| INTERNATIONAL |
/CONFERENCE ON / '

| PARALLEL

PROCESSING

ICPPIZOZOIEDMONTONICANADA

AUGUST 17-20, 2020

OPS: Optimized Shuffle Management System for
Apache Spark

Yuchen Cheng’, Chunghsuan Wu’, Yangiang Liu’, Rui Ren’, Hong XuT,
Bin Yang#, Zhengwei Qi

*Shanghai Jiao Tong University
T City University of Hong Kong
tIntel Corporation

%=in$"\ SHANGHAI JIAO TONG
=) UNIVERSITY

l Data Processing in Spark

‘— -----------------------

filter

shuffle

l Dependent Shuffle Phase

* Map phase or """"""""""" e """""" Efs;hufflestart%s """""""""" - :" Disk 1/O

: @ Network I/O
shuffle data ;

+ intensive disk I/O for persisted shuffle data N
. ;etwork I/O bursts

e idled network I/O resources

Throughput(GB/s)

* Reduce phase ' LN o I . R
° network I / O peaks 0 = 1(;0 15;0 Timzé(zsec) 2;0 360Dm§3mm360

* shuffle request peaks with a significant R
trOugh 500“ ““““““““““““ ““““““““““““ “““““““ :<—shufflestarts “““““““““““ ““““““““““““ “““““““““““ |

e Observations

* the resource slot-based scheduling method
that does not consider |I/O resources

Shuffle Request Count

* the calculation logic that couples data TR ey 2 P e @
transmission and calculation

l Multi-Round Sub-Tasks

e The number of sub-tasks is recommended to be at least twice the total number of CPUs
INn the cluster

* However, the intermediate data in this phase cannot be transmitted in time except the
last round

 Stragglers k=

Overhead of Shuffle Phase

512 GB two-stage sequencing application
e 640 to 6400 sub-tasks
 As the number of sub-tasks increases,

* the total execution time of the shuffle
phase increases sharply

* the number of shuffle requests grows to
the power of the original

* the amount of transmission for each
shuffle request also gradually decreases

Data Size(MB)

00000

[@—e Total Shuffle Time

Number of Tasks

Data Size of each Task

1600 2600 3600 4600 5600 6000 7000
Number of Tasks

Data Size(KB)

00000

| ®—e Shuffle Request

00000

00000

00000

Number of Tasks

Shuffle Request Fetch Size

1600 2600 3600 4600 5600 6000 7000
Number of Tasks

l Optimizations: I/O Requests

e Sailfish [SoCC ’12]
* Aggregate intermediate data files and using batch processing
* Modification of the file system is needed

* Riffle [EuroSys ’18]
» Efficiently schedule merge operations

* Convert small, random shuffle I/0O requests into much fewer large, sequential I/O
requests

* |ntensive network I/O

l Optimizations: Shuffle Optimization

* iShuffle [TPDS, 2017]
e Separate the shuffle phase from the reduce sub-tasks
* Low utilization of I/O resources (e.g., disk and network)
 SCache [PPoPP ’18]
* In-memory shuffle management with pre-scheduling

* Lack the support of larger-than-memory datasets

l Our Goal

* |In-memory shuffle management with larger-than-memory datasets support
* Elimination of synchronization barrier
» Utilization of I/O resources

* Mitigation of the number of shuffle requests

|
|
(f _____________________________
' OPS Worker
Map <:> ' <:>
[Task BJ—LL @j Merger ——> Shuffler
I
p Shuffle

|
(Hj_ﬁ Handler (_L
Reduce l @
I Data f
[Task @ ; @ Manager «

)
N

Local

Disk
N

* Early-merge phase: Step 1 and 2
» Early-shuffle phase: Step 3, 4 and 5
* | ocal-fetch phase: Step 6 and 7

A, .. e i

l Early-Merge

1. The raw output data of the map sub-

tasks is directly transferred to OPS Local Fetch
2. Intermediate data is temporarily stored Node 1

iINn memory and transferred to the disk
of the designated node

\ —> / —>» Reduce 2

—E
/ / Q Tasks
Node n %

Partition Page
(in memory)

