Extremely Low-bit Convolution Optimization for
Quantized Neural Network on Modern Computer
Architectures

i
umm ki
f
f

1]
nmunmmllllrfrflllllllllIll

EEH
[
REEE
il

Qingchang Han'2, Yongmin Hul, Fengwei Yu?, Hailong Yang!, Bing Liu?, Peng
Hul2, Ruihao Gong!?, Yanfei Wang?, Rui Wang!, Zhongzhi Luan!, Depei Qian?

School of Computer Science and Engineering

Beihang University?, Beifjing, China
SenseTime Research’

sl
<

Outline

= Background & Motivation
= CNN & Quantized Neural Network
= Low-bit Computation on Modern Computer Architectures

= Optimization Methods
= Low-bit Convolution on ARM CPU
= Low-bit Convolution on NVIDIA GPU

= Evaluation
= Experiment Setup
=« Performance Analysis

= Conclusion

Outline

s Background & Motivation
= CNN & Quantized Neural Network
= Low-bit Computation on Modern Computer Architectures

= Optimization Methods
= Low-bit Convolution on ARM CPU
= Low-bit Convolution on NVIDIA GPU

= Evaluation
= Experiment Setup
=« Performance Analysis

= Conclusion

Convolutional Neural Network

Compute(r_Vision Automatic Driving Speech Recognition Recomm‘eﬂgationSystem

Convolutional Neural Network

— Output

Input

Convolution Pooling Convolution Pooling Flatten FC

= The computation complexity and memory footprint of CNNs need to be optimized
= Convolution layers take 90% - 99% of computation and runtime [Chen et al., ISSCC'16] 4

Model Compression

. . . Sign(1-bit) Exponent(8-bits) Mantissa(23-bits)
= Model compression reduces computation complexity A — | |

with acceptable accuracy FP32

= Network Pruning ‘
= Model Quantization

Xint = round(xs/scale)

= Model Quantization x; = scale X x,
= Mapping data to a smaller set of numerical representation *q = ¢lip(127, =128, x;5.))
= Improve the performance and reduce memory footprint INT8

while preserving accuracy

= Example: int8 Conv2d quantization Sign(1-bit) Mantissa(7-bits)

float32

X¢ Quantize o ntg

Int8 float32
Low-bit Conv2d Vq Dequantize Vs

float32

Wy Quantize Wy Int8

Accuracy of Quantized Neural Network

Top-1 Accuracy @ Precision

Top-5 Accuracy @ Precision

Network Method 2 3 4 8 2 3 4 8
ResNet-18 Full precision: 70.5 Full precision: 89.6 Accu racy Com parison Of LOW'b|t QNNS on ImageNet
LSQ (Ours) 676 702 711 711 87.6 894 90.0 90.1
QIL 657 692 70.1 [Esser et al., ICLR"20]
FAQ 69.8 70.0 89.1 893
LQ-Nets 64.9 68.2 693 859 879 88.8
PACT 644 68.1 69.2 856 882 89.0
NICE 67.7 69.8 87.9 89.21
Regularization 61.7 673 68.1 84.4 87.9 882
ResNet-50 Full precision: 76.9 Full precision: 93.4
LSQ (Ours) 73.7 758 76.7 76.8 91.5 92,7 932 934
PACT 722 753 765 90.5 92,6 932
NICE 75.1 76.5 923 933
FAQ 763 765 929 931
LQ-Nets 715 742 751 903 91.6 924
VGG-16bn Full precision: 73.4 Full precision: 91.5
LSQ (Ours) 714 734 740 735 904 915 920 916
FAQ 739 73.7 91.7 91.6
Squeeze Full precision: 67.3 Full precision: 87.8
Next-23-2x LSQ (Ours) 533 63.7 674 67.0 7175 854 878 87.7

= Recent works have proved the accuracy of quantized neural network
= 8-bit quantized model can almost reach the same accuracy as the full-precision one
= Lower-bit quantized models (e.g., 2~4-bit) only loss the accuracy slightly compared to the
full-precision ones
= However, achieving the optimal performance of QNNs across different computer
architectures is challenging and less studied in literatures 6

The Target Architectures for Optimization

= Most widely used architectures for CNN
inference
= Edge devices — ARM CPU
= Cloud accelerators — NVIDIA GPU

NVIDIA.

