
Extremely Low-bit Convolution Optimization for 

Quantized Neural Network on Modern Computer 

Architectures

School of Computer Science and Engineering
Beihang University1, Beijing, China

SenseTime Research2

Qingchang Han1,2, Yongmin Hu1, Fengwei Yu2, Hailong Yang1, Bing Liu2, Peng
Hu1,2, Ruihao Gong1,2, Yanfei Wang2, Rui Wang1, Zhongzhi Luan1, Depei Qian1



Outline

◼ Background & Motivation
◼ CNN & Quantized Neural Network

◼ Low-bit Computation on Modern Computer Architectures

◼ Optimization Methods
◼ Low-bit Convolution on ARM CPU

◼ Low-bit Convolution on NVIDIA GPU

◼ Evaluation
◼ Experiment Setup

◼ Performance Analysis

◼ Conclusion



Outline

◼ Background & Motivation
◼ CNN & Quantized Neural Network

◼ Low-bit Computation on Modern Computer Architectures

◼ Optimization Methods
◼ Low-bit Convolution on ARM CPU

◼ Low-bit Convolution on NVIDIA GPU

◼ Evaluation
◼ Experiment Setup

◼ Performance Analysis

◼ Conclusion



Convolutional Neural Network

Computer Vision Automatic Driving Recommendation SystemSpeech Recognition

Input
Convolution ConvolutionPooling Pooling Flatten FC

Output

Convolutional Neural Network

◼ The computation complexity and memory footprint of CNNs need to be optimized

◼ Convolution layers take 90% - 99% of computation and runtime [Chen et al., ISSCC’16]



Model Compression

◼ Model compression reduces computation complexity
with acceptable accuracy

◼ Network Pruning

◼ Model Quantization

◼ Model Quantization

◼ Mapping data to a smaller set of numerical representation

◼ Improve the performance and reduce memory footprint
while preserving accuracy

◼ Example: int8 Conv2d quantization

Sign(1-bit) Exponent(8-bits) Mantissa(23-bits)

Sign(1-bit) Mantissa(7-bits)

FP32

INT8

Quantize Dequantize

𝑥𝑓 = 𝑠𝑐𝑎𝑙𝑒 × 𝑥𝑞
𝑥𝑞 = 𝑐𝑙𝑖𝑝(127, −128, 𝑥𝑖𝑛𝑡)

𝑥𝑖𝑛𝑡 = 𝑟𝑜𝑢𝑛𝑑(𝑥𝑓/𝑠𝑐𝑎𝑙𝑒)



Accuracy of Quantized Neural Network

◼ Recent works have proved the accuracy of quantized neural network

◼ 8-bit quantized model can almost reach the same accuracy as the full-precision one

◼ Lower-bit quantized models (e.g., 2∼4-bit) only loss the accuracy slightly compared to the 

full-precision ones

◼ However, achieving the optimal performance of QNNs across different computer
architectures is challenging and less studied in literatures

Accuracy Comparison of Low-bit QNNs on ImageNet

[Esser et al., ICLR’20]



The Target Architectures for Optimization

◼ Most widely used architectures for CNN
inference

◼ Edge devices – ARM CPU

◼ Cloud accelerators – NVIDIA GPU

◼ Provide architecture support for low-bit 
arithmetic instructions

◼ ARM CPU: MLA/SMLAL

◼ NVIDIA GPU: dp4a/mma(Tensor Core)

The shipments of ARM-based chips to date

The share of types with Cloud Accelerators



Low-bit Computation Support on ARM CPU

◼ Low-bit arithmetic instruction

ARMv8.1 architecture

…

…

…

16x8bit

8x16bit

16x8bit

Multiply-Accumulate 

(SMLAL)

…

…

16x8bit

16x8bit …

16x8bit

Multiply-Accumulate 

(MLA)

…

8x16bit

…

16x8bit
Add Wide

(SADDW)

…

8x16bit 4x32bit



Low-bit Computation Support on NVIDIA GPU

CUDA

Cores

Tensor

Cores

Register File

Warp Scheduler

CUDA

Cores

Tensor

Cores

Register File

Warp Scheduler

CUDA

Cores

Tensor

Cores

Register File

Warp Scheduler

CUDA

Cores

Tensor

Cores

Register File

Warp Scheduler

L1 Data Cache / Shared Memory

◼ Tensor Core

◼ Natively support mixed-precision GEMM

◼ INT8/INT4/INT1 for Turing Tensor Cores

◼ Powerful inference performance

◼ RTX 2080 Ti delivers up to 215.2 TOPS of INT8
inference performance

◼ Use of Tensor Core

◼ WMMA API

◼ PTX mma instructions(e.g. mma.m8n8k16)

◼ Vendor libraries: cuBLAS/cuDNN (only fp16 now)

