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Neural Networks

» Deep Neural Networks are designed to solve complicated and non-linear problems

» Typical Deep Neural Networks Applications
* computer vision (i.e., Image classification, Image classification + localization, Object detection,
Instance Segmentation, etc.)
* natural language processing (i.e., Text classification, Information retrieval, Natural language

generation, Natural language understanding, etc.)
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Why compress Neural Networks?

» To further improve the inference accuracy, DNNs are becoming deeper and more complicated

» A DNNs Practical Application

* Totrain a DNN in cloud servers with high-performance accelerators

* Then transfer the trained DNN model to the edge devices (i.e., mobile devices, 10T devices)

* The edge devices run the DNN model l transfer DNNs

Compressing Neural Networks is an effective way to reduce the transfer cost. D t é Q
XD

Edge Devices
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Data compression techniques

» Data compression techniques are especially important for data reduction.

» Lossless compression
* Usually deal with data as byte streams, and reduce data at the bytes/string level based on classic

algorithm such as Huffman coding, dictionary coding, etc.

* Delta compression observes the high data similarity (data redundancy), then only records the delta data

for space savings.

» Lossy compression
* Typical lossy compressors are for images, such as JPEG2000.

* Lossy compression of floating-point data from HPC, such as ZFP, SZ, etc.

* SZ lossy compression with a data-fitting predictor and a point-wise error bound controlled quantizator.
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» Compressing DNNs means compressing a large amount of very random floating-point numbers

» Special technologies for compressing DNNs

* Pruning (removing some unimportant parameters)

* Quantization (transforming the floats parameters into low bits numbers)

weights

before pruning after pruning (32 bit float)

cluster index

(2 bit uint)

-0.98

pruning
synapses

1.48 | 0.

pruning
neurons

fine-tuned
centroids centroids

-0.02




Observation and motivation
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» The floating—point numbers of the neighboring networks are very similar

* Linear fitting close to y = x & SSIM close to 1.0

y = 0.997*x - 2.159e-06

{0 065 00 05 10
(3) VGG-16, SSIM: 0.99994

y = 0.998*x + 5.281e-06
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(d) EfficientNet, SSIM: 0.99624
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(b) ResNet101, SSIM: 0.99971

y = 0.998*x - 8.415e-08
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(e) MobileNet, SSIM: 0.99998
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(c) GooglLeNet, SSIM: 0.99999

y = 0.997*x - 7.558e-06
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(f) ShuffleNet, SSIM: 0.99759
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Observation and motivation

> Motivation

* Inspired by the delta compression technique, we calculate the delta data of the similar floats between

two neighboring neural networks.

*  We employ the ideas of error-bound SZ lossy compression, i.e., a data-fitting predictor and an error-

controlled quantizator, to compress the delta data.
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Overview of Delta-DNN framework

compute score

4 N { '
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)
target £ : [ %
network 11 — = o
S v —| © L —> compressed -_
T‘; % £ binary file
© A 8 decompressed
ERnENSEEE network
— N <
reference L different relative error param ) L ) eference
network Calculating the Delta Data &Optimizing the Error Bound ~ Compressing the Delta Data network

* Calculating the Delta Data: calculate the lossy delta data of the target and reference networks (including all layers).
*  Optimizing the Error Bound: select the suitable error bound used for maximizing the lossy compression efficiency.

* Compressing the Delta Data: reduce the delta data size by using lossless compressors.
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Calculating the Delta Data

> Following the idea of SZ lossy compressor )
convert float-point

numbers to integers &

most integers are equal
* (Calculate and quantize to zero

* Recover the parameters

A; is a parameter from target network, B; is the corresponding parameters from reference network, € is the predefined

relative error bound, and is an integer for recording the delta data of 4; and B;.



Optimizing the Error Bound
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> How to get a reasonable relative error bound to maximize the compression ratio without compromising
DNNs’ inference accuracy?

92.5%

92.4%

92.3%

92.2%

92.1%

Inference Accuracy
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Inference Accuracy
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Two key metrics: compression ratio, inference accuracy 10ss

= A-DNN Accuracy
= Original Accuracy
= = Accepted Accuracy
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Relative Error Bound

(a) VGG-16

= A-DNN Accuracy
= Original Accuracy
= = Accepted Accuracy
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Relative Error Bound

(d) EfficientNet
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(b) ResNet101

== A-DNN Accuracy
= Original Accuracy
= = Accepted Accuracy
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Relative Error Bound

(e) MobileNet
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== A-DNN Accuracy
= Original Accuracy
= = Accepted Accuracy
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(c) GooglLeNet

=== A-DNN Accuracy
= Original Accuracy
= = Accepted Accuracy
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Relative Error Bound

(f) ShuffleNet

the impact of
inference

accuracy with
different error
bounds
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Optimizing the Error Bound

» Our solution:

J1 * Collecting the results of compression ratio and the
210 _ , _
< 9 inference accuracy degradation along with the
_5 —8— GoogleNet
g 8 —e— MobileNet available error bounds
c 7 —e— ShuffleNet
= —— VGG-16 : :
£ 6 - * Assessing the collected results to select an optimal
S —%— EfficientNet
5 —— ResNet101 .
error bound according to Formula as below
1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Relative Error Bound
The impact of compression ratio with different error bounds Score=a-d+ (-1, (af +L=1)
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Compressing the Delta Data