8 Prowde archltecture support for low-bit
arithmetic instructions

= ARM CPU: MLA/SMLAL
= NVIDIA GPU: dp4a/mma(Tensor Core)

The shipments of ARM-based chips to date

Company Accelerator | March 2019 April 2019 May 2019
NVIDIA GPU 97.0% 97.5% 97.4%
AMD GPU 1.2% 1.1% 1.0%
Xilinx FPGA 1.1% 1.0% 1.0%
Intel FPGA 0.6% 0.6% 0.6%
Total Types All 1,852 1,990 2,003

Source: Liftr Cloud Insights, June 2019

The share of types with Cloud Accelerators

Low-bit Computation Support on ARM CPU

= Low-bit arithmetic instruction

ARMV8.1 architecture

Multiply-Accumulate

16x8bit (SMLAL)
8x16bit
16x8bit
. Multiply-Accumulate
16x8bit (I\/I LA)
16x8bit
16x8bit
| Add Wide |
8x16bit 4x32bit

Low-bit Computation Support on NVIDIA GPU

Warp Scheduler

Warp Scheduler

Register File

Register File

CUDA | | Tensor
Cores Cores

CUDA | | Tensor
Cores Cores

Warp Scheduler

Warp Scheduler

Register File

Register File

CUDA | | Tensor
Cores Cores

CUDA | | Tensor
Cores Cores

L1 Data Cache / Shared Memory

s Tensor Core

= Natively support mixed-precision GEMM

= INT8/INT4/INT1 for Turing Tensor Cores
=« Powerful inference performance

= RTX 2080 Ti delivers up to 215.2 TOPS of INT8
inference performance

D12 D13 D14- A11 A12 A13

A14

D22 D23 D24 A21 A22 A23

A24—

A34-

A4-4-

INT32 INT8/INT4

= Use of Tensor Core
=« WMMA API

= PTX mma instructions(e.g. mma.m8n8k16)

&

INT8/INT4

L

= Vendor libraries: cuBLAS/cuDNN (only fp16 now)
9

Existing Framework/Library Supporting LLow-bit Conv2d

ARM CPU NVIDIA GPU

= ncnn: 8-bit Conv2d(GEMM-based & Winograd) = CuDNN: 8-bit Conv2d(dp4a)/16-bit

= QNNPACK: 8-bit Conv2d(indirect convolution) Conv2d(Tensor Core)

= TFLite: 8-bit Conv2d = TensorRT: 8-bit Conv2d(Tensor Core)

= TVM: 1/2-bit Conv2d(popcount)/8-bit = CUTLASS: 1/4/8-bit GEMM(Tensor Core)

Conv2d(spatial pack)

= There is no public work that can support extremely low-bit convolution covering
a wide range of bit width on ARM CPU (2~8-bit) and NVIDIA GPU (4-bit/8-bit)

= The missing support for extremely low-bit convolution motivates us to provide
efficient implementations on ARM CPU and NVIDIA GPU

10

Outline

= Background & Motivation
= CNN & Quantized Neural Network
= Low-bit Computation on Modern Computer Architectures

= Optimization Methods
= Low-bit Convolution on ARM CPU
= Low-bit Convolution on NVIDIA GPU

= Evaluation
= Experiment Setup
=« Performance Analysis

= Conclusion

11

Re-designing GEMM Computation on ARM CPU

= Re-design GEMM micro-kernel

1.
2.
3.

Load one column of Matrix A into Buffer A
Load one row of Matrix B info Buffer B, and replicate it into each row of Buffer B
Perform element-wise multiplication between Buffer A and each column-vector of Buffer B, and store

the results to Buffer C
After all the calculations are done, copy the data of Buffer C into Matrix C

/ . \ Memory

X

@

W\ Matrix A Matrix B Matrix C ~/

AN

@\/\, @

X

Element-wise
Multiplication

__ BufferA Buffer B Buffer C % 2

Registers

®

Re-designing GEMM Computation on ARM CPU

= Data padding and packing optimization
=« Perform zero-padding when the dimension of data is not a multiple of the required dimension
« Perform data packing to enable continuous data access