INT32 INT8/INT4 INT8/INT4 INT32



Existing Framework/Library Supporting Low-bit Conv2d

◼ There is no public work that can support extremely low-bit convolution covering 
a wide range of bit width on ARM CPU (2∼8-bit) and NVIDIA GPU (4-bit/8-bit)

◼ The missing support for extremely low-bit convolution motivates us to provide
efficient implementations on ARM CPU and NVIDIA GPU

ARM CPU

◼ ncnn: 8-bit Conv2d(GEMM-based & Winograd)

◼ QNNPACK: 8-bit Conv2d(indirect convolution)

◼ TFLite: 8-bit Conv2d

◼ TVM: 1/2-bit Conv2d(popcount)/8-bit
Conv2d(spatial pack)

NVIDIA GPU

◼ cuDNN: 8-bit Conv2d(dp4a)/16-bit
Conv2d(Tensor Core)

◼ TensorRT: 8-bit Conv2d(Tensor Core)

◼ CUTLASS: 1/4/8-bit GEMM(Tensor Core)



Outline

◼ Background & Motivation
◼ CNN & Quantized Neural Network

◼ Low-bit Computation on Modern Computer Architectures

◼ Optimization Methods
◼ Low-bit Convolution on ARM CPU

◼ Low-bit Convolution on NVIDIA GPU

◼ Evaluation
◼ Experiment Setup

◼ Performance Analysis

◼ Conclusion



Re-designing GEMM Computation on ARM CPU

Buffer A Buffer B Buffer C

Matrix A Matrix B Matrix C

× =

×
Element-wise

Multiplication

1 2

3

4

◼ Re-design GEMM micro-kernel
1. Load one column of Matrix A into Buffer A

2. Load one row of Matrix B info Buffer B, and replicate it into each row of Buffer B

3. Perform element-wise multiplication between Buffer A and each column-vector of Buffer B, and store
the results to Buffer C

4. After all the calculations are done, copy the data of Buffer C into Matrix C

Memory

Registers



Matrix B

Re-designing GEMM Computation on ARM CPU

◼ Data padding and packing optimization

◼ Perform zero-padding when the dimension of data is not a multiple of the required dimension

◼ Perform data packing to enable continuous data access

Matrix A

Zero-padding

B11 B12 B13 0

B21 B22 B23 0

B31 B32 B33 0

B41 B42 B43 0

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

0 0 0 0

A11 A21 A31 0 A12 A22 A32 0 A13 A23 A33 0 A14 A24 A34 0

B11 B12 B13 0 B21 B22 B23 0 B31 B32 B33 0 B41 B42 B43 0

Zero-padding

Packed Matrix A

Packed Matrix B

Padding and Packing

Padding and Packing



Instruction and Register Allocation Optimization on ARM CPU

◼ Optimized instruction schemes for GEMM

◼ For 4 to 8-bit GEMM, we choose SMLAL and SADDW instructions 

◼ For 2 to 3-bit GEMM, we choose MLA and SADDW instructions

…

…

…

SMLAL SADDW16x8bit 8x16bit 4x32bit

until overflow until overflow

16x8bit4~8-bit

4~8-bit

…

… …

SADDW

SADDW
16x8bit

8x16bit

4x32bit

until overflow

until overflow

16x8bit2~3-bit

2~3-bit

…

16x8bitMLA

until overflow

1 2

1 2

3



Instruction and Register Allocation Optimization on ARM CPU

𝑣0

𝑣2~𝑣5
𝑣10~𝑣17

𝑣18~𝑣31
𝑥0~𝑥3

𝑣1

𝑣6~𝑣9

𝑣0~𝑣3

𝑣4~𝑣7

𝑣8~𝑣11 𝑣12~𝑣19
𝑣20~𝑣31
𝑥0~𝑥7

SMLAL

Buffer A

Buffer B

Buffer A

Buffer B

Temporary Results

(16-bit)

16-bit

SADDW

Buffer A

Buffer B

MLA

Buffer C

(32-bit)

Temporary Results

(8-bit)

Temporary Results

(16-bit)
Buffer C

(32-bit)

8-bit

SADDW

16-bit

SADDW

◼ Register allocation optimization

◼ For 4~8-bit input data

◼ For 2~3-bit input data

Double
Buffer



Winograd Optimization on ARM CPU

◼ Winograd method

◼ Achieve acceleration by reducing the number of multiplications

◼ Converts convolution computation to the following form:

◼ Apply F(2x2, 3x3) to 4~6-bit convolution

◼ Ensure the transformed data in the range of 8-bit precision

◼ F(2x2, 3x3): No more than 6 bits

◼ F(4x4, 3x3): Unacceptable increment of numerical range

◼ 2 to 3-bit convolution?

