
Chris Kjellqvist, Mohammad Hedayati, Michael Scott

Safe, Fast Sharing of memcached as a
Protected Library

ICPP 2020

Motivation
• Memcached is a distributed data cache very commonly used by datacenter & e-

commerce apps

• Does this by caching data normally stored to disk and reducing the cost of access

• Memcached operates as an independent process that can be queried from other
processes either on or off the current node

• Queries are made by message passing over sockets

• Sockets are necessary for communication across nodes, but very wasteful when

communicating with a process on the same node

1

Motivation
Sockets

• Applications that require inter-process communication usually do so by message passing
interfaces (ie sockets/pipes)

• Separate process performs request for user process. Table data is in a separate address
space from the user process

User Memcached
Process

DELETE

SET…

GET…

RESULT

RESULT

RESULT

Table Data
Structures

• Sockets are unfortunately wasteful when
the data the user desires already exists in
memory

• Require kernel intervention

• Network protocols severely complicate

the code and add the overhead of
parsing on top of the already costly
server communication

2

Motivation
• What if we put all Memcached structures necessary to let users perform their own

queries in shared memory?

• Potential 2-3x throughput speedup, 11-56x latency speedup!

• But… Giving total control to the users is dangerous?

• Malicious users

• Even if the developer provides code to correctly perform operations, users don’t

need to use it

3

1. M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen, and M. Marty. Hodor: Intra-process isolation for high-throughput data plane libraries. In 2019 USENIX
Annual Technical Conf. (ATC), pages 489–504, Renton, WA, July 2019.

Motivation
• What if we put all Memcached structures necessary to let users perform their own

queries in shared memory?

• Potential 2-3x throughput speedup, 11-56x latency speedup!

• But… Giving total control to the users is dangerous?

• Malicious users

• Even if the developer provides code to correctly perform operations, users don’t

need to use it

• Hodor - A mechanism for fast, safe process isolation that can be used to replace

message passing 1

3

1. M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen, and M. Marty. Hodor: Intra-process isolation for high-throughput data plane libraries. In 2019 USENIX
Annual Technical Conf. (ATC), pages 489–504, Renton, WA, July 2019.

Motivation
Hodor
• With Hodor, a memcached can allow direct access to its internal

data structures by putting them directly in each user’s own address

space

• Very little extra code

• Fully secure

• Resources are completely inaccessible outside of library calls

• Guarantees that bounded length library calls are completed even if the process dies

• Uses Intel Protection Keys for Userspace (PKU) to enable fast switching between ‘library’
and ‘non-library’ mode

• The code that can access the shared structures is labeled by the programmer as
trampolines

• Instead of remotely performing operations by passing them to another process, a user
process now performs the operations itself

4

Motivation
Code Size

• Memcached uses sockets for intra-process and cross-node communication

• 20% of the code is networking (~5000 LOC)

• Very complex, allowing multiple formats (binary & ASCII) and multiple protocols

(UDP & TCP)

• Very hard to debug. Where an operation begins and ends is difficult to find

5

Modifications
• Integrate Hodor

• Make resources available over shared memory

• Requires code to be position independent

• Make service bulletproof to user error

• These tasks sound expensive but surprisingly require relatively few additions

6

Modifications
Shared Memory

• Use Ralloc! A position independent, persistent, file-backed slab allocator [ISMM ’20]

• Provides smart pointers that simplify the process of position independence

• File backing allows us to easily map the file containing all of our dynamically allocated

structures to any user process that wants to use memcached

• Hodor init routines (where the file will be mapped in) are run as root user, meaning this

file is only readable/writable by the protected library and root user

• Ralloc allows protected libraries to have their own private heap! Not only can the line

between user and library be confidently drawn, but it provides us other benefits too:

• Speed, memory management, persistency

7

Modifications
Hodor Integration

• Mark functions available to the user as ‘trampoline’ functions

HODOR_FUNC_ATTR
char *
memcached_get_internal
 (const char * key, size_t key_length, size_t *value_length, uint32_t *flags,
 memcached_return_t *error){
 assert(run_once && "You must run memcached_init before calling memcached_functions");
 *error = MEMCACHED_FAILURE;
 char *buff;
 *error = pku_memcached_get(key, key_length, buff, value_length,
 flags);
 return buff;
}
HODOR_FUNC_EXPORT(memcached_get_internal, 5);