T
All|A12|A13|A14 B11|B12/B13| 0 i Zero-padding
=
_ A211A22|A23|A24 _ B21|B22|B23] 0 |
Matrix A Matrix B -
A31/A32|A33|A34 0 |
|
|

Zero-padding 1 0 1 0 { 0 | O |

L Ll

l Padding and Packing

Padding and Packing
Packed Matrix A |A11|/A21|A31f 0 |A12|A22|A32| 0 |A13|A23|/A33| 0 [Al14|A24|A34| O

Packed Matrix B |[B11|B12|B13| 0 [B21|B22|B23| O -I

13

Instruction and Register Allocation Optimization on ARM CPU

= Optimized instruction schemes for GEMM
= For 4 to 8-bit GEMM, we choose SMLAL and SADDW instructions

until overflow until overflow

4~8-bit 16x8bit SMLAL 8x16bit SADDW 4x32bit

4~8-bit 16x8bit

= For 2 to 3-bit GEMM, we choose MLA and SADDW instructions
4x32bit

until overflow
2~3-bit 16x8bit
O - _M untll overflow SA@
2~3-bit 16x8bit 16x8b|t ADDW 8x16bit
()=

14

Instruction and Register Allocation Optimization on ARM CPU

= Register allocation optimization

= For 4~8-bit in pUt data Algorithm 1 The 4~8-bit GEMM kernel with register allocation
—————— N optimization
(B uffer A | gOil:Jfble Input: Padding_and_Packing { Matrix A and Matrix B}
urrer 1: while k > 0do
| I
| . 2:

I Buffer B ‘ I 16-bit 3: LD1 { vg } addr_Matrix_A
\ - ~ | SMLAL SADDW & LD4R{v ~vs } addr_Matrix_B
(______ N\ g 5: SMLAL (2) {010 ~017 }{ U1 } { Ug ~Ug }

Buffer A 6: LD1 { vy } addr_Matrix_A
| ! Temporary Results Buffer C 7: LD4R { vg ~v9 } addr_Matrix B
| | (16-bit) (32-bit) 8 SMLAL(2) {v10 ~v17 } {vo } {v2 ~vs }

Buffer B & m
\ /I 10: MOV { vo, v1 } {{ x0, x1 }, {x2, x3 }}

11: SADDW(2) {013 ~031 } { v10 ~V16 }
12: SADDW(2) {wo, v1 } {v17}

13: MOV {{ xo, x1 }, { x2, x3 } } { vo, v1 }
14: k « k —unrolling_factor

Buffer A 8-bit 15 end while
SADDW 16: MOV {vg, v1 } {{x0, x1 }, { x2, x3 } }

17: ST1{{v18 ~v31 }, { vo, v1 } } addr_Matrix_C

Temporary Results Temporary Results Buffer C
(8-bit) (16-bit) (32-bit) 2

Winograd Optimization on ARM CPU

For more details, please refer to our paper.

Implicit-precomp GEMM Method on GPU

= Implicit GEMM
= Avoid global matrix transformation and reducing memory footprint

= Precomputed Buffer

= Store the offsets of elements in precomputed buffer
Offsets in INPUT

e e
—— - -~ -~
-
-
-

IM2COL I
> M

INPUT: N*IH*IW*IC

Matrix A(Implicit)

M = (N*OH*OW) K = (KH*KW*IC) N = OC

Precomputed Buffer

17

Data Partition along with Thread E

terarchy on GPU

(a) Grid-Level

= Divide the matrix A, B and C into tiles by MTile,
NTile, KTile

N
Kl
Matrix B
(GMEM)
K N
M ,,,,,,,,,,,,,,,,,,,,
Matrix A Matrix C
(GMEM) (GMEM)

(a) Grid-Level

M = (N*OH*OW)

KTile

KTile

MTile—— MTile

A_Tile
(SMEM)

B_Tile

(SMEM)

NTile

C _Tile

(Regist

(b) Block-Level

K = (KH*KW*IC)

N =

er)

OC

KStep
KStep
MFrag| """" MFrag
A_Fragment
(Register)

