
Exploring Hardware/Software Co-Design
Methodology

Billy Cai, Shruthi Ashwathnarayan, Farhan Shafiq,

Ahmed Eltantawy, Reza Azimi, Yaoqing Gao

Heterogeneous Compiler Lab,

Huawei Canada

Hardware-Software Co-Design: Pain Points

2

Time-to-market requirements :
Accelerated pace of hardware innovation requires a
faster time-to-market for new chips

Complexity :
Size of complexity of hardware and software tools
that need to be developed for each chip generation
increases as design get more and more complex

Manual efforts :
• Lots of manual efforts, prone to delays and errors

Challenges of ISA Design

• Complexity of requirements

• Impacts on many interacting hardware and software components

• Simulators

• Compilers

• Profilers

• Synthesis Tools

• Performance Libraries

• Multiple sources of “ground truth” – frequently at different
versions and inconsistent

• Multiple interpretations due to the informal description (that
could be possible inaccurate as it is not verifiable e.g., an
instruction semantic).

• Lots of tedious manual work with every iteration of the ISA (and
every new chip) to upgrade the tools to a new ISA version

3

www.chinadaily.com

Experience with Huawei’s AI Chip (Ascend)
• Multiple generations of the chip architecture have been designed

• Design periods for different generations overlap in time
• Major changes in the architecture and ISA between generations

• Multiple variations within the same generation
• Targeting cloud, Mobile, IoT spaces
• Different ISA subsets for each target
• Hardware resources are also different (due to different performance requirements and different power and area budgets)

• Complex ISA
• More than 200 instructions (scalar, vector, matrix, DMA)
• Complex Instruction encoding semantics
• Special instructions with complex semantics to accelerate very frequent NN patterns

• Huge Effort for Toolchain Development and Maintenance
• Functional & Cycle Accurate Simulators
• Assembler/Disassemblers
• Optimizing Compiler Backends

4

Anecdotes from Chip X

5

0

0.5

1

1.5

2

IS
A

 V
e

rs
io

n

Timeline

ISA updates in a course of a chip development

Compiler & Function Simulator Development Starts

Sample
HW

Integration (Compiler & Functional Simulator)

Sample
HW ISA

• SW (tool) development
starts as early as ISA 0.1

• Integration tests are way
before any major ISA release.

• 23 ISA iterations before
major (relatively stable ISA
release).

• Iterative development
across compiler, simulators,
RTL, testing continues as
these ISA iterations comes
up.

Retargetable HW/SW Co-design SDK

Goal:
Develop a Huawei home-built framework for
automatic generation of software development
kit from a semi-formal single source
description of Instruction Set Architecture.

ADL :
A single source description of ISA is maintained
in an ADL (Architecture Description Language)

Output:
• Assembler / Disassembler
• ISA Markdown
• Functional simulator
• Compiler backend

6

L
a
n

g
u

a
g

e
 M

o
d

e
lin

g
U

ti
lit

y
P

re
fe

re
n

c
e
s

Front-End (ADL Parser)

Assembler/

Disassemble

r Generator

Functional

Simulator

Generator

ISA

Document

Generator

Optimizing

Compiler

Generator

Architecture Description in (ADL)

Assembler/

Disassembl

er

ISA

Markdown

Document

s

Functional

Simulator

Analytical

Performance

Model

Cycle

Accurate

Simulator

Internal ISA Representation

ISA

Encoding
Assembly

Info

Architecture State +

Instruction Semantics

U
ti
lit

y
d

e
s
ig

n

P
re

fe
re

n
c
e
s

D
e
s
c
ri
p

ti
o
n

L
a
n

g
u

a
g

e
 P

ri
m

it
iv

e
s

‘S
e
m

a
n

ti
c

Test Kit

Generator

Analytical

Performance

Modeling

Cycle

Accurate

Simulation

Profiler/

Debugger/

…

Generator

Compiler
Auto-test

generator

Profiler/

Debugger/

….

Library of common components

Instruction

Constraints

Analytical Perf.

Modeling
High Level RTL

Modeling

implem
ented

Future
work

ADL Design Principles

• Retargetable ADL:
• ADL is descriptive enough to represent various ISA types (e.g., variable and fixed instruction widths).

• Top-down Hierarchical representation of ISA
• Concise representation
• Easier to visualize, modify and verify

• Isolation of machine description from tools preferences
• Enables HW designers to write the description
• Unlike LLVM tablegen which mixes HW description with compiler design preferences (which can be

written only by the compiler developers).

• Separation of back-end implementations:
• Use an intermediate representation to represent ISA modeled by ADL.
• Parse code once and reuse intermediate representation for different back-ends (compiler, simulator,

markdiwn generation, etc).

