Extremely Low-bit Convolution Optimization for Quantized Neural Network on Modern Computer Architectures

Qingchang Han^{1,2}, Yongmin Hu¹, Fengwei Yu², Hailong Yang¹, Bing Liu², Peng Hu^{1,2}, Ruihao Gong^{1,2}, Yanfei Wang², Rui Wang¹, Zhongzhi Luan¹, Depei Qian¹

School of Computer Science and Engineering Beihang University¹, Beijing, China SenseTime Research²

Outline

Background & Motivation

- CNN & Quantized Neural Network
- Low-bit Computation on Modern Computer Architectures

Optimization Methods

- Low-bit Convolution on ARM CPU
- Low-bit Convolution on NVIDIA GPU

Evaluation

- Experiment Setup
- Performance Analysis

Conclusion

Outline

Background & Motivation

- CNN & Quantized Neural Network
- Low-bit Computation on Modern Computer Architectures

Optimization Methods

- Low-bit Convolution on ARM CPU
- Low-bit Convolution on NVIDIA GPU

Evaluation

- Experiment Setup
- Performance Analysis

Conclusion

Convolutional Neural Network

- The computation complexity and memory footprint of CNNs need to be optimized
- Convolution layers take 90% 99% of computation and runtime [Chen et al., ISSCC'16]

Model Compression

Accuracy of Quantized Neural Network

		Top-1 Accuracy @ Precision		Top-5	Top-5 Accuracy @ Precision				
Network	Method	2	3	4	8	2	3	4	8
ResNet-18		F	Full precision: 70.5			Full precision: 89.6			
	LSQ (Ours)	67.6	70.2	71.1	71.1	87.6	89.4	90.0	90.1
	QIL	65.7	69.2	70.1					
	FAQ			69.8	70.0			89.1	89.3
	LQ-Nets	64.9	68.2	69.3		85.9	87.9	88.8	
	PACT	64.4	68.1	69.2		85.6	88.2	89.0	
	NICE		67.7	69.8			87.9	89.21	
	Regularization	61.7		67.3	68.1	84.4		87.9	88.2
ResNet-50		Full precision: 76.9			5.9	Full precision: 93.4			
	LSQ (Ours)	73.7	75.8	76.7	76.8	91.5	92.7	93.2	93.4
	PACT	72.2	75.3	76.5		90.5	92.6	93.2	
	NICE		75.1	76.5			92.3	93.3	
	FAQ			76.3	76.5			92.9	93.1
	LQ-Nets	71.5	74.2	75.1		90.3	91.6	92.4	
VGG-16bn		Full precision: 73.4			Full precision: 91.5				
	LSQ (Ours)	71.4	73.4	74.0	73.5	90.4	91.5	92.0	91.6
	FAQ			73.9	73.7			91.7	91.6
Squeeze		Full precision: 67.3			Full precision: 87.8				
Next-23-2x	LSQ (Ours)	53.3	63.7	67.4	67.0	77.5	85.4	87.8	87.7

Accuracy Comparison of Low-bit QNNs on ImageNet [Esser et al., ICLR'20]

- Recent works have proved the accuracy of quantized neural network
 - 8-bit quantized model can almost reach the same accuracy as the full-precision one
 - Lower-bit quantized models (e.g., 2~4-bit) only loss the accuracy slightly compared to the full-precision ones
- However, achieving the optimal performance of QNNs across different computer architectures is challenging and less studied in literatures

The Target Architectures for Optimization

- Most widely used architectures for CNN inference
 - Edge devices ARM CPU
 - Cloud accelerators NVIDIA GPU

- Provide architecture support for low-bit arithmetic instructions
 - ARM CPU: MLA/SMLAL
 - NVIDIA GPU: **dp4a/mma**(Tensor Core)

The shipments of ARM-based chips to date

Company		Accelerator March 2019		April 2019	May 2019	
	NVIDIA	GPU	97.0%	97.3%	97.4%	
	AMD	GPU	1.2%	1.1%	1.0%	
	Xilinx	FPGA	1.1%	1.0%	1.0%	
	Intel	FPGA	0.6%	0.6%	0.6%	
	Total Types	All	1,852	1,990	2,003	
	Source: Liftr Cloud Insights, June 2019					

The share of types with Cloud Accelerators

Low-bit Computation Support on ARM CPU

Low-bit arithmetic instruction

ARMv8.1 architecture

Low-bit Computation Support on NVIDIA GPU

Tensor Core

- Natively support mixed-precision GEMM
 - INT8/INT4/INT1 for Turing Tensor Cores
- Powerful inference performance
 - RTX 2080 Ti delivers up to 215.2 TOPS of INT8 inference performance

