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Convolutional Neural Network

Computer Vision Automatic Driving Recommendation SystemSpeech Recognition

Input
Convolution ConvolutionPooling Pooling Flatten FC

Output

Convolutional Neural Network

◼ The computation complexity and memory footprint of CNNs need to be optimized

◼ Convolution layers take 90% - 99% of computation and runtime [Chen et al., ISSCC’16]



Model Compression

◼ Model compression reduces computation complexity
with acceptable accuracy

◼ Network Pruning

◼ Model Quantization

◼ Model Quantization

◼ Mapping data to a smaller set of numerical representation

◼ Improve the performance and reduce memory footprint
while preserving accuracy

◼ Example: int8 Conv2d quantization

Sign(1-bit) Exponent(8-bits) Mantissa(23-bits)

Sign(1-bit) Mantissa(7-bits)

FP32

INT8

Quantize Dequantize

𝑥𝑓 = 𝑠𝑐𝑎𝑙𝑒 × 𝑥𝑞
𝑥𝑞 = 𝑐𝑙𝑖𝑝(127, −128, 𝑥𝑖𝑛𝑡)

𝑥𝑖𝑛𝑡 = 𝑟𝑜𝑢𝑛𝑑(𝑥𝑓/𝑠𝑐𝑎𝑙𝑒)



Accuracy of Quantized Neural Network

◼ Recent works have proved the accuracy of quantized neural network

◼ 8-bit quantized model can almost reach the same accuracy as the full-precision one

◼ Lower-bit quantized models (e.g., 2∼4-bit) only loss the accuracy slightly compared to the 

full-precision ones

◼ However, achieving the optimal performance of QNNs across different computer
architectures is challenging and less studied in literatures

Accuracy Comparison of Low-bit QNNs on ImageNet

[Esser et al., ICLR’20]



The Target Architectures for Optimization

◼ Most widely used architectures for CNN
inference

◼ Edge devices – ARM CPU

◼ Cloud accelerators – NVIDIA GPU

◼ Provide architecture support for low-bit 
arithmetic instructions

◼ ARM CPU: MLA/SMLAL

◼ NVIDIA GPU: dp4a/mma(Tensor Core)

The shipments of ARM-based chips to date

The share of types with Cloud Accelerators



Low-bit Computation Support on ARM CPU

◼ Low-bit arithmetic instruction

ARMv8.1 architecture

…

…

…

16x8bit

8x16bit

16x8bit

Multiply-Accumulate 

(SMLAL)

…

…

16x8bit

16x8bit …

16x8bit

Multiply-Accumulate 

(MLA)

…

8x16bit

…

16x8bit
Add Wide

(SADDW)

…

8x16bit 4x32bit



Low-bit Computation Support on NVIDIA GPU

CUDA

Cores

Tensor

Cores

Register File

Warp Scheduler

CUDA

Cores

Tensor
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Warp Scheduler

CUDA

Cores

Tensor

Cores

Register File

Warp Scheduler

CUDA

Cores

Tensor

Cores

Register File

Warp Scheduler

L1 Data Cache / Shared Memory

◼ Tensor Core

◼ Natively support mixed-precision GEMM

◼ INT8/INT4/INT1 for Turing Tensor Cores

◼ Powerful inference performance

◼ RTX 2080 Ti delivers up to 215.2 TOPS of INT8
inference performance

◼ Use of Tensor Core

◼ WMMA API

◼ PTX mma instructions(e.g. mma.m8n8k16)

◼ Vendor libraries: cuBLAS/cuDNN (only fp16 now)

INT32 INT8/INT4 INT8/INT4 INT32



Existing Framework/Library Supporting Low-bit Conv2d

◼ There is no public work that can support extremely low-bit convolution covering 
a wide range of bit width on ARM CPU (2∼8-bit) and NVIDIA GPU (4-bit/8-bit)

◼ The missing support for extremely low-bit convolution motivates us to provide
efficient implementations on ARM CPU and NVIDIA GPU

ARM CPU

◼ ncnn: 8-bit Conv2d(GEMM-based & Winograd)

◼ QNNPACK: 8-bit Conv2d(indirect convolution)

◼ TFLite: 8-bit Conv2d

◼ TVM: 1/2-bit Conv2d(popcount)/8-bit
Conv2d(spatial pack)

NVIDIA GPU

◼ cuDNN: 8-bit Conv2d(dp4a)/16-bit
Conv2d(Tensor Core)

◼ TensorRT: 8-bit Conv2d(Tensor Core)

◼ CUTLASS: 1/4/8-bit GEMM(Tensor Core)
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Re-designing GEMM Computation on ARM CPU

