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Introduction

• Execution	platforms
1. Bare-Metal	(BM)
2. Hardware	Virtualization	(VM)	
3. OS	Virtualization	(containers,	CN)

• Choosing	a	proper	execution	platform,	
based	on	the	imposed	overhead
▪ Container	on	top	of	VM	(VMCN)	is	not	studied	and	
compared	to	other	platforms	in	depth
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Introduction

• Overhead	behavior	and	trend	
▪ Different	execution	platforms	(BM,	VM,	CN,	
VMCN)

▪ Different	workload	patterns	(CPU	intensive,	IO	
intensive,	etc.)

▪ Increasing	compute	resources
▪ Compute	tuning	applied	(CPU	pinning	)

• Cloud	solution	architect	challenge:
▪ Which	Execution	platform	suits	what	kind	of	
workload
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Hardware Virtualization (VM)

• Operates	based	on	a	hypervisor
• VM:	a	process	running	in	the	hypervisor
• Hypervisor	has	no	visibility	to	VM’s	
processes

• KVM:	a	popular	open-source	hypervisor	
AWS	Nitro	C5	VM	type
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OS Virtualization (Container)

• Lightweight	OS	layer	virtualization
• No	resource	abstraction	(CPU,	Memory,	
etc.)

• Host	OS	has	complete	visibility	to	the	
container	processes	

• Container	=	name	space	+	cgroups
• Docker:	The	most	widely	adopted	
container	technology
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VM vs Container
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CPU Provisioning 
in Virtualized Platform

• Default:	Time	sharing
▪ Linux:	Completely	Fair	Scheduler	(CFS)
▪ All	CPU	cores	are	utilized	even	if	there	

is	only	one	VM	in	the	host	or	the	
workload	is	not	heavy

▪ Each	CPU	quantum	different	set	of	CPU	
cores

▪ Called	Vanilla	mode	in	this	study
• Pinned:	Fixed	set	of	CPU	cores	for	all	

quantum
▪ Override	default	host/hypervisor	OS	

scheduler
▪ Process	is	distributed	only	among	

those	designated	CPU	cores
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Execution Platforms
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Application types and 
measurements

• Measured	performance	metric
▪ Total	Execution	Time

• Overhead	ratio
▪ !"#$%&#	#(#)*+,-.	+,/#	-00#$#1	23	+4#	56%+0-$/

!"#$%&#	#(#)*+,-.	+,/#	-0	2%$#7/#+%6	

• Performance	monitoring	and	profiling	tools
▪ BCC	(BPF	Compiler	Collection:	cpudist,	offcputime),	iostat,	perf,	

htop,	top
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Configuration of instance types

• Host	server:	DELL	PowerEdge	R830
▪ 4×Intel	Xeon	E5-4628Lv4

o Each	processor	is	1.80,	35	MB	cache	and	14	processing	cores	(28	
threads)

o 112	homogeneous	cores
▪ 384	GB	memory	

o 24×16	GB	DDR4	DRAM
▪ RAID1	(2×900	GB	HDD	10k)	storage.	
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Motivation

• In	depth	study	of	container	on	top	of	VM	
(VMCN)

• Comparing	different	execution	platforms	(BM,	
VM,	CN,	VMCN)	all	to	gather

• Real	life	applications	with	different	workload	
patterns

• Finding	an	overhead	trend	by	increasing	
resource	configurations

• Involving	CPU	pinning	in	the	evaluation
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Contribution to this work

• Unveiling	
▪ PSO	(Platform	Size	Overhead)
▪ CHR	(Container	to	Host	core	Ratio)

• Leverage	PSO	and	CHR	to	define	overhead	
behavior	pattern	for
▪ Different	resource	configurations
▪ Different	workload	types	

• A	set	of	best	practices	for	cloud	solution	
architects
▪ Which	execution	platform	suits	what	kind	of	

workload



Experiment and analysis: Video 
Processing Workload Using FFmpeg

• FFmpeg:	Widely	used	video	transcoder
▪ Very	high	processing	demand
▪ Multithreaded	(up	to	16	cores)
▪ Small	memory	footprint
▪ Representative	of	a	CPU-intensive	workload	

• Workload:
▪ Function:	codec	change	from	AVC	(H.264)	to	

HEVC	(H.265)
▪ Source	video	file:	30	MB	HD	video
▪ Mean	and	confidence	interval	across	20	times	of	

execution	for	each	platform	collected



Experiment and analysis: Video 
Processing Workload Using FFmpeg



Experiment and analysis: Parallel 
Processing Workload Using MPI

• MPI:	Widely-used	HPC	platform
▪ Multi-threaded
▪ Resource	usage	footprint	highly	depends	on	the	
MPI	program