> To further reduce the delta data space o 5] — f;jA
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Compression ratios of Delta-DNN running 4 compressors



Optimizing Network Transmission for DNNs

> DNNs are trained on the server and deployed locally on the client (such as mobile device

and loT device)

* Bottleneck: network transmission for DNNs

( ) 4 )
E compressed
target network network file
— Delta-DNN | — transmission ’
comp.ressed — @ decompressed
file network
local reference
reference network network
\_ ) \_ J
SERVER CLIENTS

Delta-DNN for reducing network transmission
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Saving Storage Space for DNNs

> In some situations, DNNs need be continuously trained and updated

* Transfer Learning

. Neural Network Training Neural Network Storage
* Incremental Learning

— Delta-DNN — Compressed V4

>E

training T

» Saving multiple snapshots or versions of DNNs
— Delta-DNN — Compressed V3

* Using Delta-DNN to save storage space

training

— Delta-DNN — Compressed V2

training

— Direct Storage —

LEL

% |

Delta-DNN for reducing storage cost
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Experimental Setup

» Hardware and Software
* aNVIDIATITAN RTX GPU with 24 GB of memory.
* an Intel Xeon Gold 6130 processor with 128 GB of memory.
* Pytorch deep learning framework.

* SZ lossy compression library.

» DNNs and Datasets
* CIFAR-10 dataset.
* VGG-16, ResNet101, GoogleNet, EfficientNet, MobileNet, and ShuffleNet.
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Compression Performance of Delta-DNN

» Compression ratio results of the four compressor on six popular DNNs (Default relative inference
accuracy loss less than 0.2%)

Networks | Original Size Compression Ratio (and the error bound) Inference Accuracy (and the differences)
&l LZMA | Zstd SZ A-DNN Original SZ A-DNN
VGG-16 56.2 MB 1.096 | 1.088 | 4.415(7%) | 7.394( 8%) | 92.45% | 92.31% (-0.15%) | 92.32% (-0.15%)

ResNet101 162.6 MB 1.098 | 1.078 | 4.192 (5%) | 9.341 (10%) | 93.05% | 92.87% (—0.19%) | 93.44% (+0.42%)
GoogLeNet 23.6 MB 1.097 | 1.078 | 3.565 (2%) | 7.811( 2%) | 94.95% | 94.88% (—0.07%) | 94.95% (+0.00%)
EfficientNet 11.3 MB 1.099 | 1.078 | 3.204 (1%) | 10.266 (10%) | 84.82% | 84.76% (—0.07%) | 84.88% (+0.07%)
MobileNet 8.9 MB 1.101 | 1.077 | 3.788 3%) | 9.627( 9%) | 92.68% | 92.57% (-0.12%) | 93.16% (+0.52%)
ShuffleNet 3.5MB 1.097 | 1.076 | 3.192 (1%) | 11.291 (10%) | 86.29% | 86.19% (-0.12%) | 86.18% (-0.13%)

Delta-DNN achieves about 2x~10x higher compression ratio compared

with the state-of-the-art approaches, LZMA, Zstd, and SZ.
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Case 1: Optimizing Network Transmission

» Using Delta-DNN to reduce network transmissions
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(a) Mobile Broadband Downloading (b) Fixed Broadband Downloading (c) Fixed Broadband Uploading

Delta-DNN significantly reduces the network consumption of six neural networks.

The network bandwidth data is from the global average network bandwidth on SPEEDTEST in January 2020.
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» Using Delta-DNN to save storage space

Storage space consumption before and after using Delta-DNN

Network

Epochs

Total Size

Original | A-DNN

Comp.
Ratio

Accuracy
Loss

VGG-16

95

521 GB | 693 MB

7.702

-0.0003%

ResNet101

89

14.1GB | 2.18 GB

6.488

-0.0015%

GoogLeNet

83

191 GB | 191 MB

10.259

-0.0009%

EfficientNet

110

1.21 GB | 208 MB

5.946

0.0001%

MobileNet

115

1.00 GB | 140 MB

7.311

-0.0004 %

ShuffleNet

113

391MB | 73MB

5.302

0

Delta-DNN can effectively reduce the storage size
by 5x~10x, while the average inference accuracy
loss is negligible.
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Inference accuracy before and after using Delta-DNN



ENT'S X T ACTD

52T\ HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN

O

Conclusion and future work

> Delta-DNN

* A novel delta compression framework for DNNSs, called Delta-DNN, which can significantly reduce
the size of DNNs by exploiting the floats similarity existing in neighboring networks in training.

* QOur evaluation results on six popular DNNs suggest Delta-DNN achieves 2x~10x higher
compression ratio compared with Zstd, LZMA, and SZ approaches.

* Controllable between inference accuracy and compression ratio.

> Future work

* Evaluate our proposed Delta-DNN on more neural networks and more datasets.
e Further improve the compression ratio combining other model compression techniques.

* Extend Delta-DNN framework into more scenarios, like deep learning in the distributed systems.



/é‘ﬁi‘:ﬁ'f’ k‘? (FE3) s%ffz/
ZC—  HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN ’gﬁiul/w"‘?/
ICPP 2020: 49th International Conference on ParaIIeI P rocessing

Thank you!

@\\H# S X

%‘ ﬁf‘ﬁ F %*‘% (&) %%‘ﬁff
HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN v U

._4
~—




