t.
number of iterations on ImageNet training with 16 workers



Experiments
• Overhead analysis of training on CIFAR-10 and ImageNet

# Workers 4 8 16

Loss Pred. (ms) 1.28 1.29 1.30

Step Pred. (ms) 1.37 1.43 1.48

Total Training (ms) 32.23 32.84 34.64

Overhead (%) 8.22 8.28 8.03

# Workers 4 8 16

Loss Pred. (ms) 1.27 1.29 1.33

Step Pred. (ms) 1.36 1.45 1.50

Total Training (ms) 183.23 185.68 188.71

Overhead (%) 1.44 1.48 1.50

Table 5. Average time of a training iteration on CIFAR-10. Table 6. Average time of a training iteration on ImageNet.



Conclusion
v In this work, we discussed:

q The issue of synchronization barrier in SSGD
q The delayed gradient updating in ASGD
q The limitation of DC-ASGD

v We proposed a novel distributed training algorithm with following 
components:

q Workers
q Parameter server with asynchronous batch normalization
q Loss predictor
q Step predictor

v Experiment results show that our LC-ASGD delivers outstanding accuracy 
compared with other algorithms.
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