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Neural Networks

3

Ø Deep Neural Networks are designed to solve complicated and non-linear problems

Ø Typical Deep Neural Networks Applications

• computer vision (i.e., Image classification, Image classification + localization, Object detection,

Instance Segmentation, etc.)

• natural language processing (i.e., Text classification, Information retrieval, Natural language

generation, Natural language understanding, etc.)



Why compress Neural Networks?
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Ø A DNNs Practical Application

• To train a DNN in cloud servers with high-performance accelerators

• Then transfer the trained DNN model to the edge devices (i.e., mobile devices, IoT devices)

• The edge devices run the DNN model

Cloud

Edge Devices

Compressing Neural Networks is an effective way to reduce the transfer cost.

Ø To further improve the inference accuracy, DNNs are becoming deeper and more complicated

transfer DNNs



Data compression techniques
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Ø Lossless compression
• Usually deal with data as byte streams, and reduce data at the bytes/string level based on classic 

algorithm such as Huffman coding, dictionary coding, etc.  

• Delta compression observes the high data similarity (data redundancy), then only records the delta data 

for space savings.

Ø Lossy compression
• Typical lossy compressors are for images, such as JPEG2000.

• Lossy compression of floating-point data from HPC, such as ZFP, SZ, etc.

• SZ lossy compression with a data-fitting predictor and a point-wise error bound controlled quantizator.

Ø Data compression techniques are especially important for data reduction.



Compressing DNNs
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Ø Compressing DNNs means compressing a large amount of very random floating-point numbers

Ø Special technologies for compressing DNNs

• Pruning (removing some unimportant parameters)

• Quantization (transforming the floats parameters into low bits numbers)



Observation and motivation
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(a) VGG-16, SSIM: 0.99994 (b) ResNet101, SSIM: 0.99971 (c) GoogLeNet, SSIM: 0.99999

(d) EfficientNet, SSIM: 0.99624 (e) MobileNet, SSIM: 0.99998 (f) ShuffleNet, SSIM: 0.99759

Ø The floating–point numbers of the neighboring networks are very similar

• Linear fitting close to 𝑦 = 𝑥 & SSIM close to 1.0



Observation and motivation
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Ø Motivation

• Inspired by the delta compression technique, we calculate the delta data of the similar floats between 

two neighboring neural networks.

• We employ the ideas of error-bound SZ lossy compression, i.e., a data-fitting predictor and an error-

controlled quantizator, to compress the delta data. 



Overview of Delta-DNN framework

Calculating the Delta Data &Optimizing the Error Bound Compressing the Delta Data
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• Calculating the Delta Data: calculate the lossy delta data of the target and reference networks (including all layers).

• Optimizing the Error Bound: select the suitable error bound used for maximizing the lossy compression efficiency. 

• Compressing the Delta Data: reduce the delta data size by using lossless compressors.
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Ø Following the idea of SZ lossy compressor

• Calculate and quantize

• Recover the parameters

Calculating the Delta Data
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𝑀! =
𝐴! − 𝐵!

2 ' 𝑙𝑜𝑔(1 + 𝜖)
+ 0.5

𝐴!" = 2 ' 𝑀! ' 𝑙𝑜𝑔 1 + 𝜖 + 𝐵!

convert float-point 
numbers to integers & 
most integers are equal 

to zero 

𝐴! is a parameter from target network, 𝐵! is the corresponding parameters from reference network, 𝜖 is the predefined

relative error bound, and is an integer for recording the delta data of 𝐴! and 𝐵! .



Ø How to get a reasonable relative error bound to maximize the compression ratio without compromising 
DNNs’inference accuracy?

Optimizing the Error Bound
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(a) VGG-16 (b) ResNet101 (c) GoogLeNet

(d) EfficientNet (e) MobileNet (f) ShuffleNet

the impact of 
inference 

accuracy with 
different error 

bounds

• Two key metrics: compression ratio, inference accuracy loss



Optimizing the Error Bound
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𝑆𝑐𝑜𝑟𝑒 = 𝛼 ( Φ + 𝛽 ( Ω, (𝛼 + 𝛽 = 1)The impact of compression ratio with different error bounds

Ø Our solution:

• Collecting the results of compression ratio and the 

inference accuracy degradation along with the 

available error bounds

• Assessing the collected results to select an optimal 

error bound according to Formula as below



Compressing the Delta Data
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Ø To further reduce the delta data space

• Zstd

• LZMA

• Run-Length Encoding (RLE) + Zstd

• Run-Length Encoding (RLE) + LZMA

Compression ratios of Delta-DNN running 4 compressors



Optimizing Network Transmission for DNNs

14

target network

reference network

compressed 
file

decompressed
network

compressed 
filenetwork 

transmission

local reference
network

SERVER CLIENTS

Ø DNNs are trained on the server and deployed locally on the client (such as mobile device 

and IoT device)

• Bottleneck: network transmission for DNNs

Delta-DNN for reducing network transmission



Saving Storage Space for DNNs
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Delta-DNN

Ø In some situations, DNNs need be continuously trained and updated

• Transfer Learning

• Incremental Learning

Ø Saving multiple snapshots or versions of DNNs

• Using Delta-DNN to save storage space

Delta-DNN for reducing storage cost



Experimental Setup
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Ø Hardware and Software

• a NVIDIA TITAN RTX GPU with 24 GB of memory.

• an Intel Xeon Gold 6130 processor with 128 GB of memory.

• Pytorch deep learning framework.

• SZ lossy compression library.

Ø DNNs and Datasets

• CIFAR-10 dataset.

• VGG-16, ResNet101, GoogLeNet, EfficientNet, MobileNet, and ShuffleNet. 



Compression Performance of Delta-DNN
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Ø Compression ratio results of the four compressor on six popular DNNs (Default relative inference 
accuracy loss less than 0.2%)

Delta-DNN achieves about 2x~10x higher compression ratio compared

with the state-of-the-art approaches, LZMA, Zstd, and SZ.



Case 1: Optimizing Network Transmission
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(a) Mobile Broadband Downloading (b) Fixed Broadband Downloading (c) Fixed Broadband Uploading

Ø Using Delta-DNN to reduce network transmissions

The network bandwidth data is from the global average network bandwidth on SPEEDTEST in January 2020.

Delta-DNN significantly reduces the network consumption of six neural networks.



Case 2: Saving Storage Space
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Ø Using Delta-DNN to save storage space

(a) VGG-16 (b) ResNet101

(c) GoogLeNet (d) EfficientNet

(e) MobileNet (f) ShuffleNet

Inference accuracy before and after using Delta-DNN

Storage space consumption before and after using Delta-DNN

Delta-DNN can effectively reduce the storage size
by 5x~10x, while the average inference accuracy
loss is negligible.



Conclusion and future work

Ø Delta-DNN

• A novel delta compression framework for DNNs, called Delta-DNN, which can significantly reduce

the size of DNNs by exploiting the floats similarity existing in neighboring networks in training.

• Our evaluation results on six popular DNNs suggest Delta-DNN achieves 2x~10x higher

compression ratio compared with Zstd, LZMA, and SZ approaches.

• Controllable between inference accuracy and compression ratio.

Ø Future work

• Evaluate our proposed Delta-DNN on more neural networks and more datasets.

• Further improve the compression ratio combining other model compression techniques.

• Extend Delta-DNN framework into more scenarios, like deep learning in the distributed systems.
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ICPP 2020: 49th International Conference on Parallel Processing

Thank you!

21


