
Vector Forward Mode Automatic
Differentiation on SIMD/SIMT architectures

Jan Hückelheim, Michel Schanen,
Sri Hari Krishna Narayanan, Paul Hovland

Argonne National Laboratory

August 10, 2020



Outlines

Automatic Differentiation Modes

Parallelization and Vectorization for AD

Test Cases, Results

Final Remarks

2 / 16



Outline

Automatic Differentiation Modes

Parallelization and Vectorization for AD

Test Cases, Results

Final Remarks

3 / 16



Automatic Differentiation (AD)

I Given: a program that computes y ← F (x)
I AD produces program that computes derivatives of F .
I AD can be implemented using source-to-source compilers,

run-time tracing, JIT, ...
I Many tools exist, for a variety of languages including

Python, C/C++, Fortran, see autodiff.org community
website for an overview

I AD is not ”numerical differentiation” or ”finite differences”:
There is no finite step size, no truncation error

I AD can be seen as symbolic differentiation for real-world
programs, including branches, loops, function calls, etc

4 / 16

http://autodiff.org


Forward vs Reverse, scalar vs vector

x

y

intermediate

values

Original Program

Forward

Reverse Vector Forward

I Forward mode is simple to understand and implement, but:
Need to re-run for every input.

I Reverse mode is cheaper for many inputs and few outputs
(run once, get all directional derivatives).

5 / 16



Outline

Automatic Differentiation Modes

Parallelization and Vectorization for AD

Test Cases, Results

Final Remarks

6 / 16



Parallelization challenges and opportunities

I Forward mode AD has the same data flow as original
program. Can keep parallelism

I Vector-forward mode is another dimension of parallelism.
Free of branch divergence, also good for SIMD/SIMT

x

y

intermediate

values

SIM
D

Original Program

Forward

Reverse Vector Forward

7 / 16



Parallelization challenges and opportunities

I Reverse mode is cheaper for many inputs and few outputs
(run once, get all directional derivatives)

I Reverse mode changes data flow, can cause new data
races. Hard to analyze by an AD tool

x

y

intermediate

values

concurrent

w
rite

Original Program

Forward

Reverse Vector Forward

concurrent

read

concurrent

read

8 / 16



Wait... But didn’t back-propagation work in parallel?

I Some frameworks (e.g. TensorFlow, Pytorch, Halide)
support parallel reverse mode, but:

I They operate on a higher level of abstraction, e.g.
I composing manually-parallelized building blocks or
I generating code while exploiting problem structure

I They are not general-purpose

9 / 16



What AD mode is best for my application?

I This is commonly known in AD literature:
I Forward mode is easy, low overhead, but gets costly for

many inputs
I Reverse mode is hard, high overhead, but it’s worth it for

many inputs
I But what is many?

I Where is the break-even point on today’s hardware?
I What might it depend on?
I We present a case study here.

10 / 16



Outline

Automatic Differentiation Modes

Parallelization and Vectorization for AD

Test Cases, Results

Final Remarks

11 / 16



Test Case 1 Description: Stencil
I Stencil computations are common in PDE solvers,

convolutions, image processing
I Are easy to parallelize, but vectorize poorly due to

misaligned data
I Reverse mode AD is difficult to parallelize (not supported

by AD tools)
I We compare performance of primal, forward, and reverse

mode, on CPU (Intel Skylake) and GPU (Nvidia Quadro
GV100)

I Stencil is taken from Parboil benchmark suite,
differentiated with Tapenade AD tool

I Vector-forward-mode is post-processed to insert OpenMP
SIMD directives before direction loops

I GPU version is created by manual translation to Julia, then
using Julia’s built-in AD and GPU support

12 / 16



Test Case 1 Results: Stencil

8 16 32 64 128 256 512
100

101

102

103

Number of computed derivatives

Ti
m

e
[s

]
1 core avx512 double 1 core avx512 float

28 core HT avx512 double 28 core HT avx512 float
reverse double reverse float

GPU double GPU float

13 / 16



Outline

Automatic Differentiation Modes

Parallelization and Vectorization for AD

Test Cases, Results

Final Remarks

14 / 16



How useful are O(100)-O(1000) inputs?

I Number of inputs != number of state variables. For
example: CAD parameters in a simulation with many more
state variables

I Coloring can reduce number of derivative directions. For
example: Power Flow application with over half million
inputs, due to sparsity, needs only 30 forward mode
evaluations (see paper for details).

15 / 16



Conclusions

I Forward mode can be surprisingly competitive to reverse
mode, for hundreds of inputs

I With current hardware trends (more parallelism, longer
vectors, ...), this number may grow further

I We assume here that the reverse mode can not be
auto-parallelized or auto-vectorized. Maybe (hopefully) this
will change?

I We are happy to hear your questions and comments by
email, jhueckelheim@anl.gov

I If you are watching this as part of ICPP20, please visit our
Q & A session.

This work was funded in part by support from the U.S. Department of Energy,
Office of Science, under contract DE-AC02-06CH11357. We gratefully
acknowledge the computing resources provided and operated by the Joint
Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.

16 / 16


	Automatic Differentiation Modes
	Parallelization and Vectorization for AD
	Test Cases, Results
	Final Remarks

