
The Art of CPU-Pinning:
Evaluating and Improving the

Performance of Virtualization and
Containerization Platforms
Davood	GhatrehSamani,	Chavit Denninart

Joseph	Bacik†
Mohsen	Amini Salehi‡

High	Performance	Cloud	Computing	Lab	(HPCC)
School	of	Computing	and	Informatics
University	of	Louisiana	Lafayette

1

Introduction

• Execution	platforms
1. Bare-Metal	(BM)
2. Hardware	Virtualization	(VM)	
3. OS	Virtualization	(containers,	CN)

• Choosing	a	proper	execution	platform,	
based	on	the	imposed	overhead
▪ Container	on	top	of	VM	(VMCN)	is	not	studied	and	
compared	to	other	platforms	in	depth

2

Introduction

• Overhead	behavior	and	trend	
▪ Different	execution	platforms	(BM,	VM,	CN,	
VMCN)

▪ Different	workload	patterns	(CPU	intensive,	IO	
intensive,	etc.)

▪ Increasing	compute	resources
▪ Compute	tuning	applied	(CPU	pinning)

• Cloud	solution	architect	challenge:
▪ Which	Execution	platform	suits	what	kind	of	
workload

3

Hardware Virtualization (VM)

• Operates	based	on	a	hypervisor
• VM:	a	process	running	in	the	hypervisor
• Hypervisor	has	no	visibility	to	VM’s	
processes

• KVM:	a	popular	open-source	hypervisor	
AWS	Nitro	C5	VM	type

4

OS Virtualization (Container)

• Lightweight	OS	layer	virtualization
• No	resource	abstraction	(CPU,	Memory,	
etc.)

• Host	OS	has	complete	visibility	to	the	
container	processes	

• Container	=	name	space	+	cgroups
• Docker:	The	most	widely	adopted	
container	technology

5

VM vs Container

6

CPU Provisioning
in Virtualized Platform

• Default:	Time	sharing
▪ Linux:	Completely	Fair	Scheduler	(CFS)
▪ All	CPU	cores	are	utilized	even	if	there	

is	only	one	VM	in	the	host	or	the	
workload	is	not	heavy

▪ Each	CPU	quantum	different	set	of	CPU	
cores

▪ Called	Vanilla	mode	in	this	study
• Pinned:	Fixed	set	of	CPU	cores	for	all	

quantum
▪ Override	default	host/hypervisor	OS	

scheduler
▪ Process	is	distributed	only	among	

those	designated	CPU	cores

7

Execution Platforms

8

Application types and
measurements

• Measured	performance	metric
▪ Total	Execution	Time

• Overhead	ratio
▪ !"#$%&#	#(#)*+,-.	+,/#	-00#$#1	23	+4#	56%+0-$/

!"#$%&#	#(#)*+,-.	+,/#	-0	2%$#7/#+%6	

• Performance	monitoring	and	profiling	tools
▪ BCC	(BPF	Compiler	Collection:	cpudist,	offcputime),	iostat,	perf,	

htop,	top

9

Configuration of instance types

• Host	server:	DELL	PowerEdge	R830
▪ 4×Intel	Xeon	E5-4628Lv4

o Each	processor	is	1.80,	35	MB	cache	and	14	processing	cores	(28	
threads)

o 112	homogeneous	cores
▪ 384	GB	memory	

o 24×16	GB	DDR4	DRAM
▪ RAID1	(2×900	GB	HDD	10k)	storage.	

10

Motivation

• In	depth	study	of	container	on	top	of	VM	
(VMCN)

• Comparing	different	execution	platforms	(BM,	
VM,	CN,	VMCN)	all	to	gather

• Real	life	applications	with	different	workload	
patterns

• Finding	an	overhead	trend	by	increasing	
resource	configurations

• Involving	CPU	pinning	in	the	evaluation

11

Contribution to this work

• Unveiling	
▪ PSO	(Platform	Size	Overhead)
▪ CHR	(Container	to	Host	core	Ratio)

• Leverage	PSO	and	CHR	to	define	overhead	
behavior	pattern	for
▪ Different	resource	configurations
▪ Different	workload	types	

• A	set	of	best	practices	for	cloud	solution	
architects
▪ Which	execution	platform	suits	what	kind	of	

workload

Experiment and analysis: Video
Processing Workload Using FFmpeg

• FFmpeg:	Widely	used	video	transcoder
▪ Very	high	processing	demand
▪ Multithreaded	(up	to	16	cores)
▪ Small	memory	footprint
▪ Representative	of	a	CPU-intensive	workload	