8

Modifications
Hodor Integration
• Write init function(s) that map in file as root and use PKU to protect pages
void memcached_init(){
 if (!run_once){
 run_once = true;
 } else return;
// map in file
 is_restart = RP_init("memcached.rpma", 2*MIN_SB_REGION_SIZE);
 int i = 0;
 void *start, *end;
 fetch_ptrs = (item**)RP_malloc(sizeof(item*)*128);
 agnostic_init();
 while (!RP_region_range(i++, &start, &end) && !server_flag){
 ptrdiff_t rp_region_len = (char*)end- (char*)start- 1;
// use PKU syscalls to protect the file
 if(pkey_mprotect(start, rp_region_len, PROT_READ | PROT_WRITE | PROT_EXEC, 1)) {
 printf("error in mprotect: %s\n", strerror(errno));
 exit(0);
 }
 }
// Mark function as an init function. Will be called before main()
} HODOR_INIT_FUNC(memcached_init);

9

Modifications
Hodor Integration

• Write init function(s) that allocate or retrieve structures from previously mapped in file

void assoc_init(const int hashtable_init) {

if (hashtable_init) {
hashpower = hashtable_init;

}
// global variable set in previous init function that signals if structures can be fetched or allocated

if (!is_restart){
// Use pptr<> and Ralloc allocation functions to allocate your structures the same way as malloc

primary_hashtable_storage = (pptr<pptr<item>>*)RP_malloc(sizeof(pptr<pptr<item> >));
assert(primary_hashtable_storage != nullptr);
primary_hashtable = pptr<pptr<item> > ((pptr<item>*)RP_calloc(hashsize(hashpower), sizeof(pptr<item>)));
assert(primary_hashtable != nullptr);

// Store the new root of the structure statically in the file for easily retrieval in future runs
RP_set_root(primary_hashtable_storage, RPMRoot::PrimaryHT);
RP_set_root(nullptr, RPMRoot::OldHT);
for(unsigned int i = 0; i < hashsize(hashpower); ++i){

primary_hashtable[i] = pptr<item>(nullptr);
}

} else {
// In this case, we have detected a previous run & can therefore retrieve structures directly from the file ready to use

primary_hashtable_storage = (pptr<pptr<item> >*)RP_get_root<pptr<pptr<item> > >(RPMRoot::PrimaryHT);
old_hashtable_storage = (pptr<pptr<item> >*)RP_get_root<pptr<pptr<item> > >(RPMRoot::OldHT);

}
}

10

Modifications
Bulletproofing

• In the same way the kernel doesn’t trust user data, neither can we!

• User data may be nonsensical - Needs to be validated before use

• User threads may change data while it is in use in library - Input must be copied into

user-inaccessible buffers

• Cannot trust user locations - All data (even output) must be assembled in user-

inaccessible buffers and copied out to user accessible locations after all resources are
released

• These changes ensure that errors can not be induced in the protected library by a
malicious user

11

Results
• 2-3x improved throughput

• Limiting factor is no longer networking, it’s the scalability of the data structure

• This is a much better problem to have because it can be easily* fixed!

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40
Th
ou
sa
nd

Tr
an
sa
ct
io
ns

/s
Threads

Memcached 8 Threads
Memcached 4 Threads

Modifed Memcached, No Hodor
Modifed Memcached, with Hodor

Read Heavy Workload - Item size 128B - 40M records

12

0

500

1000

1500

2000

0 5 10 15 20 25 30 35 40

Th
ou
sa
nd

Tr
an
sa
ct
io
ns

/s

Threads

Memcached 8 Threads
Memcached 4 Threads

Modifed Memcached, No Hodor
Modifed Memcached, with Hodor

Write Heavy Workload - Item size 128B - 40M records

Results
• 11-56x improvement in latency

• Queries that have the lowest cost to actually execute see the largest speedup

Memcached Plib, w/ Hodor Plib, No Hodor Speedup

Get 128B 13 0.67 0.64 19x

Get 5KB 13 0.67 0.64 20x

Set 128B 13 1.2 1.2 11x

Set 5KB 17 1.5 1.5 11x

Delete 10 0.21 0.18 56x

Increment 54 1.6 1.5 36x

μs μs μs
μs μs μs

μs

μs
μs

μs

μs

μs
μs

μs

μs

μs
μs

μs

13

Results
• 24% reduction in code size

- 5200 lines due to obsolete networking code

- 1600 lines due to slab management

+ 600 lines added for Hodor integration

• Integrating Hodor is much easier than writing Memcached’s socket interface

• No need for a separate codebase for servers and clients

• libmemcached is 14 000 lines

14

Conclusions
• Writing system services as protected libraries gives us

• Better performance (2-3x throughput)

• Less code

• Same degree of safety/security

• Hybrid approach possible

• Use Hodor for on-node queries and networking for off-node queries

• Future Work

• Fast Microkernels - moving kernel functionality out into user programs

• Persistency

15

