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Automatic Differentiation (AD)

I Given: a program that computes y ← F (x)
I AD produces program that computes derivatives of F .
I AD can be implemented using source-to-source compilers,

run-time tracing, JIT, ...
I Many tools exist, for a variety of languages including

Python, C/C++, Fortran, see autodiff.org community
website for an overview

I AD is not ”numerical differentiation” or ”finite differences”:
There is no finite step size, no truncation error

I AD can be seen as symbolic differentiation for real-world
programs, including branches, loops, function calls, etc
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Forward vs Reverse, scalar vs vector
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I Forward mode is simple to understand and implement, but:
Need to re-run for every input.

I Reverse mode is cheaper for many inputs and few outputs
(run once, get all directional derivatives).
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Parallelization challenges and opportunities

I Forward mode AD has the same data flow as original
program. Can keep parallelism

I Vector-forward mode is another dimension of parallelism.
Free of branch divergence, also good for SIMD/SIMT
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Parallelization challenges and opportunities

I Reverse mode is cheaper for many inputs and few outputs
(run once, get all directional derivatives)

I Reverse mode changes data flow, can cause new data
races. Hard to analyze by an AD tool
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Wait... But didn’t back-propagation work in parallel?

I Some frameworks (e.g. TensorFlow, Pytorch, Halide)
support parallel reverse mode, but:

I They operate on a higher level of abstraction, e.g.
I composing manually-parallelized building blocks or
I generating code while exploiting problem structure

I They are not general-purpose
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What AD mode is best for my application?

I This is commonly known in AD literature:
I Forward mode is easy, low overhead, but gets costly for

many inputs
I Reverse mode is hard, high overhead, but it’s worth it for

many inputs
I But what is many?

I Where is the break-even point on today’s hardware?
I What might it depend on?
I We present a case study here.
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Test Case 1 Description: Stencil
I Stencil computations are common in PDE solvers,

convolutions, image processing
I Are easy to parallelize, but vectorize poorly due to

misaligned data
I Reverse mode AD is difficult to parallelize (not supported

by AD tools)
I We compare performance of primal, forward, and reverse

mode, on CPU (Intel Skylake) and GPU (Nvidia Quadro
GV100)

I Stencil is taken from Parboil benchmark suite,
differentiated with Tapenade AD tool

I Vector-forward-mode is post-processed to insert OpenMP
SIMD directives before direction loops

I GPU version is created by manual translation to Julia, then
using Julia’s built-in AD and GPU support
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Test Case 1 Results: Stencil
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How useful are O(100)-O(1000) inputs?

I Number of inputs != number of state variables. For
example: CAD parameters in a simulation with many more
state variables

I Coloring can reduce number of derivative directions. For
example: Power Flow application with over half million
inputs, due to sparsity, needs only 30 forward mode
evaluations (see paper for details).
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Conclusions

I Forward mode can be surprisingly competitive to reverse
mode, for hundreds of inputs

I With current hardware trends (more parallelism, longer
vectors, ...), this number may grow further

I We assume here that the reverse mode can not be
auto-parallelized or auto-vectorized. Maybe (hopefully) this
will change?

I We are happy to hear your questions and comments by
email, jhueckelheim@anl.gov

I If you are watching this as part of ICPP20, please visit our
Q & A session.
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