Algorithm 2 Implicit-precomp GEMM-based Conv2D

Input: Shape of convolution and pointers of input, weight and
output. The precomputed buffer.
Tiling Parameters: MTile, NTile, KTile, KStep, blockRowWarp-
Num and blockColWarpNum.
1: compute KTileNum, KStepNum, MFrag, NFrag, warpRowNum

(c) Warp-Level

NFrag and warpColNum;
i 2: for k_outer in KTileNum do
""""""""""""""" 3: load A_Tile to shared memory by precomputed buffer;
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr 4: load B_Tile to shared memory;
| 5 __syncthreads();
B_Fragment . for k_inner in KStepNum do
(Register) 7: load A_Fragment to register;
Né ras 8: load B_Fragment to register;
9: for row in WarpRowNum do
""""""""""""""" 10: for col in WarpColNum do
11: compute C_Fragment by mma instruction;
C_Fragment '% end for
(Register) 13: end for
14: end for
15: add bias and re-quantize on register;
16: store C_Fragment to global memory;
17: end for

18

Data Partition along Thread Hierarchy on GPU

(b) BIOC k- LEVEI Algorithm 2 Implicit-precomp GEMM-based Conv2D

= Divide C_Tile, A_Tile, B_Tile into fragments by Inp‘;ﬁ;&f“f};giﬁ;’;ﬁ;ﬁgﬁ anc pointers of fmput, weight and

blockRowWar; pNum, blockCol/War; pNum Tiling Parameters: MTile, NTile, KTile, KStep, blockRowWarp-
. . Num and blockColWarpNum.
- Spllt the KTI/e |00p by KStep 1: compute KTileNum, KStepNum, MFrag, NFrag, warpRowNum
and warpColNum;
NFrag . .
N NTile i 2: for k_outer in KTileNum do
77777777777777777777 3 S load A_Tile to shared memory by precomputed buffer;
Kl KTile KStep| | 4: load B_Tile to shared memory;
B | 5 __syncthreads();
Matrix B B_Tile B Fragment | © for k_inner in KStepNum do
(GMEM) (SMEM) (ﬁegister) 7: load A_Fragment to register;
K — KTile NTile KStep NFrag 8: load B_Fragment to register;
1 1 R | 9: for row in WarpRowNum do
M 3 MTile MTile : : MFrag| """" MFrag """""""" 10: for col in WarpCOlNum do . .
R A s Lo . s 11: compute C_Fragment by mma instruction;
— SN ‘ — — 12: end for
Matrix A Matrix C A_Tile C_Tile A_Fragment C_Fragment end for
(GMEM) (GMEM) (SMEM) (Register) (Register) (Register) 14 end for
(a) Grid-Level (b) Block-Level (c) Warp-Level 15: add bias and re-quantize on register;
16: store C_Fragment to global memory;
17: end for

M = (N*OH*OW) K = (KH*KW*IC) N = OC o

Data Partition along Thread E

terarchy on GPU

(c) Warp-Level
= Call Tensor Core through mma instructions to

perform the matrix multiplication

N
Kl
Matrix B
(GMEM)
K N
M
Matrix A Matrix C
(GMEM) (GMEM)

(@) Grid-Level

M = (N*OH*OW)

MTile

KTile

KTile

MTile

A_Tile
(SMEM)

NTile

B_Tile
(SMEM)

NTile

C_Tile
(Register)

(b) Block-Level

K = (KH*KW*IC)

N =0C

MFrag

A_Fragment
(Register)

KStep

MFrag

Algorithm 2 Implicit-precomp GEMM-based Conv2D

Input: Shape of convolution and pointers of input, weight and
output. The precomputed buffer.
Tiling Parameters: MTile, NTile, KTile, KStep, blockRowWarp-
Num and blockColWarpNum.
1: compute KTileNum, KStepNum, MFrag, NFrag, warpRowNum
and warpColNum;

(c) Warp-Level

Nlimg 2. for k_outer in KTileNum do
] 3: load A_Tile to shared memory by precomputed buffer;
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4: load B_Tile to shared memory;
| 5 __syncthreads();
B Fragment © for k_inner in KStepNum do
(Register) 7: load A_Fragment to register;
NFrag 8: load B_Fragment to register;
| 9: for row in WarpRowNum do
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 10: for col in WarpColNum do
11: compute C_Fragment by mma instruction;
12: end for
C—Fl:agment 13: end for
(Register) 14: end for
15: add bias and re-quantize on register;
16: store C_Fragment to global memory;
17: end for

