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Motivations

• Multiplayer cloud gaming

• Reducing the cost for cloud gaming service providers
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Executive 
Summary
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Problem
Allocating players to rendering servers (RSes)

Our goal
Minimize the cost of using RSes

Observation
The RS resource capacity is the most limiting factor 
in the allocation

Key idea
Use rendering workload sharing to reduce resource 
usage

Results
Workload sharing reduces cost of RSes
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Resource Allocation
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RS AND PLAYER 
ALLOCATIONS

NP-HARD MULTIPLE TIME 
INSTANCES

OFFLINE VS. 
ONLINE PROBLEM



Multiview Rendering
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Challenges & Contributions
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Multiview 
rendering in 

cloud gaming

Dependency 
between players 
allocated to one 

RS

Optimization 
over multiple 
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Conventional 
Cloud 
Gaming 
Architecture
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Key Rationale for Architecture 
Design

• Make use of common information from players in the same virtual map

• Split the rendering process into two parts: view dependent and view independent

• The game server consists of a central game server to maintain non-visual information 

(database, login information, etc.) while map servers maintain the game scenes
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Proposed Cloud Gaming Architecture
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Problem Definition

Optimization problem

Objective:

• Minimize server cost

Constraints:

• Server capacity

• Latency
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Detailed Problem Formulation
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Challenges
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Trade off between constraints

Resource allocation is NP-hard

Cannot derive a simple algorithm 
from the problem formulation



Online 
Heuristics

Obtain the list of eligible RSes from currently active RSes, if 
there is none, obtain the list from inactive-RSes

• Lowest price (LP)
Select the lowest priced RS

• Lowest waste resource (LWR)
Waste resource = Capacity – current workload
Best fit

• Highest workload share (HWS)
Prioritize possible workload sharing, then use LP to break 
ties

• Lowest waste price (LWP)
Waste price = Waste resource / RS cost
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Offline Algorithms
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LOCAL SEARCH (LS)
GET AN INITIAL SOLUTION, THEN USE LOCAL 

SEARCH TO OPTIMIZE THE COST

LOWER BOUND (LB)
AN OPTIMAL SOLUTION DERIVED USING A 

MATHEMATICAL SOLVER



Local Search 
Algorithm

Aim: to empty RSes with low utilization

1. Gets the first solution

2. Sort the RSes with increasing number of players

3. Move each player from lower index RS to higher 

index RS if possible

4. Stop when there is no possible move
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Experiments

• 500+ PlanetLab player nodes

• Amazon EC2 & Microsoft Azure to host MSes and 
RSes

• Poisson distribution player arrival

• Exponential distribution playing duration

Assumptions:

• The number of servers, maps and players are fixed

• The latency between involved nodes never change

• Each player will be allocated to an RS (no rejection)
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Default Experiment Parameters
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Online 
Heuristics 
Performance
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Online Heuristics Performance
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Comparison 
with 
Traditional 
Cloud Gaming
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Offline 
Algorithms 
Comparison
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Conclusions and Future Works

Conclusions:

• MMORPG cloud gaming architecture with multiview rendering

• Rendering workload sharing reduces overall cost

• Increasing player arrival frequency widens the gap between the costs from online and offline 
approaches

Future works:

• Player rejections

• Edge server involvement

• Future request predictions
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