The Art of CPU-Pinning:
Evaluating and Improving the
Performance of Virtualization and
Containerization Platforms

Davood GhatrehSamani, Chavit Denninart
Joseph Bacik™
Mohsen Amini Salehi+

High Performance Cloud Computing Lab (HPCC)
School of Computing and Informatics

University of Louisiana Lafayette
HPCO
lab.

NIVERSITY o
A

STANA 1

ETTE

L

A F



Introduction

. Execution platforms
1. Bare-Metal (BM)
2. Hardware Virtualization (VM)
3. OS Virtualization (containers, CN)
- Choosing a proper execution platform,

based on the imposed overhead

- Container on top of VM (VMCN) is not studied and
compared to other platforms in depth

: HPCO



Introduction

. Overhead behavior and trend

Different execution platforms (BM, VM, CN,
VMCN)

Different workload patterns (CPU intensive, |10
intensive, etc.)

Increasing compute resources
Compute tuning applied (CPU pinning )
. Cloud solution architect challenge:
- Which Execution platform suits what kind of

workload 3 HPC%B



Hardware Virtualization (VM)

- Operates based on a hypervisor
- VM: a process running in the hypervisor

Hypervisor has no visibility to VM’s
orocesses

KVM: a popular open-source hypervisor
AWS Nitro C5 VM type

: HPCO



OS Virtualization (Container)

. Lightweight OS layer virtualization

- No resource abstraction (CPU, Memory,

etc.)

- Host OS has complete visibility to the
container processes

. Container = name space + cgroups

- Docker: The most widely adopted
container technology

5 HPCD



VM vs Container

|( \,n.v” ‘\\
_______________ |/ ppllcatnons;; '@ppllcatlons};
i Virsh .‘: ----- 7 Smm——
e . | lGu tOS " | Guest OS ;;
Vlrt -Manager | a .. ! H
“““ Lbvirt QEMURVM  Qemu-KVM
- KVM Hypervusor
CPU Memory Disk Network

(a) Modules of KVM hypervisor. Each VM, called Qemu-KVM,

has a full-stack of the deployed applications and an operating
system. Libvirt provides necessary APls for managing KVM.

—_—

GCREST AP 1 SREEES A
. DockerD kApphcatlon} @ppllcatlonJ

—— resrasta e e e P LT ST T PP P

'_ ContainerD ‘,. Container 1 Container |

— — — — i —— —— — i ——— — — — . — . —— —

(' runC cgroups nhamspace \, Host OS |

v /

\‘___._._._._._._._._._._._._.-'

» N0 :mlll

CPU Memory  Disk Network

(b) Main modules of Docker. Containers are coupling of
namespace and cgroups modules of the host OS kernel. Docker
daemon interacts with Container daemon (ContainerD) and
runC kernel module to manage containers.

6 HPCD



CPU Provisioning

In Virtualized Platform

« Default: Time sharing

Linux: Completely Fair Scheduler (CFS)

All CPU cores are utilized even if there
is only one VM in the host or the
workload is not heavy

Each CPU quantum different set of CPU
cores

Called Vanilla mode in this study

* Pinned: Fixed set of CPU cores for all
quantum

Override default host/hypervisor OS
scheduler

Process is distributed only among
those designated CPU cores

: HPCO



Execution Platforms

Host OS

==

Hardware

Bare-metal
(BM)

i_ Container | i E‘ues_t OS_ - ﬂ

....... -— ¢ e o s e v amm oo wd

[ _Hestos | [ Hypervisor |
Hardware Hardware

Container on
bare-metal (CN)

Virtual machine
(VM)

Application

Hardware

Container on virtual
machine (VMCN)

Fig. 2. The four execution platforms used for performance evaluation of different application types.

Abbr. | Platform

| Specifications

BM Bare-Metal

Ubuntu 18.04.3, Kernel 5.4.5

VM Virtual Machine

Qemu 2.11.1, Libvirt 4
Ubuntu 18.04.3, Kernel 5.4.5

CN Container on Docker 19.03.6,
Bare-Metal Ubuntu 18.04 image
VMCN | Container on VM | As above

Table 3. Characteristics of different execution platforms used in the evalua-
tions. First column shows the abbreviation of the execution platform used

henceforth in the paper.

HPCO



Application types and

measurements

Type Version Characteristic
FFmpeg 3.4.6 CPU-bound workload
Open MPI 2.1.1 HPC workload
WordPress 5.3.2 I0-bound web-based workload
Cassandra 2.2 Big Data (NoSQL) workload

Table 1. Specifications of application types used for evaluation.