20

Data Partition along Thread Hierarchy on GPU

= Auto-tuning of tiling parameters

= Use C++ function template to generate multiple
kernels with different combinations of parameters

= Choose the best one through profile runs

= The optimal tiling parameters only need to be
determined once per convolution shape with
negligible overhead

Algorithm 2 Implicit-precomp GEMM-based Conv2D

Input: Shape of convolution and pointers of input, weight and

output. The precomputed buffer.

Tiling Parameters: MTile, NTile, KTile, KStep, blockRowWarp-

Num and blockColWarpNum.

NFrag
N NTile i
Kl KTile KStep |l
Matrix B BS_I\’I/;;;TVI B_Fragment
(GMEM) () (Register)
K N
1 . KTile NTile KStep NFrag
J e — , , S
Lo MTile[MTile| MFrag| MFrag |
Matrix A Matrix C A_Tile C_Tile A_Fragment C_Fragment
(GMEM) (GMEM) (SMEM) (Register) (Register) (Register)
(@) Grid-Level (b) Block-Level (c) Warp-Level

15:
16:
17:

compute KTileNum, KStepNum, MFrag, NFrag, warpRowNum
and warpColNum;
for k_outer in KTileNum do
load A_Tile to shared memory by precomputed buffer;
load B_Tile to shared memory;
__syncthreads();
for k_inner in KStepNum do
load A_Fragment to register;
load B_Fragment to register;
for row in WarpRowNum do
for col in WarpColNum do
compute C_Fragment by mma instruction;
end for
end for
end for
add bias and re-quantize on register;
store C_Fragment to global memory;
end for

21

Multi-level Memory Access Optimization on GPU

// Example code

1. Coalesced access on global memory | // char* src_t;
// char* dst_t;

Quarter-Warp *((intd4*)dst_t) = __1dg((int4*)(src_t + threadIdx.x * 16));
\
[)
Thread 0 | Thread 1 | Thread 2 | Thread 3 | Thread 4 | Thread 5 | Thread 6 | Thread 7 L Thread 30 | Thread 31
Addresses: 0 16 32 48 64 80 96 112 128 480 496 512

22

Multi-level Memory Access Optimization on GPU

// Example code

1. Coalesced access on global memory | // char* src_t;
// char* dst_t;

Quarter-Warp *((intd4*)dst_t) = __1dg((int4*)(src_t + threadIdx.x * 16));
\
[)
Thread 0 | Thread 1 | Thread 2 | Thread 3 | Thread 4 | Thread 5 | Thread 6 | Thread 7 L Thread 30 | Thread 31
Addresses: 0 16 32 48 64 80 96 112 128 480 496 512

2. Reordering memory access on shared memory
= Reduce the number of LDS instructions to 1/4 of the original

K K

-_—— - -_—— - g - - - 1 |
To |T1 (T2 [T3|'T0|Ta|T2|T3|TO [T |T2|T3|TO|TL|T2|T3 To fTo|To [TO, [T fTma|Ta| T 222 T2y T3 i3] T3] T3
T4 |15 |T6 |T7 (T4 |T5 | T6 |T7|Ta|T5|T6 | T7 | Ta| 15| 16| T7

|

|

Il T4 !T4 T4 | T4 T5 !T5 T5 | T5!1 Té6 !TG T6 TG! T7 :T7 T7 | T7
| . | M | . T T T T T T R
e I :

|

|

o 1 I [[1 I 1
L] L] L] I I I I I L]
T28 | T29 [T30 | T31 [728 | T29 | T30 | T31 | 128 | T29 | T30 | 731 | T28 | T29 | T30 | T31 | |Tth%|T%|T%HTthm|Tm|Tm”Tth%|T%|T%4TﬂhTﬂ|Tu|Tﬂ|
[EE— | [| e = = == = 1

___________ —

(a) Before Reordering (b) After Reordering

23

Multi-level Memory Access Optimization on GPU

3. Overlapped computation and memory e .
- Global _ (1): Prefetching the data required
access using registers O Matin ﬂ next iteration
. ‘.\ Matrix C ;
= A temporary buffer on registers to prefetch the s T Regivter
data required for the next iteration i L R
= The processes (D and @ can be performed Hemory e 2) Load data to shared memory
simultaneously R | @ Load data to registrs
Register e
B Fragment :> (4): mma computation
C Fragment j

4. In-place calculation of bias and re-quantization
= After finishing the mma calculation, directly apply bias and re-quantization on the registers

Quantization Fusion on GPU

For more details, please refer to our paper.