7

ADL (further details, with RISC-V Examples)

 Decode

Architecture specific

encoding information Record

Define the tokens used in

decode & operation section
 Operation

Define information for each

instruction

Instruction set

ADL (further details, with RISC-V Examples)

9

 Decode

Architecture specific

encoding information Record

Define the tokens used in

decode & operation section
 Operation

Define information for each

instruction

Instruction set

RISCVInstr(

decode : opcode? 7‘d3 { Base_I_type_load, opcode }

7‘d35 { Base_S_type, opcode }

7‘d19 { Base_I_type_imm, opcode }

)

RISCVInstr ::Base_I_type_load(

decode : type? 3'd[0..5] { imm(12), Xm, type, Xd }

encode(lw) : {type = 3'd2};

….

)

RISCVInstr ::Base_S_type(

decode : type? 3'd[0..2] { imm[11:5], Xn, Xm, type, imm[4:0] }

encode(sw) : {type = 3'd2 };

….

)

RISCVInstr ::Base_I_type_imm(

decode : type? 3'd0 { imm(12), Xm, type, Xd }

encode(addi) : {type = 3'd0 };

….

)

RECORD{

record GPR(

"x"[0..31] = 5'd[0..31];

"zero" = 5'd0;

"ra" = 5'd1;

"sp" = 5'd2;

.

.

.

)

GPR.set_alias(Xd,Xn,Xm,Xp);

}

OPERATION{

//------BaseI_I_type_load--------

opn load(Xd, imm, Xm, type);

load.set_asm("lb %Xd,%imm(%Xm)“, type= 3’d0);

load.set_asm(“lh %Xd,%imm(%Xm)”, type= 3’d1);

load.set_asm(“lw %Xd,%imm(%Xm)”, type= 3’d2);

load.set_asm(“ld %Xd,%imm(%Xm)”, type= 3’d3);

…

//------BaseI_I_type_imm--------

opn addi(Xd, Xm, imm);

addi.set_asm("addi %Xd, %Xm, %imm");

addi.set_asm("mv %Xd, %Xm", imm = 12'd0);

…

//------BaseI_S_type---------------

opn sw(Xn, Xm, imm);

sw.set_asm("sw %Xn, %imm(%Xm)");

sw.set_description(“write value stored in Xn into memory”);

sw.set_behavior(“Mem[val(Xm) + imm] = Xn”)

}

…

Decode

ADL (further details, with RISC-V Examples)

10

 Decode

Architecture specific

encoding information Record

Define the tokens used in

decode & operation section
 Operation

Define information for each

instruction

Instruction set

RISCVInstr(

decode : opcode? 7‘d3 { Base_I_type_load, opcode }

7‘d35 { Base_S_type, opcode }

7‘d19 { Base_I_type_imm, opcode }

)

RISCVInstr ::Base_I_type_load(

decode : type? 3'd[0..5] { imm(12), Xm, type, Xd }

encode(lw) : {type = 3'd2};

….

)

RISCVInstr ::Base_S_type(

decode : type? 3'd[0..2] { imm[11:5], Xn, Xm, type, imm[4:0] }

encode(sw) : {type = 3'd2 };

….

)

RISCVInstr ::Base_I_type_imm(

decode : type? 3'd0 { imm(12), Xm, type, Xd }

encode(addi) : {type = 3'd0 };

….

)

RECORD{

record GPR(

"x"[0..31] = 5'd[0..31];

"zero" = 5'd0;

"ra" = 5'd1;

"sp" = 5'd2;

.

.

.

)

GPR.set_alias(Xd,Xn,Xm,Xp);

}

OPERATION{

//------BaseI_I_type_load--------

opn load(Xd, imm, Xm, type);

load.set_asm("lb %Xd,%imm(%Xm)“, type= 3’d0);

load.set_asm(“lh %Xd,%imm(%Xm)”, type= 3’d1);

load.set_asm(“lw %Xd,%imm(%Xm)”, type= 3’d2);

load.set_asm(“ld %Xd,%imm(%Xm)”, type= 3’d3);

…

//------BaseI_I_type_imm--------

opn addi(Xd, Xm, imm);

addi.set_asm("addi %Xd, %Xm, %imm");

addi.set_asm("mv %Xd, %Xm", imm = 12'd0);

…

//------BaseI_S_type---------------

opn sw(Xn, Xm, imm);

sw.set_asm("sw %Xn, %imm(%Xm)");

sw.set_description(“write value stored in Xn into memory”);

sw.set_behavior(“Mem[val(Xm) + imm] = Xn”)

}

…

Auto-Generation of Functional Simulation

11

• ADL allows for Instruction behavior to be
directly written in C code.

• ADL semantic description language is coupled
with a behavior expressed in C.

• This can be used to have an auto generated
simulator directly from the ADL

• Alternatively an existing simulator generator
can be used by auto-generating required files.

• We generated a simulator using the ArchC
framework

ADL ISA
description

ADL Arch
state

ArchC

Arch_isa.
ac

Arch.ac
Arch_isa.

cpp

Simulator

Auto generate

Auto-Generation of Compiler Backend

12

TD Files
• Instruction formats
• Instruction info (no

patterns)
• TargetXXX
• RegisterInfo

TD Files
• Instruction info (patterns)
• Calling convention
• Schedule

• ADL parser converts ADL description
into an IR.

