
XShot: Light-weight Link Failure
Localization using Crossed Probing

Cycles in SDN

Hongyun Gao, Laiping Zhao*, Huanbin Wang, Zhao Tian, Lihai Nie, Keqiu Li

TANKLab, Tianjin University

More links, more failures

• Networks grow rapidly in scale
• Ten thousands of network devices

• Hundred thousands of links

• Failures become common
• Fail-stop failures

• Partial failures

• E.g., a faulty link dropping packets randomly

2

Severe service outages caused by failures

• It often takes hours or more to restore

• Huge economic losses and labor consumptions

3

Severe service outages caused by failures

• It often takes hours or more to restore

• Huge economic losses and labor consumptions

Timely failure detection and localization is critical!
4

Existing tools rely on network monitoring

• Passive monitoring
• Use readily available metrics to generate failure alarms

• The downside is alarm signals are often missed

• Introduce many false alarms

• Turn failure localization into a long-time lagging process

• Active probing
• Inject probing packets to monitor the network status

• But it cannot provide accurate failure position

• Due to the unknown routing in traditional networks

Monitoring

System
Alarm

﹡TCP retransmission

﹡Bandwidth utilization

﹡Packet loss rate

﹡…

Probing

Node

Probing

Path

Passive monitoring

Active probing

5

SDN opens up an opportunity

• It decouples the control plane from the data plane

• It routes packets on predefined paths

Control Plane

Data Plane

6

SDN opens up an opportunity

• It decouples the control plane from the data plane

• It routes packets on predefined paths

Control Plane

Data Plane

The predefined paths make it possible

to localize the exact position of failures

efficiently.

7

Connectivity verification is not enough

• Connectivity verification
• Measure the up-or-down state of a path according to the receiving state of

probing packets

• Moreover, richer link metrics can be further derived through end-to-end
performance measurements

• Although effective
• Cannot distinguish fail-stop and partial failures

• Incur high cost

• Additional hardware monitors

• Many probing packets and forwarding rules

• Long probing time

8

Connectivity verification is not enough

• Connectivity verification
• Measure the up-or-down state of a path according to the receiving state of

probing packets

• Moreover, richer link metrics can be further derived through end-to-end
performance measurements

• Although effective
• Cannot distinguish fail-stop and partial failures

• Incur high cost

• Additional hardware monitors

• Many probing packets and forwarding rules

• Long probing time

Probing packets impose a large communication load

Forwarding rules take expensive resources of TCAM

9

Our aim

• To pinpoint the exact faulty links in SDN in a more light-
weight and quick manner
• To save cost

• Reduce the number of probing packets and forwarding rules

• Need no additional hardware monitors

• To distinguish fail-stop and partial failures

10

Major challenges

• How to formulate the probing cost in terms of packets and
rules?
• Probing packets and forwarding rules increase over the number of probing

paths

• To minimize the cost, the probing paths should be crafted carefully

• How to identify partial failures from noisy measurements?
• Given the probing paths, the measured metrics are often noisy

• It is difficult to recognize partial failures from noises

11

Our design: XShot

• A quick and light-weight failure localization system in SDN
• Cross verification

• A cross probing-based link failure localization method in SDN

• ILP model

• For minimizing the number and length of probing paths

• ADW-Donut

• A machine learning algorithm that learns to identify partial failures from noisy
measurements

12

What is cross verification?