Outline

= Background & Motivation
= CNN & Quantized Neural Network
= Low-bit Computation on Modern Computer Architectures

= Optimization Methods
= Low-bit Convolution on ARM CPU
= Low-bit Convolution on NVIDIA GPU

= Evaluation
= Experiment Setup
» Performance Analysis

= Conclusion

26

Experiment Setup

= Hardware and software

= Models Table 1: Hardware and software configurations.

= ResNet-50(all non-redundant layers)

Platform ARM CPU NVIDIA GPU

= DenseNet-121 Device Raspberry Pi 3B RTX 2080Ti

s Batch size Architecture | ARM Cortex-A53 NVIDIA Turing
TU102
= ARM: 1 Software Ubuntu 16.04 LTS | Ubuntu 16.04 LTS,
s GPU: 1 & 16 for Raspberry Pi, | gce 5.4.0, CUDA 10.2,
i gee 5.4.0, ncnn with | cuDNN 7.6.5, Ten-

= Methods for comparison commit 6£2ef19 | sorRT 7

= ARM:

= ncnn 8-bit Conv2d(baseline)
« TVM 2-bit Conv2d
= GPU:
= CUDNN 8-bit Conv2d with dp4a instruction(baseline)
« TensorRT 8-bit Conv2d with Tensor Core

27

Performance Comparison On ARM CPU

Speedup

Speedup

2.5

0.5 1

2.5

0.5 1

—_
p— wn (=]
1 1 I

—_
— wn (=)
1 1

M nenn-int8 B Ours-int8 Ours-int7 Ours-int6 E== Ours-int5 Ours-int4 fxwd Ours-int3 XX Ours-int2
K] -
B e 1= Nl NS
6.6 CR—— [242 P § 1.8 A X 2L1 =K 22 P §§ gzuhg E\gslm # E\?&
25 ’ig X FENER ?3 §§ ?3 N Es E m? Es-ﬁ E? Es E E? Es s E? Es &
Eiﬁgggg 7 = EEHE#E& N Egﬁ N (BN (N (o N
2 GRENS =Nl HAREN 3 =INER (B ENAR EAEENER 7N (A ENER
convl conv2 conv3 conv4 convs conv6 conv? conv8 conv9 conv10
35 AR 205 AFIEINELY 413 g§ Eg 21.1 ?E §: 210 pf 417 73 §: 208 PAR s:
1 MG ENE ZFER JHENE FEN g3 JHENE JHEN
m% i \ H-”% % * “-H% % § :::: § % 2 § % % E % t % i’ s
2 *.* JHENE HENE HENE 23! ZEEN ZEEN
convll convl2 convl3 convl4 convl5 convl6 convl?7 convl§ convlo9

= [he performance of our optimized 2~7-bit convolution kernels exceeds ncnn in

most layers for ResNet-50, with average speedup of 1.60x, 1.54x, 1.38x,
1.38x%, 1.34x and 1.27 x, respectively

28

Pertormance Comparison with TVM On ARM CPU

P71 tvm-A2W?2 K3 Ours-int2
2 N N

| 4.8 536\147 2@1%403 13.2 42%20.9§110 427\2(%@410%203 1(%@52.3 2%4%2(%@

Speedup
/]

= Our 2-bit implementation outperforms TVM in most cases (16 out of 19 cases),
with the highest speedup of 2.11x and the average speedup of 1.78x