• Workload
▪ Applications:	MPI_Search,	Prime_MPI
▪ Compute	intensive,	however,	communication	
between	CPU	cores	dominates	the	computation

▪ Mean	and	confidence	interval	across	20	times	of	
execution	for	each	platform	collected



Experiment and analysis: Parallel 
Processing Workload Using MPI



Experiment and analysis: Web-based 
Workload Using WordPress 

• WordPress
▪ PHP-based	CMS:	Apache	Web	Server+MySQL
▪ IO	intensive	(network	and	disk	interrupts)

• Workload
▪ A	simple	website	is	setup	on	WordPress
▪ Browsing	behavior	of	a	web	user	is	recorded
▪ 1,000	simultaneous	web	users	are	simulated

o Apache	Jmeter
▪ Each	experiment	is	performed	6	times
▪ Mean	execution	time	(response	time)	of	these	web	

processes	is	recorded



Experiment and analysis: Web-based 
Workload Using WordPress 
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Experiment and analysis: Web-based 
Workload Using WordPress 



NoSQL Workload using Apache 
Cassandra 

• Apache	Cassandra:
▪ Distributed	NoSQL,	Big	Data	platform
▪ Demands	compute,	memory,	and	disk	IO.	

• Workload
▪ 1,000	operations	within	one	second	

o Cassandra-stress
o 25%	Write,	85%	Read
o 100	threads,	each	one	simulating	one	user

▪ Each	experiment	is	repeated	20	times
▪ Average	execution	time	(response	time)	of	all	the	

synthesized	operations.	



NoSQL Workload using Apache 
Cassandra 
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NoSQL Workload using Apache 
Cassandra 
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Cross-Application Overhead Analysis

• Platform-Type	Overhead	(PTO)	
• Resource	abstraction	(VM)
• Constant	trend
• Pinning	is	no	helpful

• Platform-Size	Overhead	(PSO)	
▪ Diminished	by	increasing	the	number	of	CPU	cores	
▪ Specific	to	containers
▪ Just	reported	by	IBM	for	Docker	(Websphere tuning)		
• Pinning	is	helpful	alot



Parameters affecting PSO

1. Container	Resource	Usage	Tracking
• cgroups		

2. Container-to-Host	Core	Ratio	(CHR)

• CHR	=	Assigned	cores	to	the	containerTotal	number	of	host	cores

3. IO	Operations
4. Multitasking



Impact of CHR on PSO

• Lower value of CHR imposes a larger 
overhead (PSO) 

• Application characteristics define the 
value of CHR

• CPU intensive
• 0.14 < 𝐶𝐻𝑅 < 0.28 

• IO intensive: higher
• 0.28 < 𝐶𝐻𝑅 < 0.57  



Container Resource Usage Tracking

• OS	scheduler	allocates	all	available	CPU	cores	to	the	
CN	process

• cgroups	collects	usages	cumulatively
• Each	scheduling	event	has	different	CPU	allocation	
for	that	CN

• cgroups	is	an	atomic	(kernel	space)	process
• Container	has	to	be	suspended	while	aggregating	
resource

• OS	scheduling	enforces	process	migration,	cgroups	
enforce	resource	usage	tracking	-- Synergistic



The Impact of Multitasking on PSO
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The Impact of IO operations on PSO 

Experimental Setup: MPI task

• CPU pinning can mitigate this kind of overhead 



Summary

Experimental Setup: MPI task

1. Application	characteristic	is	decisive	on	the	
imposed	overhead

2. CPU	pinning	reduce	the	overhead	for	IO-bound	
applications	running	on	containers.

3. CHR	plays	a	significant	role	on	the	overhead	of	
containers

4. Containers	may	induce	higher	overhead	in	
comparing	to	VMs	

5. Containers	on	top	of	VMs	(called	VMCN)	impose	a	
lower	overhead	for	IO	intensive	applications	



Best Practices

Experimental Setup: MPI task

1. Avoid	small	vanilla	containers		
2. Use	pinning	for	CPU-bound	containers
3. Not	worthwhile	to	use	pinning	for	CPU-bound	VMs
4. Use	pinning	for	IO	intensive	workloads	
5. CPU	intensive	applications:	0.07	<	𝐶𝐻𝑅 <	0.14	
6. IO	intensive	applications:	0.14	<	𝐶𝐻𝑅 <	0.28
7. Ultra	IO	intensive	applications:	0.28	<	𝐶𝐻𝑅 <	0.57


