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More links, more failures
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Severe service outages caused by failures

* It often takes hours or more to restore
* Huge economic losses and labor consumptions
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Failure

IBM Cloud suffered a multi-zone outage impacting its {f\\@;
services. Here are steps and strategies organizations *‘
should take to limit cloud outage risk. f::'
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Existing tools rely on network monitoring

* TCP retransmission

] . . * Bandwidth utilization * Monitoring
* Passive monitoring - Packet loss rat VN
* Use readily available metrics to generate failure alarms "'g

* The downside 1s alarm signals are often missed

 Introduce many false alarms Passive monitoring
A%

e Turn failure localization into a long-time lagging process

* Active probing
* Inject probing packets to monitor the network status

* But it cannot provide accurate failure position
* Due to the unknown routing in traditional networks

Active probing



SDN opens up an opportunity

* It decouples the control plane from the data plane

* It routes packets on predefined paths

E’ Control Plane
L g

Data Plane



SDN opens up an opportunity

* It decouples the control plane from the data plane
* It routes packets on predefined paths

f’ Control Plane
)

7|

4 N
The predefined paths make it possible

to localize the exact position of failures
gfficiently.
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Connectivity verification is not enough

* Connectivity verification

* Measure the up-or-down state of a path according to the receiving state of
probing packets

* Moreover, richer link metrics can be further derived through end-to-end
performance measurements

* Although effective

 Cannot distinguish fail-stop and partial failures

* Incur high cost
* Additional hardware monitors
* Many probing packets and forwarding rules
* Long probing time



Connectivity verification is not enough

* Connectivity verification

* Measure the up-or-down state of a path according to the receiving state of
probing packets

* Moreover, richer link metrics can be further derived through end-to-end
performance measurements

* Although effective

 Cannot distinguish fail-stop and partial failures

* Incur high cost

o Additional hardware monitors — Probing packets impose a large communication load

* Many probing packets and forwarding rules —

. . . | .
ong probing time — Forwarding rules take expensive resources of TCAM
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Our aim

* To pinpoint the exact faulty links in SDN 1n a more light-
weight and quick manner

* To save cost
* Reduce the number of probing packets and forwarding rules
* Need no additional hardware monitors

* To distinguish fail-stop and partial failures
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Major challenges

* How to formulate the probing cost in terms of packets and

rules?

* Probing packets and forwarding rules increase over the number of probing
paths

* To minimize the cost, the probing paths should be crafted carefully

* How to 1dentify partial failures from noisy measurements?

* Given the probing paths, the measured metrics are often noisy
* It is difficult to recognize partial failures from noises

11



Our design: XShot

* A quick and light-weight failure localization system in SDN

* Cross verification

* A cross probing-based link failure localization method in SDN
* ILP model

* For minimizing the number and length of probing paths

e ADW-Donut

* A machine learning algorithm that learns to identify partial failures from noisy
measurements
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What is cross verification?

* A method to localize the faulty link within just one-round

shot of crossed

* Each link failure corresponds to one and only one binary code
* The code is defined based on the probing results of crossed paths
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Example: Probing solution for an SDN

* Five probing paths (i.e., cycles) with controller ¢ as the only monitor

* Each link has a unique 5-bit failure code

Binary Code Link Binary Code
P1 P2 P3 Pa Ps Py P2 P3 Ps Ps
0 1.1 0 O (c,sp|O 1 0 0 O
0 0 1 1 O0/|/(c,s)|]0 0 1 0 1
0O 0 0 0 1) (c,s5)|1 0 0 0 0
0O 1 0 1 0] (c,s9)|0 O O 1 O
1 0 0 1 0 (c,55(0 0 1 0 0
1 0 1 0 O0f/(c,sg(1 1 0 0 0
1 0 0 0 1|/(c,s-)|0 0 0 1 1
(Sg.5)/ 0 1 0 0 1

(f) Cross verification code for each link failure




Example: Probing solution for an SDN

* Five probing paths (i.e., cycles) with controller ¢ as the only monitor
* Each link has a unique 5-bit failure code

(f) Cross verification code for each link failure

Link Binary Code Link Binary Code
i Pi1 P2 P3s Pa Ps Pi1 P2 P3 Ps Ps
S (5,,5)/0 1 1 0 O0}(c,sp|0 1 0 0 O
(5,,s9/ 0 0 1 1 o0iff(,sp|0 0 1 0 1
(51,8590 000 1|l (c,s9|1 0 0 0 o
(§,,57)/0 1 0 1 0} (c,s59)]0 0 0 1 0
(53,8591 0 0 1 O}{(c,s5)0 0 1 0 O
(53,8591 0 1 0 Oll(c,sg(1 1 0 0 O
(5s.5¢|1 0 0 0 1]|{(c,s)|0 O O 1 1
(Sg.5)/ 0 1 0 0 1
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Limitations of the existing cross verification