* Measured performance metric
= Total Execution Time

e (Qverhead ratio

Average execution time of fered by the platform

Average execution time of bare—metal

* Performance monitoring and profiling tools
= BCC (BPF Compiler Collection: cpudist, offcputime), iostat, perf,

htop, top
9 HPCO



Configuration of instance types

Instance Type | No. of Cores | Memory (GB)
Large 2 8
XLarge 4 16
2xLarge 8 32
4xLarge 16 64
8xLarge 32 128
16XxLarge 64 256

Table 2. List of instance types used for evaluation.

« Host server: DELL PowerEdge R830

= 4x|ntel Xeon E5-4628Lv4

o Each processor is 1.80, 35 MB cache and 14 processing cores (28
threads)

o 112 homogeneous cores
= 384 GB memory
o 24x16 GB DDR4 DRAM
= RAID1 (2x900 GB HDD 10k) storage.

m HPCD



Motivation

. In depth study of container on top of VM
(VMCN)

- Comparing different execution platforms (BM,
VM, CN, VMCN) all to gather

Real life applications with different workload
natterns

-inding an overhead trend by increasing
resource configurations

- Involving CPU pinning in the evaluation

n HPCD




Contribution to this work

® Unveiling
" PSO (Platform Size Overhead)
" CHR (Container to Host core Ratio)

® Leverage PSO and CHR to define overhead
behavior pattern for

" Different resource configurations
" Different workload types

® A set of best practices for cloud solution
architects

" Which execution platform suits what kind of
workload

HPCO



Experiment and analysis: Video

Processing Workload Using FFmpeg

* FFmpeg: Widely used video transcoder
" Very high processing demand
® Multithreaded (up to 16 cores)
" Small memory footprint
" Representative of a CPU-intensive workload

° Workload
Function: codec change from AVC (H.264) to
HEVC (H.265)
" Source video file: 30 MB HD video
" Mean and confidence interval across 20 times of
execution for each platform collected

HPCO



Experiment and analysis: Video

Processing Workload Using FFmpeg

140
Vanilla VM
120 —Z Pinned VM
K24 Vanilla VMCN
Pinned VMCN
100 Vanilla CN

F*Y Pinned CN
13 Vanilla BM
I Platform Overhead

il Zzﬁh o
p. el Iﬁ_

xLa'rge 2xLérge 4xLérge
Instance Types

(o0}
o

(o)}
o

IS
o

Average Execution Time (s)

N
o
AN
o

o

Fig. 3. Comparing execution time of FFmpeg on different execution plat-

forms under varying number of CPU cores. Horizontal axis indicates the HPC:)
lab

number of CPU cores in form of different instance types.



Experiment and analysis: Parallel

Processing Workload Using MPI

MPI: Widely-used HPC platform
Multi-threaded

Resource usage footprint highly depends on the
MPI program

. Workload

- Applications: MPIl_Search, Prime_MPI

- Compute intensive, however, communication
between CPU cores dominates the computation

- Mean and confidence interval across 20 times of
execution for each platform collected

HPCO



Experiment and analysis: Parallel

Processing Workload Using MPI

o

30
Vanilla VM
:@ 25 | Z=] Pinned VM
O (31 Vanilla VMCN
- Pinned VMCN
=20+ Vanilla CN
S &) Pinned CN
'*3 B8 Vanilla BM
o 15 N B Platform Overhead
i :
8) 10 %
. " H N
g 5 4 v 1 h
< X 3
; : (
g

xLa;rge 2xLérge 4ch:arge 8xLér
Instance Types

e 1l6xlLarge

Fig. 4. Comparing execution time of MPI_search on different execution
platforms. Horizontal axis represents the number of CPU cores in the form

of different instance types. Vertical axis shows the mean execution time (in HPC:)
lab.

seconds).



Experiment and analysis: Web-based

Workload Using WordPress

- WordPress

PHP-based CMS: Apache Web Server+MySQL
10 intensive (network and disk interrupts)

- Workload

A simple website is setup on WordPress
Browsing behavior of a web user is recorded

