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Motivations

» Multiplayer cloud gaming

* Reducing the cost for cloud gaming service providers




Executive
Summary

Problem
Allocating players to rendering servers (RSes)

Our goal
Minimize the cost of using RSes

Observation
The RS resource capacity is the most limiting factor
in the allocation

Key idea
Use rendering workload sharing to reduce resource
usage

Results
Workload sharing reduces cost of RSes
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Resource Allocation

RS AND PLAYER NP-HARD MULTIPLE TIME OFFLINE VS.
ALLOCATIONS INSTANCES ONLINE PROBLEM
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Challenges & Contributions

Multiview
rendering in
cloud gaming

Dependency
between players
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time instances
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Key Rationale tor Architecture
Design

« Make use of common information from players in the same virtual map
 Split the rendering process into two parts: view dependent and view independent

« The game server consists of a central game server to maintain non-visual information
(database, login information, etc.) while map servers maintain the game scenes



Proposed Cloud Gaming Architecture
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Problem Definition

Optimization problem

Objective:
* Minimize server cost

Constraints:
 Server capacity
* Latency
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Set of players {p1, p2, .... Pn}
Set of maps {m1, my, ..., my}

Set of RS {ry,ry, ..., 75}

Virtual map where player p is located in

Time instances

Set of players in the system at time ¢

Binary variable indicating whether player p is
assigned to RS r

Binary variable indicating whether there is a
player in map m which is assigned to server r
at time ¢

Binary variable indicating whether server r is
used at time ¢
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Trade off between constraints

I Challenges Resource allocation is NP-hard

Cannot derive a simple algorithm

from the problem formulation

14



Obtain the list of eligible RSes from currently active RSes, if
there is none, obtain the list from inactive-RSes

* Lowest price (LP)
Select the lowest priced RS

O ﬂ ‘ | n e * Lowest waste resource (LWR)

Waste resource = Capacity - current workload

euristics Best fit

» Highest workload share (HWS)
Prioritize possible workload sharing, then use LP to break
ties

* Lowest waste price (LWP)
Waste price = Waste resource / RS cost



Oftline Algorithms

LOCAL SEARCH (LS) LOWER BOUND (LB)

GET AN INITIAL SOLUTION, THEN USE LOCAL AN OPTIMAL SOLUTION DERIVED USING A
SEARCH TO OPTIMIZE THE COST MATHEMATICAL SOLVER



Local Sea rch Aim: to empty RSes with low utilization
Algorithm

1. Gets the first solution

2. Sortthe RSes with increasing number of players
cost

3. Move each player from lower index RS to higher
index RS if possible

4. Stop when there is no possible move




Experiments

« 500+ PlanetLab player nodes

e Amazon EC2 & Microsoft Azure to host MSes and
RSes

 Poisson distribution player arrival

« Exponential distribution playing duration

Assumptions:
« The number of servers, maps and players are fixed
* The latency between involved nodes never change

» Each player will be allocated to an RS (no rejection)



Default Experiment Parameters

Latency bound

Player inter arrival time distribution parameter (1)
Player maximum inter arrival time

Playing duration distribution parameter (1”)
Maximum playing duration

Number of available RSes

RS CPU capacity

RS GPU capacity

CPU view dependent workload

CPU view independent workload
GPU workload

100 ms

6

10 hours

2.5

5 hours

20

8 to 10 units
10 units

1 to 3.4 units
1 unit

1 unit
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Online
Heuristics
Performance
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Rental cost

Online Heuristics Performance
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Comparison
with
Traditional
Cloud Gaming
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Conclusions and Future Works

Conclusions:
 MMORPG cloud gaming architecture with multiview rendering
* Rendering workload sharing reduces overall cost

* Increasing player arrival frequency widens the gap between the costs from online and offline
approaches

Future works:
» Player rejections
» Edge serverinvolvement

« Future request predictions
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