Buffer A Buffer B Buffer C

Matrix A Matrix B Matrix C

× =

×
Element-wise

Multiplication

1 2

3

4

◼ Re-design GEMM micro-kernel
1. Load one column of Matrix A into Buffer A

2. Load one row of Matrix B info Buffer B, and replicate it into each row of Buffer B

3. Perform element-wise multiplication between Buffer A and each column-vector of Buffer B, and store
the results to Buffer C

4. After all the calculations are done, copy the data of Buffer C into Matrix C

Memory

Registers



Matrix B

Re-designing GEMM Computation on ARM CPU

◼ Data padding and packing optimization

◼ Perform zero-padding when the dimension of data is not a multiple of the required dimension

◼ Perform data packing to enable continuous data access

Matrix A

Zero-padding

B11 B12 B13 0

B21 B22 B23 0

B31 B32 B33 0

B41 B42 B43 0

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

0 0 0 0

A11 A21 A31 0 A12 A22 A32 0 A13 A23 A33 0 A14 A24 A34 0

B11 B12 B13 0 B21 B22 B23 0 B31 B32 B33 0 B41 B42 B43 0

Zero-padding

Packed Matrix A

Packed Matrix B

Padding and Packing

Padding and Packing



Instruction and Register Allocation Optimization on ARM CPU

◼ Optimized instruction schemes for GEMM

◼ For 4 to 8-bit GEMM, we choose SMLAL and SADDW instructions 

◼ For 2 to 3-bit GEMM, we choose MLA and SADDW instructions

…

…

…

SMLAL SADDW16x8bit 8x16bit 4x32bit

until overflow until overflow

16x8bit4~8-bit

4~8-bit

…

… …

SADDW

SADDW
16x8bit

8x16bit

4x32bit

until overflow

until overflow

16x8bit2~3-bit

2~3-bit

…

16x8bitMLA

until overflow

1 2

1 2

3



Instruction and Register Allocation Optimization on ARM CPU

𝑣0

𝑣2~𝑣5
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SMLAL

Buffer A

Buffer B

Buffer A

Buffer B

Temporary Results

(16-bit)

16-bit

SADDW

Buffer A

Buffer B

MLA

Buffer C

(32-bit)

Temporary Results

(8-bit)

Temporary Results

(16-bit)
Buffer C

(32-bit)

8-bit

SADDW

16-bit

SADDW

◼ Register allocation optimization

◼ For 4~8-bit input data

◼ For 2~3-bit input data

Double
Buffer



Winograd Optimization on ARM CPU

◼ Winograd method

◼ Achieve acceleration by reducing the number of multiplications

◼ Converts convolution computation to the following form:

◼ Apply F(2x2, 3x3) to 4~6-bit convolution

◼ Ensure the transformed data in the range of 8-bit precision

◼ F(2x2, 3x3): No more than 6 bits

◼ F(4x4, 3x3): Unacceptable increment of numerical range

◼ 2 to 3-bit convolution?

◼ The maximum theoretical speedup of F(2x2, 3x3) is 2.25×, however MLA instruction is 
2× faster than SMLAL instruction

◼ Offset the performance advantage of Winograd method

:

For more details, please refer to our paper.



Implicit-precomp GEMM Method on GPU

◼ Implicit GEMM

◼ Avoid global matrix transformation and reducing memory footprint

◼ Precomputed Buffer

◼ Store the offsets of elements in precomputed buffer

INPUT: N*IH*IW*IC

IM2COL

K

M

Matrix A(Implicit)

Precomputed Buffer

Offsets in INPUT

M

M = (N*OH*OW) K = (KH*KW*IC) N = OC



Data Partition along with Thread Hierarchy on GPU

M = (N*OH*OW) K = (KH*KW*IC) N = OC

(a) Grid-Level

◼ Divide the matrix A, B and C into tiles by MTile, 
NTile, KTile

Matrix B

(GMEM)

M

N

M

K

K N

Matrix A

(GMEM)

Matrix C

(GMEM)

C_Fragment

(Register)

B_Fragment

(Register)

A_Fragment

(Register)

MFragMFrag

KStep

NFrag

NFrag

KStep

(a) Grid-Level (b) Block-Level (c) Warp-Level

C_Tile

(Register)

B_Tile

(SMEM)

A_Tile

(SMEM)

MTileMTile

KTile

KTile

NTile

NTile



Data Partition along Thread Hierarchy on GPU

Matrix B
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(a) Grid-Level (b) Block-Level (c) Warp-Level

C_Tile

(Register)

B_Tile

(SMEM)

A_Tile

(SMEM)

MTileMTile

KTile

KTile

NTile

NTile

M = (N*OH*OW) K = (KH*KW*IC) N = OC

(b) Block-Level

◼ Divide C_Tile, A_Tile, B_Tile into fragments by 
blockRowWarpNum, blockColWarpNum

◼ Split the KTile loop by KStep



Data Partition along Thread Hierarchy on GPU

Matrix B
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M = (N*OH*OW) K = (KH*KW*IC) N = OC