1,000 simultaneous web users are simulated
o Apache Jmeter

Each experiment is performed 6 times

Mean execution time (response time) of these web
processes is recorded

HPCO



Experiment and analysis: Web-based

Workload Using WordPress

> 9 FRT o a ? 6 Test Plan
loadtest ¢ E" Thread Group
o= ',,"' 91 jwp-content/themes/twentynineteen/print.css
o /," 90 /wp-contentthemesftwentynineteen/style. css
o {,' 93 fwp-content/uploads/2019/11/cropped-title-1.png
o 4“ 87 fwp-includesfisfwp-emoji-release. min.js
¥’
HPCC teSt page o /,"‘ 95 /2019/11/05/this-is-test-page-for-tests
— o- /‘ 93 jwp-contentfuploads/2019/11/cropped-titie-1.png
- o 4" 98 jwp-comments-post.php
¥
Performance Cloud Co o ,,"’ 100 /2019/11/05/this-is-test-page-for-test/
(HPCC) Laboratory &y P
HP . I 4
. o #* 100 7201911/
[<] Summary Report
A o » 18| WorkBench
=
__Label |# Samples Average | Min | Max | Std. Dev.| Error% |Through..| KB/sec |Avg. Byte
86 / \ 1801 10862 122 68454 17128.33| _1‘_00'-)-1,} 22.2/sec| 93.15 4285
81 Mwp-c... | 852 11418: 1 66424 20092.81; O.S%’oi ll.7/’secv 17.65| 1548
S0 fp-C... N 820| 2570| 14 56116, 7744.90| 0.00%E 12.0/sec| 357.79| 30508
93 Mmp-C... | 1640 1729| 1) 55801 3102.94| 0.06%1’ 23.1/sec| 4808.51] 213611
87 fp-n...| 82 __32| 1 1022]  48.84] 0.00%| 12.2/sec|  59.28] 4973
95 /2019...| 820 3954 1163]  35273| 3164.17|  0.00%| 11.7/sec|  68.53 6017
88 Mvp-C... \ 820 846 161] 2703| 306.66) 100.00‘?{ 12.1/sec| 37.21| 3159
100 f2014..i 820 2389; 1132 3634 381.55] 0.00%| 11.9/sec| 71.78 8156
100 ;‘201..‘; 820; 3659! 69| 34834 2192.79‘ O'OO%i 12.7fsec, 76.09 6157
TOTAL 9213 4684 1| 68454 10979.14| 9.16%| 113.4/sec| 4880.34 44078

18

HPCO



Experiment and analysis: Web-based

Workload Using WordPress

| Vanilla VM
3.0 Pinned VM

L75] Vanilla VMCN

2.5 Pinned VMCN
Vanilla CN
2.0 [XJ Pinned CN
I Vanilla BM

1.5 y I Platform Overhead

Average Execution Time (s)
-
o

o
(%
X% X X X X

O
o

xLa'rge 2xLarge 4xLarge 8xLarge 16xlLarge
Instance Types

Fig. 5. Comparing mean response time (aka execution time) of 1,000 web
processes on different execution platforms (WordPress evaluation). The
horizontal axis represents the number of CPU cores in the form of different

instance types and the vertical axis shows the mean execution time (in HPC:)
lab.

seconds).



NoSQL Workload using Apache

Cassandra

- Apache Cassandra:
Distributed NoSQL, Big Data platform
Demands compute, memory, and disk 10.

- Workload

1,000 operations within one second

o Cassandra-stress
o 25% Write, 85% Read
o 100 threads, each one simulating one user

Each experiment is repeated 20 times
Average execution time (response time) of all the
synthesized operations.

9



NoSQL Workload using Apache

Results:

Op rate

Partition rate

Row rate

Latency mean

Latency median

Latency 95th percentile
Latency 99th percentile
Latency 99.9th percentile
Latency max

Total partitions

Total errors

Total GC count

Total GC memory

Total GC time

Avg GC time

StdDev GC time

Total operation time

END

Cassandra

9,995 op/s [READ: 7,513 op/s, WRITE: 2,485 op/s]
9,995 pk/s [READ: 7,513 pk/s, WRITE: 2,485 pk/s]
9,995 row/s [READ: 7,513 row/s, WRITE: 2,485 row/s]
1.1 ms [READ: 0.9 ms, WRITE: 1.6 ms]
©.6 ms [READ: 0.6 ms, WRITE: 0.6 ms]
1.1 ms [READ: 1.0 ms, WRITE: 2.6 ms]
15.6 ms [READ: 5.2 ms, WRITE: 29.8 ms]
62.1 ms [READ: 51.9 ms, WRITE: 69.1 ms]
81.1 ms [READ: 75.3 ms, WRITE: 81.1 ms]
558,733 [READ: 419,816, WRITE: 138,917]
® [READ: 0, WRITE 0]
5
7.972 GiB
©.1 seconds
26.6 ms
3.5 ms
00:00:55



NoSQL Workload using Apache

Cassandra

Vanilla VM

150 1
E_—<d Pinned VM
| =24 Vanilla VMCN
125 W -
!. Pinned VMCN
Vanilla CN

100 S Pinned CN
I Vanilla BM
—

Platform Overhead

U
o
OIS A

Average Execution Time (s)
~
192

N
()

o

arge 2xlLarge 4xLarge 8xlLarge l6xLarge
Instance Types

—

X

Fig. 6. Comparing mean execution time (aka response time) of Cassandra
workload (in seconds) on different execution platforms. Horizontal axis
represents the number of CPU cores in the form of different instance types.