- Use of Tensor Core
 - WMMA API
 - PTX mma instructions(e.g. mma.m8n8k16)
 - Vendor libraries: cuBLAS/cuDNN (only fp16 now)

Existing Framework/Library Supporting Low-bit Conv2d

ARM CPU

- ncnn: 8-bit Conv2d(GEMM-based & Winograd)
- QNNPACK: 8-bit Conv2d(indirect convolution)
- TFLite: 8-bit Conv2d
- TVM: 1/2-bit Conv2d(popcount)/8-bit Conv2d(spatial pack)

NVIDIA GPU

- cuDNN: 8-bit Conv2d(dp4a)/16-bit Conv2d(Tensor Core)
- TensorRT: 8-bit Conv2d(Tensor Core)
- CUTLASS: 1/4/8-bit GEMM(Tensor Core)

- There is no public work that can support extremely low-bit convolution covering a wide range of bit width on ARM CPU (2~8-bit) and NVIDIA GPU (4-bit/8-bit)
- The missing support for extremely low-bit convolution motivates us to provide efficient implementations on ARM CPU and NVIDIA GPU

Outline

Background & Motivation

- CNN & Quantized Neural Network
- Low-bit Computation on Modern Computer Architectures

Optimization Methods

- Low-bit Convolution on ARM CPU
- Low-bit Convolution on NVIDIA GPU

Evaluation

- Experiment Setup
- Performance Analysis

Conclusion

Re-designing GEMM Computation on ARM CPU

- Re-design GEMM micro-kernel
 - 1. Load one column of Matrix A into Buffer A
 - 2. Load one row of Matrix B info Buffer B, and replicate it into each row of Buffer B
 - 3. Perform element-wise multiplication between Buffer A and each column-vector of Buffer B, and store the results to Buffer C
 - 4. After all the calculations are done, copy the data of Buffer C into Matrix C

Re-designing GEMM Computation on ARM CPU

- Data padding and packing optimization
 - Perform zero-padding when the dimension of data is not a multiple of the required dimension
 - Perform data packing to enable continuous data access

Instruction and Register Allocation Optimization on ARM CPU

- Optimized instruction schemes for GEMM
 - For 4 to 8-bit GEMM, we choose **SMLAL** and **SADDW** instructions

• For 2 to 3-bit GEMM, we choose **MLA** and **SADDW** instructions

Instruction and Register Allocation Optimization on ARM CPU

- Register allocation optimization
 - For 4~8-bit input data

Algorithm 1 The 4~8-bit GEMM kernel with register allocation optimization **Input:** Padding_and_Packing { *Matrix A* and *Matrix B* } 1: while k > 0 do 2: LD1 { v_0 } addr_Matrix_A 3: LD4R { $v_2 \sim v_5$ } addr Matrix B 4: SMLAL(2) { $v_{10} \sim v_{17}$ } { v_1 } { $v_6 \sim v_9$ } 5: LD1 { v_1 } addr_Matrix_A 6: LD4R { $v_6 \sim v_9$ } addr Matrix B 7: SMLAL(2) { $v_{10} \sim v_{17}$ } { v_0 } { $v_2 \sim v_5$ } 8: 9: MOV { v_0, v_1 } {{ x_0, x_1 }, { x_2, x_3 }} 10: SADDW(2) { $v_{18} \sim v_{31}$ } { $v_{10} \sim v_{16}$ } 11: SADDW(2) { v_0, v_1 } { v_{17} } 12: MOV { { x_0, x_1 }, { x_2, x_3 } } { v_0, v_1 } 13: $k \leftarrow k - unrolling_factor$ 14: 15: end while 16: MOV { v_0, v_1 } { { x_0, x_1 }, { x_2, x_3 } } 17: ST1 { { $v_{18} \sim v_{31}$ }, { v_0, v_1 } } *addr_Matrix_C*

Winograd Optimization on ARM CPU

Winograd method

$$F(m \times m, r \times r)$$
: $Y = A^T[[GgG^T] \odot [B^T dB]]A$

- Apply F(2x2, 3x3) to $4 \sim 6$ -bit convolution
 - For more details, please refer to our paper.
 - - The maximum theoretical speedup of F(2x2, 3x3) is 2.25×, however MLA instruction is 2× faster than **SMLAL** instruction

Implicit-precomp GEMM Method on GPU

- Implicit GEMM
 - Avoid global matrix transformation and reducing memory footprint
- Precomputed Buffer
 - Store the offsets of elements in precomputed buffer