* In all-optical networks

* A node can only be traversed at most once by each probing cycle

* A link can only be traversed at most once by each probing cycle

 This 1s because optical signals of the same wavelength can only be transmitted in one
direction on each link

16



Limitations of the existing cross verification

* In all-optical networks

* A node can only be traversed at most once by each probing cycle

* A link can only be traversed at most once by each probing cycle

 This 1s because optical signals of the same wavelength can only be transmitted in one
direction on each link

e “Failure localization” problem

A 2 S 2
. [ .
No probing cycle <«=---- g ----- > Only one probing cycle
\) 1 S 3 S 1 . . S 3
(a) One-cut structure (b) Two-cut structure
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Limitations of the existing cross verification

* In all-optical networks

* A node can only be traversed at most once by each probing cycle

* A link can only be traversed at most once by each probing cycle

 This 1s because optical signals of the same wavelength can only be transmitted in one
direction on each link

e “Failure localization” problem
Sz ng

No probing cycle «---- i/]\o ‘ﬁ ----- > Only one probing cycle
Sl Sj Sl . . S3

{ All links cannot be distinguished from each other. }
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Our cross verification

e In SDN networks

* A node can be traversed multiple times by each probing cycle

* Note: A link can be traversed at most once 1n either direction by each probing
cycle
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Our cross verification

e In SDN networks

* A node can be traversed multiple times by each probing cycle
* Note: A link can be traversed at most once in either direction by each probing

cycle
Link Binary Code Link Binary Code
P P2 P3s Pa Ps Py P2 P3 Pa Ps
(5,,59/0 1 1 0 Off(c,sp|(O0O 1 0 0 O
($,,5/0 0 1 1 O0f{(c,s|0 0 1 0 1
(§,,55(0 0 0 0 1|f(c,s5|(1 0 0 0 0
(5,,5)/0 1 0 1 O0f/(c,s59|(0 0 0 1 0
(53,591 0 0 1 Of/(c,s55(0 0 1 0 O
(3,591 0 1 0 Off(c,s59p(1 1 O 0 O
(5,591 0 0 0 1|[(c,s)|0 0 0 1 1
(555910 1 0 0 1

(f) Cross verification code for each link failure

(d) Path py (e) Path ps

Example network with one-cut and two-cut links



Our cross verification

e In SDN networks

* A node can be traversed multiple times by each probing cycle
* Note: A link can be traversed at most once 1n either direction by each probing

cycle
Link Binary Code Link Binary Code
P P2 P3s Pa Ps Py P2 P3 Pa Ps
(5,,5,)/]0 1. 1 0 O0}|/(c,sp|]O0O 1 0 0 O
(s,,53/0 0 1 1 O0|/(c,s5)]|0 0 1 0 1
(§,,55(0 0 0 0 1|f(c,s5|(1 0 0 0 0
(5,,59|0 1 0 1 0|/ (c,s59|0 0 0 1 O
(53,591 0 0 1 Of/(c,s55(0 0 1 0 O
(53,591 0 1 0 0 (c,s5¢]1 1 0 0 O
(ss,5¢/1 0 0 O 1|/ (c,s59)]|0 0 0 1 1
(555910 1 0 0 1

{ All links can be distinguished from each other. }




Overall design of XShot

* Three components
* Probing path planning
* Active probing
* Data analysis

Control Plane
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Overall design of XShot

Control Plane

Probing path planning: Given the network
topology, it generates a probing solution
consisting of probing paths and failure
codes by ILP model

,
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Overall design of XShot

Control Plane
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Overall design of XShot

Control Plane
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Overall design of XShot

Control Plane
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Active Probing Data Analysis

Five probing paths !

