
Rendering Server 
Allocation for 
MMORPG Players 
in Cloud Gaming

Iryanto Jaya (Nanyang Technological University)

Wentong Cai (Nanyang Technological University)

Yusen Li (Nankai University)



Agenda

2

Background

Problem Definition

Proposed Solutions

Experiments

Conclusions and Future 
Works



Motivations

• Multiplayer cloud gaming

• Reducing the cost for cloud gaming service providers

3



Executive 
Summary

4

Problem
Allocating players to rendering servers (RSes)

Our goal
Minimize the cost of using RSes

Observation
The RS resource capacity is the most limiting factor 
in the allocation

Key idea
Use rendering workload sharing to reduce resource 
usage

Results
Workload sharing reduces cost of RSes



Related 
Works

5

Cloud 
gaming

Quality of 
Experience 

(QoE)

Resource 
allocation

Multiview 
Rendering



Resource Allocation

6

RS AND PLAYER 
ALLOCATIONS

NP-HARD MULTIPLE TIME 
INSTANCES

OFFLINE VS. 
ONLINE PROBLEM



Multiview Rendering

7

Left eye Right eye



Challenges & Contributions

8

Multiview 
rendering in 

cloud gaming

Dependency 
between players 
allocated to one 

RS

Optimization 
over multiple 
time instances



Conventional 
Cloud 
Gaming 
Architecture

9



Key Rationale for Architecture 
Design

• Make use of common information from players in the same virtual map

• Split the rendering process into two parts: view dependent and view independent

• The game server consists of a central game server to maintain non-visual information 

(database, login information, etc.) while map servers maintain the game scenes

10



Proposed Cloud Gaming Architecture

11



Problem Definition

Optimization problem

Objective:

• Minimize server cost

Constraints:

• Server capacity

• Latency

12



Detailed Problem Formulation

Minimize ෍

𝑡

෍

𝑟

𝑧𝑟
𝑡Cost𝑟

Subject to:

∀𝑡, ∀𝑝 ∈ 𝐼𝑡, ෍

𝑟

𝑥𝑝, 𝑟 = 1

∀𝑡, ∀𝑟, ෍

𝑝∈𝐼𝑡

𝑥𝑝,𝑟𝑐Γ𝑝 +෍

𝑚

𝑦𝑟, 𝑚
𝑡 𝑐𝑚

′ ≤ 𝐶𝑟

∀𝑡, ∀𝑟, ෍

𝑝∈𝐼𝑡

𝑥𝑝,𝑟𝑔Γ𝑝 ≤ 𝐺𝑟

∀𝑡, ∀𝑝 ∈ 𝐼𝑡, ෍

𝑟

𝑥𝑝, 𝑟 𝑙𝑝, 𝑟 + 𝑙𝑟, Γ𝑝 ≤ 𝐿

13

CPU capacity

GPU capacity

Latency

Assignment

Objective

Constraints



Challenges

14

Trade off between constraints

Resource allocation is NP-hard

Cannot derive a simple algorithm 
from the problem formulation



Online 
Heuristics

Obtain the list of eligible RSes from currently active RSes, if 
there is none, obtain the list from inactive-RSes

• Lowest price (LP)
Select the lowest priced RS

• Lowest waste resource (LWR)
Waste resource = Capacity – current workload
Best fit

• Highest workload share (HWS)
Prioritize possible workload sharing, then use LP to break 
ties

• Lowest waste price (LWP)
Waste price = Waste resource / RS cost

15



Offline Algorithms

16

LOCAL SEARCH (LS)
GET AN INITIAL SOLUTION, THEN USE LOCAL 

SEARCH TO OPTIMIZE THE COST

LOWER BOUND (LB)
AN OPTIMAL SOLUTION DERIVED USING A 

MATHEMATICAL SOLVER



Local Search 
Algorithm

Aim: to empty RSes with low utilization

1. Gets the first solution

2. Sort the RSes with increasing number of players

3. Move each player from lower index RS to higher 

index RS if possible

4. Stop when there is no possible move

17



Experiments

• 500+ PlanetLab player nodes

• Amazon EC2 & Microsoft Azure to host MSes and 
RSes

• Poisson distribution player arrival

• Exponential distribution playing duration

Assumptions:

• The number of servers, maps and players are fixed

• The latency between involved nodes never change

• Each player will be allocated to an RS (no rejection)

18



Default Experiment Parameters

19



Online 
Heuristics 
Performance

20



Online Heuristics Performance

21



Comparison 
with 
Traditional 
Cloud Gaming

22



Offline 
Algorithms 
Comparison

23



Conclusions and Future Works

Conclusions:

• MMORPG cloud gaming architecture with multiview rendering

• Rendering workload sharing reduces overall cost

• Increasing player arrival frequency widens the gap between the costs from online and offline 
approaches

Future works:

• Player rejections

• Edge server involvement

• Future request predictions

24



Q&A

25