M = (N*OH*OW) K = (KH*KW*IC) N = OC

Data Partition along with Thread Hierarchy on GPU

KStep

MFrag

(a) Grid-Level

 Divide the matrix A, B and C into tiles by MTile, NTile, KTile

Algorithm 2 Implicit-precomp GEMM-based Conv2D

	Inp	out: Shape of convolution and pointers of input, weight and
		output. The precomputed buffer.
	Ti	ling Parameters: MTile, NTile, KTile, KStep, blockRowWarp-
		Num and blockColWarpNum.
	1:	compute KTileNum, KStepNum, MFrag, NFrag, warpRowNum
NFrag		and <i>warpColNum</i> ;
	for <i>k_outer</i> in <i>KTileNum</i> do	
	3:	load A_Tile to shared memory by precomputed buffer;
	4:	load B_Tile to shared memory;
	5:	syncthreads();
B_Fragment	6:	for <i>k_inner</i> in <i>KStepNum</i> do
(Register)	7:	load A_Fragment to register;
NFrag	8:	load B_Fragment to register;
	9:	for row in WarpRowNum do
	10:	for col in WarpColNum do
	11:	compute C_Fragment by mma instruction;
C Fragment	12:	end for
(Register)	13:	end for
	14:	end for
Level	15:	add bias and re-quantize on register;
	16:	store C_Fragment to global memory;
	17:	end for

M = (N*OH*OW)K = (KH*KW*IC)N = OC

Data Partition along Thread Hierarchy on GPU

(b) Block-Level

- Divide C_Tile, A_Tile, B_Tile into fragments by blockRowWarpNum, blockColWarpNum
- Split the *KTile* loop by *KStep*

Input: Shape of convolution and pointers of input, weight and output. The precomputed buffer.
Tiling Parameters: MTile, NTile, KTile, KStep, blockRowWarp-Num and blockColWarpNum.

1: compute *KTileNum*, *KStepNum*, *MFrag*, *NFrag*, *warpRowNum* and *warpColNum*;

Algorithm 2 Implicit-precomp GEMM-based Conv2D

- 2: **for** *k_outer* in *KTileNum* **do**
- 3: load **A_Tile** to shared memory by precomputed buffer;
 - load **B_Tile** to shared memory;
 - __syncthreads(); for k_inner in KStepNum do
- 7: load **A_Fragment** to register;
 - load **B_Fragment** to register; **for** *row* in *WarpRowNum* **do**
 - for col in WarpColNum do
 - compute **C_Fragment** by mma instruction;
 - end for
 - end for

end for

- add bias and re-quantize on register;
- 16: store **C_Fragment** to global memory;
- 17: **end for**

4:

5:

6:

8:

9:

10:

11:

12:

13:

14:

15:

Data Partition along Thread Hierarchy on GPU

(c) Warp-Level

Call Tensor Core through mma instructions to perform the matrix multiplication

Algorithm 2 Implicit-precomp GEMM-based Conv2D

	Inpu	ut: Shape of convolution and pointers of input, weight and					
output. The precomputed buffer.							
Tiling Parameters: MTile, NTile, KTile, KStep, blockR							
Num and blockColWarpNum.							
	1:	compute KTileNum, KStepNum, MFrag, NFrag, warpRowNum					
		and <i>warpColNum</i> ;					
	2: 1	for <i>k_outer</i> in <i>KTileNum</i> do					
	3:	load A_Tile to shared memory by precomputed buffer;					
	4:	load B_Tile to shared memory;					
	5:	syncthreads();					
nt	6:	for <i>k_inner</i> in <i>KStepNum</i> do					
	7:	load A_Fragment to register;					
	8:	load B_Fragment to register;					
	9:	for row in WarpRowNum do					
	10:	for col in WarpColNum do					
	11:	compute C_Fragment by mma instruction;					
	12:	end for					
nt	13:	end for					
	14:	end for					
	15:	add bias and re-quantize on register;					
	16:	store C_Fragment to global memory;					
	17:	end for					
	_						

NFrag

M = (N*OH*OW)K = (KH*KW*IC)N = OC

Data Partition along Thread Hierarchy on GPU

Auto-tuning of tiling parameters

- Use C++ function template to generate multiple kernels with different combinations of parameters
- Choose the best one through profile runs
- The optimal tiling parameters only need to be determined once per convolution shape with negligible overhead

Algorithm 2 Implicit-precomp GEMM-based Conv2D

- **Input:** Shape of convolution and pointers of input, weight and output. The precomputed buffer.
- **Tiling Parameters:** *MTile*, *NTile*, *KTile*, *KStep*, *blockRowWarp-Num* and *blockColWarpNum*.
- 1: compute KTileNum, KStepNum, MFrag, NFrag, warpRowNum and warpColNum;
- 2: **for** *k_outer* in *KTileNum* **do**
- 3: load **A_Tile** to shared memory by precomputed buffer;
- 4: load **B_Tile** to shared memory;
 - __syncthreads();

