
* Shanghai Jiao Tong University

† City University of Hong Kong

‡ Intel Corporation

OPS: Optimized Shuffle Management System for 
Apache Spark
Yuchen Cheng*, Chunghsuan Wu*, Yanqiang Liu*, Rui Ren*, Hong Xu†, 
Bin Yang‡, Zhengwei Qi*



Data Processing in Spark

2



Dependent Shuffle Phase
• Map phase

• intensive disk I/O for persisted shuffle data

• idled network I/O resources


• Reduce phase

• network I/O peaks

• shuffle request peaks with a significant 

trough

• Observations

• the resource slot-based scheduling method 

that does not consider I/O resources

• the calculation logic that couples data 

transmission and calculation

3



Multi-Round Sub-Tasks
• The number of sub-tasks is recommended to be at least twice the total number of CPUs 

in the cluster

• However, the intermediate data in this phase cannot be transmitted in time except the 

last round


• Stragglers ☠

4



Overhead of Shuffle Phase
• 512 GB two-stage sequencing application

• 640 to 6400 sub-tasks

• As the number of sub-tasks increases,

• the total execution time of the shuffle 

phase increases sharply

• the number of shuffle requests grows to 

the power of the original

• the amount of transmission for each 

shuffle request also gradually decreases

5



Optimizations: I/O Requests
• Sailfish [SoCC ’12]

• Aggregate intermediate data files and using batch processing

• Modification of the file system is needed


• Riffle [EuroSys ’18]

• Efficiently schedule merge operations

• Convert small, random shuffle I/O requests into much fewer large, sequential I/O 

requests

• Intensive network I/O

6



Optimizations: Shuffle Optimization
• iShuffle [TPDS, 2017]

• Separate the shuffle phase from the reduce sub-tasks

• Low utilization of I/O resources (e.g., disk and network)


• SCache [PPoPP ’18]

• In-memory shuffle management with pre-scheduling

• Lack the support of larger-than-memory datasets

7



Our Goal
• In-memory shuffle management with larger-than-memory datasets support

• Elimination of synchronization barrier

• Utilization of I/O resources

• Mitigation of the number of shuffle requests

8



Proposed Design: OPS

9

• Early-merge phase: Step 1 and 2

• Early-shuffle phase: Step 3, 4 and 5

• Local-fetch phase: Step 6 and 7



Early-Merge

10

1. The raw output data of the map sub-
tasks is directly transferred to OPS


2. Intermediate data is temporarily stored 
in memory and transferred to the disk 
of the designated node


3. OPS releases memory resources after 
the early-shuffling of the partition page 
is completed



Early-Shuffle

11

• Transferer reads the partition pages in 
different partition queues in turn for 
transmission as a consumer

• until all corresponding partition queues 

are empty

• Threshold can be set according to 

bandwidth and memory size of the cluster



Early-Schedule
• The execution of the early-shuffle strategy of OPS depends on the scheduling results of 

the reduce sub-tasks

• OPS is designed to trigger early-schedule in two cases:

• when the first early-shuffle is triggered

• when the number of completed map sub-tasks reaches the set threshold (5% as 

default)

12



Testbed
• 100 t3.xlarge EC2 nodes with a 4-core CPU and 16 GB of memory

• Hadoop YARN v2.8.5 and Spark v2.4.3

• 10 GB of memory is allocated for early-merging

13

Metric Value

CPU 3.1 GHz Intel Xeon Platinum 8000 series 
(Skylake-SP or Cascade Lake)

vCPU 4
Memory 16 GB
Storage AWS EBS SSD (gp2) 256 GB
Storage IOPS 750
Storage Bandwidth 250 Mbps
Network Bandwidth 4.8 Gbps
OS Amazon Linux 2



Workload
• Sort application with 1.6 TB of random text

14

Input Splits Partition 
Numbers

Rounds Data / Task
1 1600 1600 4 1000 MB
2 2400 2400 6 670 MB
3 3200 3200 8 500 MB
4 4000 4000 10 400 MB
5 4800 4800 12 330 MB
6 5600 5600 14 290 MB
7 6400 6400 16 250 MB



I/O Throughput

• OPS optimizes the total execution time by about 41%, and the execution time of reduce 
by about 50%


• Higher utilization of network I/O in the map phase

• Higher utilization of disk I/O in the reduce phase

15

¬seqXential disk I/O

reduce startss

random disk I/O

reduce starts

network I/O bursts

Spark Spark + SCache Spark + OPS



Completion Time

• OPS reduces the total completion time by 17%-41%

• The completion time of the map phase is also steadily reduced

16

Reduce Total



HiBench

• OPS outperforms in shuffle-intensive workload

• e.g., Sort and TeraSort

17



Summary
• Early-merge intermediate data to mitigate intensive disk I/O

• Early-schedule based on partition pages

• Early-shuffle intermediate data stored in shared memory

• Optimize the overhead of shuffle by nearly 50%

18



Thanks for your attention.

Yuchen Cheng

Shanghai Jiao Tong University

rudeigerc@sjtu.edu.cn


