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Al enables smart healthcare

Drug Research

The scale of
smart medical market
IS rapidly growing.
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Challenge 1: Medical records face serious security breach

2,550 data breaches have compromised over 189 million healthcare records in the last decade.
(Source: HIPAA Journal)

The average cost of a data breach in the healthcare industry is $6.45 million. (Source: IBM)

46% of healthcare organizations have been damaged by insider threats.
(Source: 2019 Verizon Insider Threat Report)

168 hacking incidents in the first half of 2019 has led to 31 million breached records.
(Source: Protenus Breach Barometer)
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Challenge 2: Mobile medical devices are resource-limited

MQOTO 360 smartwatch: Memory 512MB, Storage 4GB, 320mAh battery

Huawei GT 2e smartwatch: Memory 16 MB, Storage 4GB, 455mAh battery

As neural network training is extremely computation-intensive, it easily drains the battery and

starves the normal operations of the device. Training on mobile wearables is inefficient.




What makes a good mobile healthcare system?
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2. Accurate diagnosis without raw data leakage

3. Study on privacy and performance
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Edge-based efficient medical model training and health monitoring
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Procedure Client
initialize W,j;.ps
Procedure Server divide Data into [ batches {D;, Dy, --- D;}
for each epoch i € [1, Epochs] do
for each batch D; € Data do
Ok L Output(Djv Wclient)
O, « Dp_1(Ok.Dj. Weient)
send O;c and L; to the hospital private server

download Weeper
Wserver < Weenter
while 7 do
receive O;c and L; from the mobile device ;
WSBT'UEF = WSETUEF = }] g VLOSS(WSB?'UEY)

L receive VLoss(O:k) from the server
send VLoss(Ok) to the device

Wclient — Wclient_U'VLOSS(Ok)'vok(Wclient)




Setup -- Experiment Platform
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Setup -- Dataset and Training Models

Dataset
We leverage breast cancer data as the private medical data set, which contains 497

training samples and 151 testing samples

Training Model
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Our loss function is binary-cross-entropy, and compilation environment is Keras

[1] Olvi L Mangasarian and William H Wolberg. 1990. Cancer diagnosis via linear programming. Technical Report. University of Wisconsin-
Madison Department of Computer Sciences. https://archive.ics.uci.edu/ml/machine-learning-databases/ breast- cancer- wisconsin/



Results -- Resource Consumption
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Privacy-preserving medical model aggregation
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Procedure Server

Wserver < Weenter

while 1 do

receive O}{ and L; from the mobile device
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send VLoss(O;c) to the device




Setup -- Dataset and Distribution

Dataset

We leverage breast cancer data [1] as the private medical data set, which contains
497 training samples and 151 testing samples

Distribution

We distribute these training samples among 100 hospitals. Considering that the user data are not
independent and identically distributed in multiple hospitals, we distribute these samples with following
existing works [2].

Table 4: Distribution of training samples.

Value j1 \2]3|4|5 |6|?[8\9\10

Number | 112| 23| 72| 58 | 100| 24 | 16| 33| 10| 49

[1] Olvi L Mangasarian and William H Wolberg. 1990. Cancer diagnosis via linear programming. Technical Report. University of Wisconsin-
Madison Department of Computer Sciences. https://archive.ics.uci.edu/ml/machine-learning-databases/ breast- cancer- wisconsin/

[2] Robin C. Geyer, Tassilo Klein, and Moin Nabi. 2017. Differentially Private Federated Learning: A Client Level Perspective. CoRR abs/1712.07557
(2017). arXiv:1712.07557 http://arxiv.org/abs/1712.07557



Results -- Diagnosis Performance
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Privacy-preserving differential privacy scheme
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Results -- Sensitivity of 01 and 02
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The performance gradually
decreases with the increase of noise
level. Considering both privacy and
performance, we select 01 and 02
as 0.5 and 2.25, respectively.



Conclusion

Problem:
Address the inefficient and insecure scheme in mobile medical data training.

Key idea: FEderated Edge Learning (FEEL) system
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Evaluation:
FEEL reduces the mobile devices' resource occupation (CPU time, memeory,
enerqgy et al.) and performs near optimal with privacy protection.
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