• A method to localize the faulty link within just one-round
shot of crossed
• Each link failure corresponds to one and only one binary code

• The code is defined based on the probing results of crossed paths

13

Example: Probing solution for an SDN

• Five probing paths (i.e., cycles) with controller 𝑐 as the only monitor

• Each link has a unique 5-bit failure code

14

Example: Probing solution for an SDN

• Five probing paths (i.e., cycles) with controller 𝑐 as the only monitor

• Each link has a unique 5-bit failure code

15

Limitations of the existing cross verification

• In all-optical networks
• A node can only be traversed at most once by each probing cycle

• A link can only be traversed at most once by each probing cycle

• This is because optical signals of the same wavelength can only be transmitted in one
direction on each link

16

Limitations of the existing cross verification

• In all-optical networks
• A node can only be traversed at most once by each probing cycle

• A link can only be traversed at most once by each probing cycle

• This is because optical signals of the same wavelength can only be transmitted in one
direction on each link

• “Failure localization” problem

No probing cycle Only one probing cycle

17

Limitations of the existing cross verification

• In all-optical networks
• A node can only be traversed at most once by each probing cycle

• A link can only be traversed at most once by each probing cycle

• This is because optical signals of the same wavelength can only be transmitted in one
direction on each link

• “Failure localization” problem

No probing cycle Only one probing cycle

All links cannot be distinguished from each other.
18

Our cross verification

• In SDN networks
• A node can be traversed multiple times by each probing cycle

• Note: A link can be traversed at most once in either direction by each probing
cycle

19

Our cross verification

• In SDN networks
• A node can be traversed multiple times by each probing cycle

• Note: A link can be traversed at most once in either direction by each probing
cycle

Example network with one-cut and two-cut links
20

Our cross verification

• In SDN networks
• A node can be traversed multiple times by each probing cycle

• Note: A link can be traversed at most once in either direction by each probing
cycle

All links can be distinguished from each other.
21

Overall design of XShot

• Three components
• Probing path planning

• Active probing

• Data analysis

22

Overall design of XShot

Probing path planning: Given the network

topology, it generates a probing solution

consisting of probing paths and failure

codes by ILP model

23

Overall design of XShot

Probing path planning: Given the network

topology, it generates a probing solution

consisting of probing paths and failure

codes by ILP model

ILP model: Formulated based on cross verification

Objective:

𝑚𝑖𝑛 𝜔 × 𝑐𝑝𝑘𝑡 + 𝑐𝑟𝑢𝑙𝑒

24

Overall design of XShot

Probing path planning: Given the network

topology, it generates a probing solution

consisting of probing paths and failure

codes by ILP model

ILP model: Formulated based on cross verification

Objective:

𝑚𝑖𝑛 𝜔 × 𝑐𝑝𝑘𝑡 + 𝑐𝑟𝑢𝑙𝑒

𝑐𝑝𝑘𝑡 =

𝑖

(𝑐,𝑦)∈𝐸𝑐

𝑒𝑐𝑦
𝑖

𝑐𝑟𝑢𝑙𝑒 =

𝑖

(𝑥,𝑦)∈𝐸𝑑

(𝑒𝑥𝑦
𝑖 + 𝑒𝑦𝑥

𝑖) +

𝑖

(𝑥,𝑐)∈𝐸𝑐

𝑒𝑥𝑐
𝑖

Probing packet cost:

Forwarding rule cost:

A weight, w>1

25

Overall design of XShot

Probing path planning: Given the network

topology, it generates a probing solution

consisting of probing paths and failure

codes by ILP model

Five probing paths

Failure codes of 15 links

26

Overall design of XShot

Active probing: It installs the forwarding

rules on switches according to the probing

paths, and sends packets along them to

measure the end-to-end latency

27

Overall design of XShot

Active probing: It installs the forwarding

rules on switches according to the probing

paths, and sends packets along them to

measure the end-to-end latency

28

Overall design of XShot

Active probing: It installs the forwarding

rules on switches according to the probing

paths, and sends packets along them to

measure the end-to-end latency

Path ID, using to distinguish

the packets of different paths

Recording the sending

time of the packet 29

Overall design of XShot

Data analysis: It collects the measured

latency, detects the path status using an

unsupervised learning algorithm, and

pinpoints the exact faulty link according

to the unique binary code

*𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 − 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

To detect the partial failures only causing high

latency, XShot chooses Donut, an unsupervised

anomaly detection algorithm based on VAE

30

Overall design of XShot

Data analysis: It collects the measured

latency, detects the path status using an

unsupervised learning algorithm, and

pinpoints the exact faulty link according

to the unique binary code

*𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 − 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

To detect the partial failures only causing high

latency, XShot chooses Donut, an unsupervised

anomaly detection algorithm based on VAE

Transient unexpected fluctuations

exist in the measured data.