◼ The maximum theoretical speedup of F(2x2, 3x3) is 2.25×, however MLA instruction is 
2× faster than SMLAL instruction

◼ Offset the performance advantage of Winograd method

:

For more details, please refer to our paper.



Implicit-precomp GEMM Method on GPU

◼ Implicit GEMM

◼ Avoid global matrix transformation and reducing memory footprint

◼ Precomputed Buffer

◼ Store the offsets of elements in precomputed buffer

INPUT: N*IH*IW*IC

IM2COL

K

M

Matrix A(Implicit)

Precomputed Buffer

Offsets in INPUT

M

M = (N*OH*OW) K = (KH*KW*IC) N = OC



Data Partition along with Thread Hierarchy on GPU

M = (N*OH*OW) K = (KH*KW*IC) N = OC

(a) Grid-Level

◼ Divide the matrix A, B and C into tiles by MTile, 
NTile, KTile

Matrix B

(GMEM)

M

N

M

K

K N

Matrix A

(GMEM)

Matrix C

(GMEM)

C_Fragment

(Register)

B_Fragment

(Register)

A_Fragment

(Register)

MFragMFrag

KStep

NFrag

NFrag

KStep

(a) Grid-Level (b) Block-Level (c) Warp-Level

C_Tile

(Register)

B_Tile

(SMEM)

A_Tile

(SMEM)

MTileMTile

KTile

KTile

NTile

NTile



Data Partition along Thread Hierarchy on GPU

Matrix B

(GMEM)

M

N

M

K

K N

Matrix A

(GMEM)

Matrix C

(GMEM)

C_Fragment

(Register)

B_Fragment

(Register)

A_Fragment

(Register)

MFragMFrag

KStep

NFrag

NFrag

KStep

(a) Grid-Level (b) Block-Level (c) Warp-Level

C_Tile

(Register)

B_Tile

(SMEM)

A_Tile

(SMEM)

MTileMTile

KTile

KTile

NTile

NTile

M = (N*OH*OW) K = (KH*KW*IC) N = OC

(b) Block-Level

◼ Divide C_Tile, A_Tile, B_Tile into fragments by 
blockRowWarpNum, blockColWarpNum

◼ Split the KTile loop by KStep



Data Partition along Thread Hierarchy on GPU

Matrix B

(GMEM)

M

N

M

K

K N

Matrix A

(GMEM)

Matrix C

(GMEM)

C_Fragment

(Register)

B_Fragment

(Register)

A_Fragment

(Register)

MFragMFrag

KStep

NFrag

NFrag

KStep

(a) Grid-Level (b) Block-Level (c) Warp-Level

C_Tile

(Register)

B_Tile

(SMEM)

A_Tile

(SMEM)

MTileMTile

KTile

KTile

NTile

NTile

M = (N*OH*OW) K = (KH*KW*IC) N = OC

(c) Warp-Level

◼ Call Tensor Core through mma instructions to 
perform the matrix multiplication



Data Partition along Thread Hierarchy on GPU

◼ Auto-tuning of tiling parameters

◼ Use C++ function template to generate multiple
kernels with different combinations of parameters

◼ Choose the best one through profile runs

◼ The optimal tiling parameters only need to be 
determined once per convolution shape with 
negligible overhead

Matrix B

(GMEM)

M

N

M

K

K N

Matrix A

(GMEM)

Matrix C

(GMEM)

C_Fragment

(Register)

B_Fragment

(Register)

A_Fragment

(Register)

MFragMFrag

KStep

NFrag

NFrag

KStep

(a) Grid-Level (b) Block-Level (c) Warp-Level

C_Tile

(Register)

B_Tile

(SMEM)

A_Tile

(SMEM)

MTileMTile

KTile

KTile

NTile

NTile



Multi-level Memory Access Optimization on GPU

1. Coalesced access on global memory

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 30 Thread 31…

0 16 32 48 64 80 96 112 128 480 496 512

Quarter-Warp

Addresses:

// Example code
// char* src_t;
// char* dst_t;
*((int4*)dst_t) = __ldg((int4*)(src_t + threadIdx.x * 16));



Multi-level Memory Access Optimization on GPU

1. Coalesced access on global memory

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 30 Thread 31…

0 16 32 48 64 80 96 112 128 480 496 512

Quarter-Warp

Addresses:

// Example code
// char* src_t;
// char* dst_t;
*((int4*)dst_t) = __ldg((int4*)(src_t + threadIdx.x * 16));