Link Binary Code Link Binary Code
Py P2 P3 Pa Ps Py P2 P3 Pa Ps
5s,,5)]0 1 1 0 oll@,splo 1 0 o o

(5,.59/0 0 1 1 0]/(c,s,)]0 0 1 0 1
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(f) Cross verification code for each link failure Data Plan e



Overall design of XShot

Active probing: It installs the forwarding
rules on switches according to the probing
paths, and sends packets along them to
measure the end-to-end latency

7
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Overall design of XShot

Control Plane

Active probing: It installs the forwarding
rules on switches according to the probing
paths, and sends packets along them to
measure the end-to-end latency

Table 2: Forwarding rules for path p;

. Forwarding Rule
Switch -
Match Fields Actions

s VLAN == vlany, inport == CONTR® | output = port]

’ VLAN == vlany, inport == port] output = port;
Ss VLAN == vlan,, inport == port] | output=INPORT
Ss VLAN == vlany, inport == port; output = portg
Se VLAN == vlan,, inport == port; | output = CONTR

ACONTR represents CONTROLLER.

dst MAC src MAC VLAN  dst IP  src IP | TCP port
address address D address address number

p
Probing Path Planning |
{ Probing paths ! { Failure codes ré%' Topology
i [pr | Pathinfo | ii[ I, | Binarycode |i [esesssscscaces )
: : : : i | Topologyinfo| Discovery
DPn Path mnfo Im | Binary code -
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Overall design of XShot

Control Plane

Active probing: It installs the forwarding 4 -129!?}-]35--R?.tl}---l-)-!ﬁ-l-l-g-l-'-{g ----------- N -~ 3
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Ss VLAN == vlan,, inport == port] | output=INPORT
Ss VLAN == vlany, inport == port; output = portg
Se VLAN == vlan,, inport == port; | output = CONTR

ACONTR represents CONTROLLER.

dst MAC src MAC VLAN  dst IP  src IP | TCP port
address address D address address number

¥
Path ID, using to distinguish ~ Recording the sending
the packets of different paths  time of the packet
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Overall design of XShot

Control Plane

Data analysis: 1t collects the measured
latency, detects the path status using an
unsupervised learning algorithm, and
pinpoints the exact faulty link according
to the unique binary code

*latency = receiving time — sending time
To detect the partial failures only causing high

latency, XShot chooses Donut, an unsupervised
anomaly detection algorithm based on VAE

Data Plane
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Overall design of XShot

Control Plane

Data analysis: 1t collects the measured
latency, detects the path status using an
unsupervised learning algorithm, and
pinpoints the exact faulty link according
to the unique binary code

*latency = receiving time — sending time
To detect the partial failures only causing high

latency, XShot chooses Donut, an unsupervised
anomaly detection algorithm based on VAE
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Overall design of XShot

Data analysis: 1t collects the measured
latency, detects the path status using an
unsupervised learning algorithm, and
pinpoints the exact faulty link according
to the unique binary code

Control Plane
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Overall design of XShot

Control Plane

Data analysis: 1t collects the measured .. Probing Path Planning s
. : Probing paths ! : Fallml'e codes L : Topology
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Overall design of XShot

Data analysis: 1t collects the measured
latency, detects the path status using an
unsupervised learning algorithm, and
pinpoints the exact faulty link according

to the unique binary code
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ADW-Donut: Introduce an accelerated detection
window (ADW) into Donut

Control Plane

Data Plane

p
r ~
Probing Path Planning O ‘
i Probing paths :: Failure codes r‘é:‘?\' Topology
i [po | Pathmfo | ii[ I, [ Binarycode |; [®sesieiccacacas y
5 5 e - : | Topologyinfo | [iscovery
P Path info i i lm | Binarycode -
-------------------------------------------------- ) Output
wy Output
2rabing Data Analysis
. Xrules i ‘Latency: iAnalysisi | A](’l't&-i
e w— s , i S iy :
(] I— — — ¥al ... i ' M . Ao e ! '
| e ."" - w%ﬂﬁg'é%.
kl ““““““““““““““““““ "".‘.;‘;‘-“;:;“‘v_; ““““““ 'J Lh"""é'""' """"""""""""""""""""""" )
Download "--‘r ' \[plond
- OpenFlow API

34



Overall design of XShot

Control Plane

7
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Overall design of XShot

Data analysis: 1t collects the measured
latency, detects the path status using an
unsupervised learning algorithm, and
pinpoints the exact faulty link according

to the unique binary code
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(1) If there are more detected anomalies in ADW than a
threshold, the detection result of Donut is true positive
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Overall design of XShot

Data analysis: 1t collects the measured
latency, detects the path status using an
unsupervised learning algorithm, and
pinpoints the exact faulty link according

to the unique binary code
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Evaluation

* Set up

* Experimental environment
* Choose Floodlight as the SDN controller
* Use Mininet to create an SDN network

Collect 63 available network topologies from the Internet Topology Zoo
Set a centralized controller on the control plane
The probing interval 1s 1 second, and ADW=10

* Compared approaches

* Link Layer Discovery Protocol (LLDP)
* Logical Ring [TON’16]
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Evaluation

* Set up

 Metrics

* The number of probing packets and forwarding rules

. . « e L ” TP
* The failure detection precision: precision = e

* Controller overhead: CPU and memory usage

,recall =

TP
TP+FN
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Evaluation

* Results
* Number of probing packets and forwarding rules
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Evaluation

In 79.37% of topologies, XShot averagely requires 9.63% less number of

e Re Sults probing packets than Logical Ring.