31

Overall design of XShot

Data analysis: It collects the measured

latency, detects the path status using an

unsupervised learning algorithm, and

pinpoints the exact faulty link according

to the unique binary code

Spikes affect the

detection accuracy

32

Overall design of XShot

Data analysis: It collects the measured

latency, detects the path status using an

unsupervised learning algorithm, and

pinpoints the exact faulty link according

to the unique binary code

Spikes affect the

detection accuracy

The same fluctuation

frequency
33

Overall design of XShot

Data analysis: It collects the measured

latency, detects the path status using an

unsupervised learning algorithm, and

pinpoints the exact faulty link according

to the unique binary code

ADW-Donut: Introduce an accelerated detection

window (ADW) into Donut

34

Overall design of XShot

Data analysis: It collects the measured

latency, detects the path status using an

unsupervised learning algorithm, and

pinpoints the exact faulty link according

to the unique binary code

(i) Upon an anomaly, send a certain number (i.e., ADW)

of additional probing packets in a higher frequency

35

Overall design of XShot

Data analysis: It collects the measured

latency, detects the path status using an

unsupervised learning algorithm, and

pinpoints the exact faulty link according

to the unique binary code

(ii) If there are more detected anomalies in ADW than a

threshold, the detection result of Donut is true positive

36

Overall design of XShot

Data analysis: It collects the measured

latency, detects the path status using an

unsupervised learning algorithm, and

pinpoints the exact faulty link according

to the unique binary code

(iii) Otherwise, the result is false positive and removed

37

Evaluation

• Set up
• Experimental environment

• Choose Floodlight as the SDN controller

• Use Mininet to create an SDN network

• Collect 63 available network topologies from the Internet Topology Zoo

• Set a centralized controller on the control plane

• The probing interval is 1 second, and ADW=10

• Compared approaches

• Link Layer Discovery Protocol (LLDP)

• Logical Ring [TON’16]

38

Evaluation

• Set up
• Metrics

• The number of probing packets and forwarding rules

• The failure detection precision: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁

• Controller overhead: CPU and memory usage

39

Evaluation

• Results
• Number of probing packets and forwarding rules

40

Evaluation

• Results
• Number of probing packets and forwarding rules

In 79.37% of topologies, XShot averagely requires 9.63% less number of

probing packets than Logical Ring.

41

Evaluation

• Results
• Number of probing packets and forwarding rules

XShot and Logical Ring require roughly the same number of forwarding rules,

which commonly occupy less than 0.1% of TCAM resources.

42

Evaluation

• Results
• Failure detection performance

Due to the fluctuations in measured latency, ADW-Donut yields less false

positive results and has a better detection precision

43

Evaluation

• Results
• Failure detection performance

ADW-Donut increases the precision to more than 94%, in the middle or later

period of congestion, and keeps the recall more than 80%

44

Evaluation

• Results
• Overhead

XShot increases the average CPU usage by less than 3%, compared with the

XShot-not-working situation (interval = inf)

45

Evaluation

• Results
• Overhead

In case of changing the number of probing packets, the CPU usage has barely

changes

46

Evaluation

• Results
• Overhead

The controller consumes only around 0.7% memory, little of which is caused by

XShot

47

Conclusion

• XShot is a quick and light-weight link failure localization
system in SDN

• XShot pinpoints the exact faulty link within just one-round
shot of probing

• XShot reduces the number of probing packets and forwarding
rules

• XShot identifies the partial failures, and has a detection
precision of more than 94%

48