29

Performance Comparison On NVIDIA GPU

20 4 [cuDNN-int8 Ours-int8 N
E=1 TensorRT-int8 Ours-int4 v
£151
3
% 10 +
<
N \ E e el
17.6 307 17.5 179 16.9 46.2 18.3 24.0, 24.1 85.6] 16.9 41.78 . 41.1 24.0 76.6] 17.2 41.5 24.1
0 EFI HEVJN |—| EIEIEI nEﬂ nEP/I EHH GNE=="2le] [= 16?—1{ EH VIN oadN Eﬂ nl:lmm
(a) batch size = 1
g 1 3 cuDNN-int8 Ours-int8 \
E= TensorRT-int8 Ours-int4]
561
'U pr—
o =
o 4 = —
A | | N
21 . E Hms EQE 4 T3 Eﬁﬁ 267 _R]89. ﬁag 44, E 253 47.3EH§ 900 05N 393 _44. 8E 1z 4N 42. EHH 46.9 EE 79.1 HM THAN 8. EHE 68.59
L 0 s [U Mepe TEPN 0EAN 0BPR DEPN OF [E [-

convl conVZ conv3 conv4 conVS conv6 conV7 conv8 conv9 convl0 convll conv12 convl3 convl4 convlS convl6 convl? conv18 convl9

(b) batch size = 16

= With the batch size of 1, our 4-bit and 8-bit convolution kernels outperform
TensorRT in most cases, with the average speedup of 1.78x and 1.44x, respectively

= With the batch size of 16, our 4-bit kernels also outperform TensorRT in 12 layers by
an average speedup of 1.46x 30

Pertormance Improvement with Profile Runs on GPU

84 1 int8 w/o profile int4 w/o profile «
¢ B3 int8w/ profile int4 w/ profile g
e,] ~ N
2 41 1 0 | :
N : -
| i i o L
| il ol e i b ot o) o)) o) B i) R

oV i 00‘17' 00‘13 00‘1 N oV 0 o] 00‘1% xﬁg 0\1\0 0\1\\ 0«1\1@\3 0«1\ 0\1\5 0\1\6 &Nﬂ \G%{N\g

= [he average speedup of 4-bit and 8-bit convolution kernels with the profile runs
enabled is 2.29x and 2.91 x, respectively

31

Space Overhead

= GPU: Negligible

overhead consumed by precomputed buffer

= ARM: The space overhead of im2col, data padding and packing operations

= The baseline is

space occupation of activation and weight for each layer

= The overhead of im2col for some layers(e.g., conv2 and convé) is relatively high
= The space overhead of im2col is determined by convolution kernel size, stride, and input size

o

8 3 e 1

g 18.60 ;4.64 — Baseline KSXJ Padding Packing
S 5. ; ; /4 Im2col

%‘ % Y % Y Y [/

E L/ 1 1 L/ 71 4 1 ;

S 0 0 d v /R f i 4
o) 1_ L/ 1 /1 ; Z ; f i f (l 7 f
ks % % 7 % % % ; ; ; f f f
= ; 1] L/ L/ 1] L/ 1 ; ; i
= |EON BN N BN R EN N BN N i [
2 O I/ II T T T T { { { T / I/ 1 Il

C,OQ‘J OQ‘J’L OQ\T?’

A o0 a0 T o oo‘Jg Q«J\ Q«J\X 0\1\7‘ Q«J\B 0\1\”‘ 0\1\5 0\1\6 @Jﬂ 0\1\% 0\1\9

32

Outline

= Background & Motivation
= CNN & Quantized Neural Network
= Low-bit Computation on Modern Computer Architectures

= Optimization Methods
= Low-bit Convolution on ARM CPU
= Low-bit Convolution on NVIDIA GPU

= Evaluation
= Experiment Setup
=« Performance Analysis

s Conclusion

33

Conclusion

= Explore extremely low-bit convolution optimizations
= ARM CPU
= Re-design GEMM computation
= Instruction and register allocation optimization
= Winograd optimization
=« NVIDIA GPU
= Data partition along with thread hierarchy
= Multi-level memory access optimization
= Quantization fusion

= Significant speedup compared to existing framework/library

= ARM CPU: 1.60 x (2-bit) / 1.38 x (4-bit)
=« NVIDIA GPU: 5.26 x (4-bit) / 4.31 x (8-bit)

Thanks! Q&A