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

- **for** *k_inner* in *KStepNum* **do**
 - load **A_Fragment** to register;
- load **B_Fragment** to register;
- **for** row in WarpRowNum **do**
 - for col in WarpColNum do
 - compute **C_Fragment** by mma instruction;
 - end for
 - end for

end for

- add bias and re-quantize on register;
- store **C_Fragment** to global memory;
- 17: **end for**

Multi-level Memory Access Optimization on GPU

Multi-level Memory Access Optimization on GPU

2. Reordering memory access on shared memory

Reduce the number of LDS instructions to 1/4 of the original

Multi-level Memory Access Optimization on GPU

- 3. Overlapped computation and memory access using registers
 - A temporary buffer on registers to prefetch the data required for the next iteration
 - The processes ① and ④ can be performed simultaneously

- 4. In-place calculation of bias and re-quantization
 - After finishing the **mma** calculation, directly apply bias and re-quantization on the registers

Quantization Fusion on GPU

1. Fusion of convolution and dequantization

- Directly transform the results from int32 to float32 in convolution kernel
- Skip storing the intermediate results with int8 data type

2. Fusion of convFor more details, please refer to our paper.

- Change the truncated range of re-quantization in convolution kernel
- Eliminate the overhead of unnecessary computation and memory access

Outline

Background & Motivation

- CNN & Quantized Neural Network
- Low-bit Computation on Modern Computer Architectures

Optimization Methods

- Low-bit Convolution on ARM CPU
- Low-bit Convolution on NVIDIA GPU

Evaluation

- Experiment Setup
- Performance Analysis

Conclusion

Experiment Setup

- Hardware and software
- Models
 - ResNet-50(all non-redundant layers)
 - DenseNet-121
- Batch size
 - ARM: 1
 - GPU: 1 & 16
- Methods for comparison
 - ARM:
 - ncnn 8-bit Conv2d(baseline)
 - TVM 2-bit Conv2d
 - GPU:
 - cuDNN 8-bit Conv2d with dp4a instruction(baseline)
 - TensorRT 8-bit Conv2d with Tensor Core

Table 1: Hardware and software configurations.

Platform	ARM CPU	NVIDIA GPU
Device	Raspberry Pi 3B	RTX 2080Ti
Architecture	ARM Cortex-A53	NVIDIA Turing
		TU102
Software	Ubuntu 16.04 LTS	Ubuntu 16.04 LTS,
	for Raspberry Pi,	gcc 5.4.0, CUDA 10.2,
	gcc 5.4.0, ncnn with	cuDNN 7.6.5, Ten-
	commit 6f2ef19	sorRT 7

Performance Comparison On ARM CPU

The performance of our optimized 2~7-bit convolution kernels exceeds ncnn in most layers for ResNet-50, with average speedup of 1.60×, 1.54×, 1.38×, 1.38×, 1.34× and 1.27×, respectively

Performance Comparison with TVM On ARM CPU

 Our 2-bit implementation outperforms TVM in most cases (16 out of 19 cases), with the highest speedup of 2.11× and the average speedup of 1.78×

Performance Comparison On NVIDIA GPU

- With the batch size of 1, our 4-bit and 8-bit convolution kernels outperform TensorRT in most cases, with the average speedup of 1.78× and 1.44×, respectively
- With the batch size of 16, our 4-bit kernels also outperform TensorRT in 12 layers by an average speedup of 1.46×

The average speedup of 4-bit and 8-bit convolution kernels with the profile runs enabled is 2.29× and 2.91×, respectively

Space Overhead

- GPU: Negligible overhead consumed by precomputed buffer
- ARM: The space overhead of im2col, data padding and packing operations
 - The baseline is space occupation of activation and weight for each layer
 - The overhead of im2col for some layers(e.g., conv2 and conv6) is relatively high
 - The space overhead of im2col is determined by convolution kernel size, stride, and input size

Outline

Background & Motivation

- CNN & Quantized Neural Network
- Low-bit Computation on Modern Computer Architectures

Optimization Methods

- Low-bit Convolution on ARM CPU
- Low-bit Convolution on NVIDIA GPU

Evaluation

- Experiment Setup
- Performance Analysis

Conclusion

Conclusion

- Explore extremely low-bit convolution optimizations
 - ARM CPU
 - Re-design GEMM computation
 - Instruction and register allocation optimization
 - Winograd optimization
 - NVIDIA GPU
 - Data partition along with thread hierarchy
 - Multi-level memory access optimization
 - Quantization fusion
- Significant speedup compared to existing framework/library
 - ARM CPU: 1.60 x (2-bit) / 1.38 x (4-bit)
 - NVIDIA GPU: 5.26 x (4-bit) / 4.31 x (8-bit)

Thanks! Q&A