3. OPS releases memory resources after
the early-shuffling of the partition page
IS completed

b QOEg

— > Merger

Partition File
(on disk)

10

l Early-Shuffle

* Transferer reads the partition pages Iin

different partition queues in turn for
transmission as a consumer

* until all corresponding partition queues
are empty

* [hreshold can be set according to
bandwidth and memory size of the cluster

2 2 2R

Threshold

Shuffler

Transferer

¥ Transferer

VAAWALY

11

l Early-Schedule

* The execution of the early-shuffle strategy of OPS depends on the scheduling results of
the reduce sub-tasks

 OPS is designed to trigger early-schedule in two cases:
* when the first early-shuffle is triggered

* when the number of completed map sub-tasks reaches the set threshold (5% as
default)

12

l Testbed

100 t3.xlarge EC2 nodes with a 4-core CPU and 16 GB of memory
 Hadoop YARN v2.8.5 and Spark v2.4.3

10 GB of memory is allocated for early-merging

Metric Value
3.1 GHz Intel Xeon Platinum 8000 series

CPU (Skylake-SP or Cascade Lake)
vCPU 4

Memory 16 GB

Storage AWS EBS SSD (gp2) 256 GB
Storage IOPS 750

Storage Bandwidth 250 Mbps
Network Bandwidth 4.8 Gbps
OS Amazon Linux 2

13

l Workload

 Sort application with 1.6 TB of random text

Input Splits | Partition Rounds Data / Task
1 1600 1600 4 1000 MB
2 2400 2400 6 670 MB
3 3200 3200 8 500 MB
4 4000 4000 10 400 MB
5 4800 4800 12 330 MB
6 5600 5600 14 290 MB
14 6400 6400 16 250 MB

14

/O Throughput

| +— reduce starts === Disk /O ' «— reduce starts =—=a Disk /O
: ; : p—a Network I/O m—a Network I/O
E network; I/0O bursts Q
m 2 i m 2
%— : T(D.T random disk I/O
> é random disk 1/0 > l
< : : <
2 = -
a
e 1 e 1 DDE R
— c
= -
200 250 T - . E——
Time(sec) Time(sec)
Spark Spark + SCache

Throughput(GB/s)

m=—a Disk |/O
z=—a Network I/O

sequerftial disk I/0

I A
Time(sec)
Spark + OPS

 OPS optimizes the total execution time by about 41%, and the execution time of reduce

by about 50%
* Higher utilization of network I/O in the map phase

* Higher utilization of disk I/O in the reduce phase

15

] Completion Time

)

Job Time(sec

Reduce

400 T

BN Spark

B Spark + SCache
110) S S St S S RO AR 1 Spark + OPS |
7010) S
2SO |
0 10 S S O S

1600 2400 3200 4000 4800 5600 6400
Partition Number

)

Job Time(sec

Total

400

350

300

N

Ul

(=)
T

N
o
o

=
U1
o

1600 2400 3200 4000 4800
Partition Number

* OPS reduces the total completion time by 17%-41%
 The completion time of the map phase is also steadily reduced

Spark
Spark + SCache
Spark + OPS]

5600

6400

16

} HiBench

800

B Spark
B Spark + SCache

FO0f S S e S S =3 Spark + OPS

600 T :

— 500}

400

Job Time(sec

2001

100}

Sort Terasort Wordcount Aggregation Join PageRank

* OPS outperforms in shuffle-intensive workload

e e.0., Sortand TeraSort

17

Summary

* Early-merge intermediate data to mitigate intensive disk |/O
* Early-schedule based on partition pages

* Early-shuffle intermediate data stored in shared memory

* Optimize the overhead of shuffle by nearly 50%

18

Thanks for your attention.

Yuchen Cheng
Shanghai Jiao Tong University
rudeigerc@sjtu.edu.cn