Note that the execution time for the Large instance type is out of range
and unchartable. HPC:)
lab



Cross-Application Overhead Analysis

. Platform-Type Overhead (PTO)
- Resource abstraction (VM)
- Constant trend
- Pinning is no helpful

. Platform-Size Overhead (PSO)

- Diminished by increasing the number of CPU cores

- Specific to containers
- Just reported by IBM for Docker (Websphere tuning)

- Pinning is helpful alot

HPCO



Parameters affecting PSO

1. Container Resource Usage Tracking
cgroups
2. Container-to-Host Core Ratio (CHR)

Assigned cores to the container

CHR = Total number of host cores

3. 10 Operations
4. Multitasking

HPCO



Lower value of CHR imposes a larger

Impact of CHR on PSO

overhead (PSO)

Application characteristics define the

value of CHR
CPU intensive

0.14 < CHR < 0.28

|O intensive: higher

0.28 < CHR < 0.57

17.51 Vanilla CN
w ] Pinned CN
‘5 15.01 B Vanilla BM
£ Il Platform Overhead
i= 12.51 ’
& CHR=0.14
= 10.0
S
o
X 754
&
E 50'
g
< 2.51
0.0

16 c'ores 112 cores
Hosts with Different Number of Cores

Fig. 7. Evaluating the impact of CHR on the overhead of a vanilla and a
pinned CN platform on two homogeneous hosts with 16 and 112 cores. The
vertical axis shows the mean execution time (in seconds) and the horizontal

axis shows the host’s number of cores.
lab.



Container Resource Usage Tracking

« OS scheduler allocates all available CPU cores to the

CN process

 cgroups collects usages cumulatively

Each scheduling event has different CPU allocation
for that CN

. cgroups is an atomic (kernel space) process
Container has to be suspended while aggregating
resource

OS scheduling enforces process migration, cgroups
enforce resource usage tracking -- Synergistic

HPCO



The Impact of Multitasking on PSO

30 - Vanilla CN AN
w (<] Pinned CN AN
Q . . N\,
.g L L]
— 60 4 .o o.o
c
.9 .0 ...
45 2 N\
U L L J
2 40 1 s N\p
w . ™
8\ 5 N\,

1 Large Task 30 Small Tasks
Different number of processes running on CN platforms

Fig. 8. Comparing the impact of number of processes on the imposed over-
head of 4xLarge CN instance. The vertical axis shows the mean executing
times (in Seconds) and the horizontal axis shows processing of a source

video file in two cases: one large video versus partitioning it into 30 small HPC:)
videos.
lab.



Fig. 3. Comparing execution time of FFmpeg on different execution plat-
forms under varying number of CPU cores. Horizontal axis indicates the

Average Execution Time (s)

80 1

(o)}
o

EN
o

N
o

o

Vanilla VM

[Z Pinned VM

K- Vanilla VMCN
Pinned VMCN
Vanilla CN

F*Y Pinned CN

11 Vanilla BM

I Platform Overhead

V]
%

AS

: ZEN

xLa'rge

2xLérge 4xLérge

Instance Types

number of CPU cores in form of different instance types.

The Impact of |O operations on PSO

Vanilla VM
3.01 Pinned VM
L7%] Vanilla VMCN
2.5 Pinned VMCN
Vanilla CN
2.0 X7 Pinned CN
IO Vanilla BM
I Platform Overhead
15 b h

Average Execution Time (s)

X N X X X X

xLa'rge 2xLérge 4xLérge 8xLarge 1l6xlLarge
Instance Types

Fig. 5. Comparing mean response time (aka execution time) of 1,000 web
processes on different execution platforms (WordPress evaluation). The
horizontal axis represents the number of CPU cores in the form of different
instance types and the vertical axis shows the mean execution time (in
seconds).

CPU pinning can mitigate this kind of overhead HPC:)
lab



Summary

Application characteristic is decisive on the
imposed overhead

CPU pinning reduce the overhead for |0-bound
applications running on containers.

CHR plays a significant role on the overhead of
containers

Containers may induce higher overhead in
comparing to VMs

Containers on top of VMs (called VMCN) impose a
lower overhead for |0 intensive applications
HPCO



N o U s W Dhe

Best Practices

Avoid small vanilla containers

Use pinning for CPU-bound containers

Not worthwhile to use pinning for CPU-bound VMs
Use pinning for 10 intensive workloads

CPU intensive applications: 0.07 < CHR <0.14

|0 intensive applications: 0.14 < CHR < 0.28

Ultra 10 intensive applications: 0.28 < CHR < 0.57

HPCO



