Rendering Server
Allocation for
MMORPG Players

in Cloud Gaming

Iryanto Jaya (Nanyang Technological University)
Wentong Cai (Nanyang Technological University)
Yusen Li (Nankai University)

Background

Problem Definition
Agenda Proposed Solutions

Conclusions and Future
Works

Motivations

» Multiplayer cloud gaming

* Reducing the cost for cloud gaming service providers

Executive
Summary

Problem
Allocating players to rendering servers (RSes)

Our goal
Minimize the cost of using RSes

Observation
The RS resource capacity is the most limiting factor
in the allocation

Key idea
Use rendering workload sharing to reduce resource
usage

Results
Workload sharing reduces cost of RSes

Quality of

Cloud - :
xperience

gaming (QoE)

Related
Works

Resource Multiview
allocation Rendering

Resource Allocation

RS AND PLAYER NP-HARD MULTIPLE TIME OFFLINE VS.
ALLOCATIONS INSTANCES ONLINE PROBLEM

CPU

Multiview Rendering

GPU

Geometry

k4

Geometry

Fragment

Fragment

MultiView Rendering

Challenges & Contributions

Multiview
rendering in
cloud gaming

Dependency
between players

allocated to one
RS

Optimization
over multiple
time instances

Game server
(session host)

Conventional
Cloud
Gaming
Architecture

fid/player state update/synchrorization

Rendering Rendering
server (proxy) server (proxy)
|
video stream

Rendering
server (proxy)

|
video stream

|
video stream

Ul input Ul input Ul input

Client Client Client

=\ == ZE==

T

Key Rationale tor Architecture
Design

« Make use of common information from players in the same virtual map
 Split the rendering process into two parts: view dependent and view independent

« The game server consists of a central game server to maintain non-visual information
(database, login information, etc.) while map servers maintain the game scenes

Proposed Cloud Gaming Architecture

Rendering Server § Thin-clients
Map Server 1 o0 scone,, Map 1 VM Virtual Client 1
Player data
r-—)-l Players list | L
Central Game Server I e I_ View independent > View dependent rendering ‘ :
rendering | | Video stream Player 1
Database «— X | Video encoder | : > (map 1)
Server monitor | | Input forwarder H G - |
| Game put
| .
Map Server 2 > Map 2 VM Virtual Client 2
“—){ Players list |
View dependent renderi
I G I—j_ View independent %p "9 ‘
ame scene rendering | on J| N ?n;':: 2;]3
4 ry :
l Input forwarder |= |
Virtual Client 3
>I View dependent rendering ‘
| N Player 3
| Video encoder | » (map 2)
| Input forwarder H : |
| i

' ; 11

Problem Definition

Optimization problem

Objective:
* Minimize server cost

Constraints:
 Server capacity
* Latency

Minimize Z Z zLCost,
t r

Subject to:

Vt,Vp € I, pr,r =1

r

Vt, Vr, Z Xprer, + Z Vi mem < Cy
m

pPEl:

Vt, Vv, Z Xprdr, = G,

pPEl;

Exp,r (lp’r + L. Fp) <L

T

Vt,Vp € I,

Detailed Problem Formulation

P
M
R

Ip

{to. t1, ...

I

xpjr

t
Yr.m

Set of players {p1, p2, Pn}
Set of maps {m1, my, ..., my}

Set of RS {ry,ry, ..., 75}

Virtual map where player p is located in

Time instances

Set of players in the system at time ¢

Binary variable indicating whether player p is
assigned to RS r

Binary variable indicating whether there is a
player in map m which is assigned to server r
at time ¢

Binary variable indicating whether server r is
used at time ¢

13

Trade off between constraints

I Challenges Resource allocation is NP-hard

Cannot derive a simple algorithm

from the problem formulation

14

Obtain the list of eligible RSes from currently active RSes, if
there is none, obtain the list from inactive-RSes

* Lowest price (LP)
Select the lowest priced RS

O ﬂ ‘ | n e * Lowest waste resource (LWR)

Waste resource = Capacity - current workload

euristics Best fit

» Highest workload share (HWS)
Prioritize possible workload sharing, then use LP to break
ties

* Lowest waste price (LWP)
Waste price = Waste resource / RS cost

Oftline Algorithms

LOCAL SEARCH (LS) LOWER BOUND (LB)

GET AN INITIAL SOLUTION, THEN USE LOCAL AN OPTIMAL SOLUTION DERIVED USING A
SEARCH TO OPTIMIZE THE COST MATHEMATICAL SOLVER

Local Sea rch Aim: to empty RSes with low utilization
Algorithm

1. Gets the first solution

2. Sortthe RSes with increasing number of players
cost

3. Move each player from lower index RS to higher
index RS if possible

4. Stop when there is no possible move

Experiments

« 500+ PlanetLab player nodes

e Amazon EC2 & Microsoft Azure to host MSes and
RSes

 Poisson distribution player arrival

« Exponential distribution playing duration

Assumptions:
« The number of servers, maps and players are fixed
* The latency between involved nodes never change

» Each player will be allocated to an RS (no rejection)

Default Experiment Parameters

Latency bound

Player inter arrival time distribution parameter (1)
Player maximum inter arrival time

Playing duration distribution parameter (1”)
Maximum playing duration

Number of available RSes

RS CPU capacity

RS GPU capacity

CPU view dependent workload

CPU view independent workload
GPU workload

100 ms

6

10 hours

2.5

5 hours

20

8 to 10 units
10 units

1 to 3.4 units
1 unit

1 unit

19

Online
Heuristics
Performance

N
N

to LS
=
O

=
co

Rental cost relative

HWS —+— LP —¢— LWR LWP

 EE—

4 6 8 10

Player inter arrival time distribution parameter (A)

20

12

Rental cost

Online Heuristics Performance

Parameter

)
—
—

RS Pricing
Dominant Res.
Latency Bound
¢’ Level

=0T
ool o Wed I
w0 cs

T woc @

== 0cs
asll-~lo Wi as
Ewoc3
ool Mo Weai o
==l o] o4
TR omal S
v I

o T al
r:ur‘)<1§
w0 <D
htﬂf‘)<§
mmf‘)<§
r':uf.‘)<§
RO < E
w0 <2
T o0 <|S
r:d';n<:§
T omm<|S

= o T <8
mmm<§

1100

1000 |- HWS Il |P B |WR E@ |WP @ LS 3

900
800 [~
700 -
600
500 -
400
300

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22

P23 P24,

Comparison
with
Traditional
Cloud Gaming

Rental cost
o
=
o

| With wnridnad shariﬁg I
Without workload sharing R

HWS LP LWR LWP LS

22

360 s . T
l
340
320
300
13 280 |
B 280
B 260
S
240
220
200 |
180
160

Oftline
Algorithms

Comparison

1 1.5 2 2.5 3 3.5
Player inter arrival time distribution parameter (A)

23

Conclusions and Future Works

Conclusions:
 MMORPG cloud gaming architecture with multiview rendering
* Rendering workload sharing reduces overall cost

* Increasing player arrival frequency widens the gap between the costs from online and offline
approaches

Future works:
» Player rejections
» Edge serverinvolvement

« Future request predictions

Q&A