T0 T0 T0 T0 T1 T1 T1 T1 T2 T2 T2 T2 T3 T3 T3 T3

T4 T4 T4 T4 T5 T5 T5 T5 T6 T6 T6 T6 T7 T7 T7 T7

T28 T28 T28 T28 T29 T29 T29 T29 T30 T30 T30 T30 T31 T31 T31 T31

… …

K

M

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3

T4 T5 T6 T7 T4 T5 T6 T7 T4 T5 T6 T7 T4 T5 T6 T7

T28 T29 T30 T31 T28 T29 T30 T31 T28 T29 T30 T31 T28 T29 T30 T31

… …

K

M

(a) Before Reordering (b) After Reordering

2. Reordering memory access on shared memory

◼ Reduce the number of LDS instructions to 1/4 of the original



Multi-level Memory Access Optimization on GPU

3. Overlapped computation and memory 

access using registers

◼ A temporary buffer on registers to prefetch the 
data required for the next iteration

◼ The processes ① and ④ can be performed

simultaneously

4. In-place calculation of bias and re-quantization

◼ After finishing the mma calculation, directly apply bias and re-quantization on the registers



Quantization Fusion on GPU

1. Fusion of convolution and dequantization

◼ Directly transform the results from int32 to float32 in convolution kernel

◼ Skip storing the intermediate results with int8 data type

Conv2d Dequantize Conv2d+DequanizeQuantize Quantize

Conv2d

Dequantize

Conv2d+ReLU

Quantize

Quantize

ReLU

Dequantize

2. Fusion of convolution and ReLU

◼ Change the truncated range of re-quantization in convolution kernel

◼ Eliminate the overhead of unnecessary computation and memory access

Dequantize

Quantize

For more details, please refer to our paper.



Outline

◼ Background & Motivation
◼ CNN & Quantized Neural Network

◼ Low-bit Computation on Modern Computer Architectures

◼ Optimization Methods
◼ Low-bit Convolution on ARM CPU

◼ Low-bit Convolution on NVIDIA GPU

◼ Evaluation
◼ Experiment Setup

◼ Performance Analysis

◼ Conclusion



Experiment Setup

◼ Hardware and software

◼ Models

◼ ResNet-50(all non-redundant layers)

◼ DenseNet-121

◼ Batch size

◼ ARM: 1

◼ GPU: 1 & 16

◼ Methods for comparison

◼ ARM:

◼ ncnn 8-bit Conv2d(baseline)

◼ TVM 2-bit Conv2d

◼ GPU:

◼ cuDNN 8-bit Conv2d with dp4a instruction(baseline)

◼ TensorRT 8-bit Conv2d with Tensor Core



Performance Comparison On ARM CPU

◼ The performance of our optimized 2∼7-bit convolution kernels exceeds ncnn in 
most layers for ResNet-50, with average speedup of 1.60×, 1.54×, 1.38×, 
1.38×, 1.34× and 1.27×, respectively



Performance Comparison with TVM On ARM CPU

◼ Our 2-bit implementation outperforms TVM in most cases (16 out of 19 cases), 
with the highest speedup of 2.11× and the average speedup of 1.78×



Performance Comparison On NVIDIA GPU

◼ With the batch size of 1, our 4-bit and 8-bit convolution kernels outperform
TensorRT in most cases, with the average speedup of 1.78× and 1.44×, respectively

◼ With the batch size of 16, our 4-bit kernels also outperform TensorRT in 12 layers by 
an average speedup of 1.46×



Performance Improvement with Profile Runs on GPU

◼ The average speedup of 4-bit and 8-bit convolution kernels with the profile runs 
enabled is 2.29× and 2.91×, respectively



Space Overhead

◼ GPU: Negligible overhead consumed by precomputed buffer

◼ ARM: The space overhead of im2col, data padding and packing operations

◼ The baseline is space occupation of activation and weight for each layer

◼ The overhead of im2col for some layers(e.g., conv2 and conv6) is relatively high

◼ The space overhead of im2col is determined by convolution kernel size, stride, and input size



Outline

◼ Background & Motivation
◼ CNN & Quantized Neural Network

◼ Low-bit Computation on Modern Computer Architectures

◼ Optimization Methods
◼ Low-bit Convolution on ARM CPU

◼ Low-bit Convolution on NVIDIA GPU

◼ Evaluation
◼ Experiment Setup

◼ Performance Analysis

◼ Conclusion



Conclusion

◼ Explore extremely low-bit convolution optimizations

◼ ARM CPU

◼ Re-design GEMM computation

◼ Instruction and register allocation optimization

◼ Winograd optimization

◼ NVIDIA GPU

◼ Data partition along with thread hierarchy

◼ Multi-level memory access optimization

◼ Quantization fusion

◼ Significant speedup compared to existing framework/library

◼ ARM CPU: 1.60ｘ(2-bit) / 1.38ｘ(4-bit)

◼ NVIDIA GPU: 5.26ｘ(4-bit) / 4.31ｘ(8-bit)



Thanks! Q&A 