• RSDK compiler back-end generation
tool uses IR and other architecture
and compiler information to
generate target backend files

• ADL IR and Arch state are the
primary input files. Backend files
can be generated independent of
other input files, with hints on
missing pieces.

• LLVM backend file generation tool
was developed.

• RISCV architecture was used to
demonstrate the tool

ADL ISA
description IR

Semantic

Language IR

Target

compiler IR

mapping

Arch state

µ-arch state

ABI

LLVM backend files

Semantic description Challenges

• A formal description of ISA semantics is needed for auto-generation of instruction selection.

• Semantic description needs to be simple and intuitive enough for ISA architects but also lend itself to
compiler generation. Available formal description languages / tools are either too complicated from
architect’s perspective or not suitable for compiler generation.

• A generic IR Library was defined which is generic enough to represent various machine operations,
while being very close to LLVM’s Generic Machine IR (GMIR) so it can be correlated with compiled
code’s IR.

• RISC-V base ISA was described using the Library and selection patterns were generated.

• Faced few challenges including compiler pseudo instructions (e.g. return), target specific multi-class
patterns (load/store), complex instruction behavior (bit manipulation) etc.

13

Challenge: Abstract Performance Modeling

• System performance is a function of both
hardware and compiler

• Hardware design space exploration is often
conducted in isolation based on theoretical
performance.

• Performance of real applications is often
different from HW theoretical peaks.

• Cycle-accurate simulation for thorough
evaluation of different designs is
impractical.

• There are a huge number of designs in
HW or SW design space.

14

HW/SW Co-Design Space

System Software
Optimizations

Micro-architecture

Design Space

• Memory Hierarchy
of levels, sizes, placement,
latency, bandwidth

• PE/FUs
of units, lanes per unit, etc.

• NoC Design
topology/bw/latency

• Messaging & Sync
of message buffers, channels,
etc.

• Power Management

ISA
Design

HW
Performance

Model

(Backend) Compiler
Optimizations

• Instruction Selection
• Instruction Scheduling
• Data layout optimizations
• Unrolling & inlining
• Placement & routing

• Sync optimizations

Runtime Schedulers
• Task placement & scheduling
• Data placement

• Routing

Interface

Application
(General purpose programming languages, or DSL)

Research on AI-based Approach to
Performance Modeling

• Predictive HW Design Exploration Tools

• Using machine-learning to efficiently explore the architecture/compiler co-design space

• Efficiently Exploring Architectural Design Spaces via Predictive Modeling

• Practical Design Space Exploration

• Time loop/Accelergy: Tools for Evaluating Deep Neural Network Accelerator Designs [MIT/Stanford/NVIDIA]

• ML-based (Cross-architecture) Performance Prediction

• Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks

• Cross-architecture performance prediction

• ML-based NoC Performance Prediction

• Machine Learning Based Framework to Predict Performance Evaluation of On-Chip Networks

• UPM-NoC: Learning Based Framework to Predict Performance Parameters of Mesh Architecture in On-Chip Networks

• AI for Guiding Compiler Optimizations

• Machine Learning in Compiler Optimizations

• Graph-Based Deep Learning for Program Optimization & Analysis

• End-to-end Deep Learning of Optimization Heuristics

• Predictive AI/ML-based Autotuning

• A Survey on Compiler Autotuning using Machine Learning

15

https://era.ed.ac.uk/handle/1842/3867
https://dl.acm.org/doi/10.1145/1168918.1168882
https://arxiv.org/pdf/1810.05236.pdf
http://accelergy.mit.edu/tutorial.html
https://arxiv.org/abs/1808.07412
https://research.cs.wisc.edu/vertical/papers/2015/micro15-xapp.pdf
https://ieeexplore.ieee.org/abstract/document/8530505
https://link.springer.com/chapter/10.1007/978-981-15-0214-9_75
https://www.research.ed.ac.uk/portal/files/70048258/Machine_Learning_in_compiler_optimisation.pdf
https://arxiv.org/pdf/2003.10536.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8091247
https://arxiv.org/pdf/1801.04405.pdf

Auto-Tuning
Framework

Hardware Design
Space Exploration

Framework

Vision: AI-enabled Predictive Performance Modeling for
Compiler-in-the-Loop Co-Design

Hardware
Design (PDL)

Design sub-space
Performance Model

subspace converges every
iteration

ISA Definition Architecture
Definition Language

Automatic extraction
& manual definitions

Automatic
extractionAutomatic

Toolchain
Generation

(RSDK)

Optimizing
Compiler

(instr selection, inlining,
unrolling, scheduling,

routing, sync.)

Reference Cycle-
Accurate Models
(manually developed)

Application
Code

Program IR or Target
Arch. Binary

Application
Code Repo

(training & test)

Performance
Stats

Compiler
Optimization
Search Space

Design sub-space
performance outlook and
performance critical design
features

with iterative lowering
of design space into

design point

Training
Data

AI-enabled Predictive Performance
Framework

DNN Models, Reinforcement Learning (RL) Models,
Simulated Annealing

Performance
Model

Training

Performance
Prediction

16

Thank you