• Workload:
▪ Function:	codec	change	from	AVC	(H.264)	to	

HEVC	(H.265)
▪ Source	video	file:	30	MB	HD	video
▪ Mean	and	confidence	interval	across	20	times	of	

execution	for	each	platform	collected

Experiment and analysis: Video
Processing Workload Using FFmpeg

Experiment and analysis: Parallel
Processing Workload Using MPI

• MPI:	Widely-used	HPC	platform
▪ Multi-threaded
▪ Resource	usage	footprint	highly	depends	on	the	
MPI	program

• Workload
▪ Applications:	MPI_Search,	Prime_MPI
▪ Compute	intensive,	however,	communication	
between	CPU	cores	dominates	the	computation

▪ Mean	and	confidence	interval	across	20	times	of	
execution	for	each	platform	collected

Experiment and analysis: Parallel
Processing Workload Using MPI

Experiment and analysis: Web-based
Workload Using WordPress

• WordPress
▪ PHP-based	CMS:	Apache	Web	Server+MySQL
▪ IO	intensive	(network	and	disk	interrupts)

• Workload
▪ A	simple	website	is	setup	on	WordPress
▪ Browsing	behavior	of	a	web	user	is	recorded
▪ 1,000	simultaneous	web	users	are	simulated

o Apache	Jmeter
▪ Each	experiment	is	performed	6	times
▪ Mean	execution	time	(response	time)	of	these	web	

processes	is	recorded

Experiment and analysis: Web-based
Workload Using WordPress

18

Experiment and analysis: Web-based
Workload Using WordPress

NoSQL Workload using Apache
Cassandra

• Apache	Cassandra:
▪ Distributed	NoSQL,	Big	Data	platform
▪ Demands	compute,	memory,	and	disk	IO.	

• Workload
▪ 1,000	operations	within	one	second	

o Cassandra-stress
o 25%	Write,	85%	Read
o 100	threads,	each	one	simulating	one	user

▪ Each	experiment	is	repeated	20	times
▪ Average	execution	time	(response	time)	of	all	the	

synthesized	operations.	

NoSQL Workload using Apache
Cassandra

21

NoSQL Workload using Apache
Cassandra

22

Cross-Application Overhead Analysis

• Platform-Type	Overhead	(PTO)	
• Resource	abstraction	(VM)
• Constant	trend
• Pinning	is	no	helpful

• Platform-Size	Overhead	(PSO)	
▪ Diminished	by	increasing	the	number	of	CPU	cores	
▪ Specific	to	containers
▪ Just	reported	by	IBM	for	Docker	(Websphere tuning)		
• Pinning	is	helpful	alot

Parameters affecting PSO

1. Container	Resource	Usage	Tracking
• cgroups		

2. Container-to-Host	Core	Ratio	(CHR)

• CHR	=	Assigned	cores	to	the	containerTotal	number	of	host	cores

3. IO	Operations
4. Multitasking

Impact of CHR on PSO

• Lower value of CHR imposes a larger
overhead (PSO)

• Application characteristics define the
value of CHR

• CPU intensive
• 0.14 < 𝐶𝐻𝑅 < 0.28

• IO intensive: higher
• 0.28 < 𝐶𝐻𝑅 < 0.57

Container Resource Usage Tracking

• OS	scheduler	allocates	all	available	CPU	cores	to	the	
CN	process

• cgroups	collects	usages	cumulatively
• Each	scheduling	event	has	different	CPU	allocation	
for	that	CN

• cgroups	is	an	atomic	(kernel	space)	process
• Container	has	to	be	suspended	while	aggregating	
resource

• OS	scheduling	enforces	process	migration,	cgroups	
enforce	resource	usage	tracking	-- Synergistic

The Impact of Multitasking on PSO

27

The Impact of IO operations on PSO

Experimental Setup: MPI task

• CPU pinning can mitigate this kind of overhead

Summary

Experimental Setup: MPI task

1. Application	characteristic	is	decisive	on	the	
imposed	overhead

2. CPU	pinning	reduce	the	overhead	for	IO-bound	
applications	running	on	containers.

3. CHR	plays	a	significant	role	on	the	overhead	of	
containers

4. Containers	may	induce	higher	overhead	in	
comparing	to	VMs	

5. Containers	on	top	of	VMs	(called	VMCN)	impose	a	
lower	overhead	for	IO	intensive	applications	

Best Practices

Experimental Setup: MPI task

1. Avoid	small	vanilla	containers		
2. Use	pinning	for	CPU-bound	containers
3. Not	worthwhile	to	use	pinning	for	CPU-bound	VMs
4. Use	pinning	for	IO	intensive	workloads	
5. CPU	intensive	applications:	0.07	<	𝐶𝐻𝑅 <	0.14	
6. IO	intensive	applications:	0.14	<	𝐶𝐻𝑅 <	0.28
7. Ultra	IO	intensive	applications:	0.28	<	𝐶𝐻𝑅 <	0.57

