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l Data Processing in Spark
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l Dependent Shuffle Phase
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l Multi-Round Sub-Tasks

e The number of sub-tasks is recommended to be at least twice the total number of CPUs
INn the cluster

* However, the intermediate data in this phase cannot be transmitted in time except the
last round
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Overhead of Shuffle Phase

512 GB two-stage sequencing application
e 640 to 6400 sub-tasks
 As the number of sub-tasks increases,

* the total execution time of the shuffle
phase increases sharply

* the number of shuffle requests grows to
the power of the original

* the amount of transmission for each
shuffle request also gradually decreases
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l  Optimizations: I/O Requests

e Sailfish [SoCC ’12]
* Aggregate intermediate data files and using batch processing
* Modification of the file system is needed

* Riffle [EuroSys ’18]
» Efficiently schedule merge operations

* Convert small, random shuffle I/0O requests into much fewer large, sequential I/O
requests

* |ntensive network I/O



l  Optimizations: Shuffle Optimization

* iShuffle [TPDS, 2017]
e Separate the shuffle phase from the reduce sub-tasks
* Low utilization of I/O resources (e.g., disk and network)
 SCache [PPoPP ’18]
* In-memory shuffle management with pre-scheduling

* Lack the support of larger-than-memory datasets



l Our Goal

* |In-memory shuffle management with larger-than-memory datasets support
* Elimination of synchronization barrier
» Utilization of I/O resources

* Mitigation of the number of shuffle requests
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l Early-Merge

1. The raw output data of the map sub-

tasks is directly transferred to OPS Local Fetch
2. Intermediate data is temporarily stored Node 1

iINn memory and transferred to the disk
of the designated node
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l Early-Shuffle

* Transferer reads the partition pages Iin

different partition queues in turn for
transmission as a consumer

* until all corresponding partition queues
are empty

* [hreshold can be set according to
bandwidth and memory size of the cluster
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l Early-Schedule

* The execution of the early-shuffle strategy of OPS depends on the scheduling results of
the reduce sub-tasks

 OPS is designed to trigger early-schedule in two cases:
* when the first early-shuffle is triggered

* when the number of completed map sub-tasks reaches the set threshold (5% as
default)
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l Testbed

100 t3.xlarge EC2 nodes with a 4-core CPU and 16 GB of memory
 Hadoop YARN v2.8.5 and Spark v2.4.3

10 GB of memory is allocated for early-merging

Metric Value
3.1 GHz Intel Xeon Platinum 8000 series

CPU (Skylake-SP or Cascade Lake)
vCPU 4

Memory 16 GB

Storage AWS EBS SSD (gp2) 256 GB
Storage IOPS 750

Storage Bandwidth 250 Mbps
Network Bandwidth 4.8 Gbps
OS Amazon Linux 2
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l Workload

 Sort application with 1.6 TB of random text

Input Splits | Partition Rounds Data / Task
1 1600 1600 4 1000 MB
2 2400 2400 6 670 MB
3 3200 3200 8 500 MB
4 4000 4000 10 400 MB
5 4800 4800 12 330 MB
6 5600 5600 14 290 MB
14 6400 6400 16 250 MB
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/O Throughput
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 OPS optimizes the total execution time by about 41%, and the execution time of reduce

by about 50%
* Higher utilization of network I/O in the map phase

* Higher utilization of disk I/O in the reduce phase
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] Completion Time
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* OPS reduces the total completion time by 17%-41%
 The completion time of the map phase is also steadily reduced
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} HiBench
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* OPS outperforms in shuffle-intensive workload

e e.0., Sortand TeraSort
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Summary

* Early-merge intermediate data to mitigate intensive disk |/O
* Early-schedule based on partition pages

* Early-shuffle intermediate data stored in shared memory

* Optimize the overhead of shuffle by nearly 50%
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