(c) Warp-Level

◼ Call Tensor Core through mma instructions to 
perform the matrix multiplication



Data Partition along Thread Hierarchy on GPU

◼ Auto-tuning of tiling parameters

◼ Use C++ function template to generate multiple
kernels with different combinations of parameters

◼ Choose the best one through profile runs

◼ The optimal tiling parameters only need to be 
determined once per convolution shape with 
negligible overhead
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Multi-level Memory Access Optimization on GPU

1. Coalesced access on global memory

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 30 Thread 31…

0 16 32 48 64 80 96 112 128 480 496 512

Quarter-Warp

Addresses:

// Example code
// char* src_t;
// char* dst_t;
*((int4*)dst_t) = __ldg((int4*)(src_t + threadIdx.x * 16));



Multi-level Memory Access Optimization on GPU

1. Coalesced access on global memory

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7 Thread 30 Thread 31…

0 16 32 48 64 80 96 112 128 480 496 512

Quarter-Warp

Addresses:

// Example code
// char* src_t;
// char* dst_t;
*((int4*)dst_t) = __ldg((int4*)(src_t + threadIdx.x * 16));
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(a) Before Reordering (b) After Reordering

2. Reordering memory access on shared memory

◼ Reduce the number of LDS instructions to 1/4 of the original



Multi-level Memory Access Optimization on GPU

3. Overlapped computation and memory 

access using registers

◼ A temporary buffer on registers to prefetch the 
data required for the next iteration

◼ The processes ① and ④ can be performed

simultaneously

4. In-place calculation of bias and re-quantization

◼ After finishing the mma calculation, directly apply bias and re-quantization on the registers



Quantization Fusion on GPU

1. Fusion of convolution and dequantization

◼ Directly transform the results from int32 to float32 in convolution kernel

◼ Skip storing the intermediate results with int8 data type

Conv2d Dequantize Conv2d+DequanizeQuantize Quantize

Conv2d

Dequantize

Conv2d+ReLU

Quantize

Quantize

ReLU

Dequantize

2. Fusion of convolution and ReLU

◼ Change the truncated range of re-quantization in convolution kernel

◼ Eliminate the overhead of unnecessary computation and memory access

Dequantize

Quantize

For more details, please refer to our paper.
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Experiment Setup

◼ Hardware and software

◼ Models

◼ ResNet-50(all non-redundant layers)

◼ DenseNet-121

◼ Batch size

◼ ARM: 1

◼ GPU: 1 & 16

◼ Methods for comparison

◼ ARM:

◼ ncnn 8-bit Conv2d(baseline)

◼ TVM 2-bit Conv2d

◼ GPU:

◼ cuDNN 8-bit Conv2d with dp4a instruction(baseline)

◼ TensorRT 8-bit Conv2d with Tensor Core



Performance Comparison On ARM CPU

◼ The performance of our optimized 2∼7-bit convolution kernels exceeds ncnn in 
most layers for ResNet-50, with average speedup of 1.60×, 1.54×, 1.38×, 
1.38×, 1.34× and 1.27×, respectively



Performance Comparison with TVM On ARM CPU

◼ Our 2-bit implementation outperforms TVM in most cases (16 out of 19 cases), 
with the highest speedup of 2.11× and the average speedup of 1.78×



Performance Comparison On NVIDIA GPU

◼ With the batch size of 1, our 4-bit and 8-bit convolution kernels outperform
TensorRT in most cases, with the average speedup of 1.78× and 1.44×, respectively

◼ With the batch size of 16, our 4-bit kernels also outperform TensorRT in 12 layers by 
an average speedup of 1.46×



Performance Improvement with Profile Runs on GPU

◼ The average speedup of 4-bit and 8-bit convolution kernels with the profile runs 
enabled is 2.29× and 2.91×, respectively



Space Overhead

◼ GPU: Negligible overhead consumed by precomputed buffer

◼ ARM: The space overhead of im2col, data padding and packing operations

◼ The baseline is space occupation of activation and weight for each layer

◼ The overhead of im2col for some layers(e.g., conv2 and conv6) is relatively high

◼ The space overhead of im2col is determined by convolution kernel size, stride, and input size
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Conclusion

◼ Explore extremely low-bit convolution optimizations

◼ ARM CPU

◼ Re-design GEMM computation

◼ Instruction and register allocation optimization

◼ Winograd optimization

◼ NVIDIA GPU

◼ Data partition along with thread hierarchy

◼ Multi-level memory access optimization

◼ Quantization fusion

◼ Significant speedup compared to existing framework/library

◼ ARM CPU: 1.60ｘ(2-bit) / 1.38ｘ(4-bit)

◼ NVIDIA GPU: 5.26ｘ(4-bit) / 4.31ｘ(8-bit)
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