Renam MREN GetNet AI3  Netrail Heanet EEnet Abilene ILAN GRENA Navi.. Sago GARR RHnet Nextgen GridNet FatMan Azena BSO... ISTAR Visio...

(5.4) (65 (7.8) (109 (7.10) (7.11) (13.13) (11.14) (14.15) (16.15) (13.17) (18.17) (16.18) (16,18) (17.19) (9.20) (17.21) (22.21) (18.23) (23.23) (24.23)
#pkis of XShot| 3 3 4 4 4 4 4 4 5!’3‘:5.[9 5 5 5 5 5 6 5 5 7
#pkts of Ring | 4 45 45 55 45 45 55 55 55 55 3 55 1 6. 6.5 55 55 55 55 6.5 6.5 6.5 6.5

L I—
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18.24) (2124 4 424 5,24 18,25) (19,26 5,27 5,28) (30,29 0.30 6,30) (17,31) (20,31) (23,31 8.31 20,32) (3032) (3233 4,34 13
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52 54
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Globa... Reuna Slovakia GEANT Myren Canerie Camet Janet . SANET ARNES Lamb.. Valley.. RoE.. CUDI ATT.. Renater IU China.. SURF... North . UUNET
(9.36) (37.36) (35.37) (27.38) (37,39) (3241) (4443) (29.45) (4345) (3446) (42.46) (3951) (48.52) (5152) (25.56) (43.56) (37.65) (42,66) (50.68) (36.76) (49.84)

#pkts of XShot| 6 7 6 6 7 7 7 7 6 1 25 ‘= 8 9 7 8 9 9 | M 20 15 19
#pktsof Ring | 65 75 75 6.5 75 65 75 65 715 65 \_15 4 15 715 15 15 15 15 L 715 15 15 75 _)
#pkts of LLDP 72 74 76 78 82 86 90 104 112 112 130 132 136 152




Evaluation

XShot and Logical Ring require roughly the same number of forwarding rules,
which commonly occupy less than 0.1% of TCAM resources.

e Results
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Evaluation

Due to the fluctuations in measured latency, ADW-Donut yields less false

sitive results and has a better detection precision
e Results pOSTVETEH P
* Failure detection performance
2 W | I I 0
1.5+ m ADW-Donut 14 =
g = Eotnut £
@ atenc >
> Tr | ;y| | | 118 8
— l [ : |
' | | | | | 3
o : , | | 1 ©
0.5 | i | | | | 112 4
: | i R
| l ; = !
0 = ‘ : - 16
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Time(s)
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Evaluation

ADW-Donut increases the precision to more than 94%, in the middle or later
eriod of congestion, and keeps the recall more than 809%
* Results P = P "

* Failure detection performance

Table 3: Detection performance of Donut and ADW-Donut
under different durations of congestion

< 5s < 10s < 20s

Donut recall 76.87% 86.17% 87.07%
ADW-Donut recall 80.48% 87.57% 88.53%
Donut pre*cision 75.24% 79.57% 81.56%

ADW-Donut precision 94.83% 96.28% 96.61%




Evaluation

XShot increases the average CPU usage by less than 3%, compared with the

e Re Sults XShot-not-working situation (interval = inf’)
e Overhead 35% — : : : -~
e30%r I £ fE 0.9%!

+ | 2 '
225%-%—-- = 0.6%! :
Cant T T+ { Zoan :

159, L _average GPU% : 0%

0.1 1 10 inf 0.1 1 10 inf
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C%t ¥ T T T { Zo3% |
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Evaluation

In case of changing the number of probing packets, the CPU usage has barely

changes
e Results
e Overhead 35% — E ; E 1.2%
e30%r T & P E 1 o00% :
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Evaluation

The controller consumes only around 0.7% memory, little of which is caused by

e Results XShot

e Overhead 35%

EEEEEE
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Conclusion

* XShot 1s a quick and light-weight link failure localization
system 1n SDN

* XShot pinpoints the exact faulty link within just one-round
shot of probing

* XShot reduces the number of probing packets and forwarding
rules

* XShot 1dentifies the partial failures, and has a detection
precision of more than 94%
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