
CARD: A Congestion-Aware Request Dispatching 
Scheme for Replicated Metadata Server Cluster

Shangming Cai, Dongsheng Wang, 

Zhanye Wang and Haixia Wang

Tsinghua University

1



Background: Massive-scale ML in product environments

• Datasets updated hourly or daily

• data collected and stored in an HDFS-like distributed filesystem

• periodically offline training for online inference

• Challenges of the data-reader pipeline while training

• extremely heavy read workloads: millions to billions of files per epoch

• random access pattern: up-level shuffling for convergence speed

2



Background: Massive-scale ML in product environments

• Workers interact with a DFS

• Metadata request

-> metadata server (MDS)

• File I/O 

-> object storage devices (OSD)

3

OSD

Distributed filesystem

requests / data

Metadata Server

OSD OSD OSD

Training workers

……



OSD

When the number of training workers grows…

• Extremely stressed workloads

• Metadata access step
bottlenecks the data-reader 
pipeline

• Potential single point of failure 
on MDS

4

Distributed filesystem

requests / data

Metadata Server

Training workers

……

……OSD OSD OSD



Typical industrial response: Scaling out likewise

• Concerns to be addressed:

• Cost-effectiveness

• Scalability

• Run-time stability

5

OSD

Distributed filesystem

requests / data

MDS

OSD OSD OSD

Training workers

……

MDS MDS……

……



To achieve load-balance…

6

OSD

Distributed filesystem

MDS

OSD OSD OSD

Training workers

……

MDS MDS……

……

Load balancer

•A middle layer load-balancer
• Pros:

• good global load balancing

• more features are optional

• Cons:
• load-balancer is stressed

• reintroduce a potential single 
point of failure 

• not cost-effective



To achieve load-balance…

7

OSD

Distributed filesystem

MDS

OSD OSD OSD

Training workers

……

MDS MDS……

……

Load balancer

•A middle layer load-balancer
• Pros:

• good global load balancing

• more features are optional

• Cons:
• load-balancer is stressed

• reintroduce a potential single 
point of failure 

• not cost-effective



Try client-side solutions

• Easy to implement

• Cost-effective

8

OSD

Distributed filesystem

MDS

OSD OSD OSD

Training workers

……

MDS MDS……

……

client−side solutions



Client-side solution: Round-Robin

• Round-Robin

• Pros:
• simple yet effective in 

homogeneous environments

• Cons:
• inflexible and inefficient in 

shifting or heterogeneous 
environments

9

MDS 
0

Clients (training workers)

MDS 
1

MDS 
3

MDS 
2



Client-side solution: Heuristic selection

•Heuristic selection
• e.g., prefer lowest MART (moving 

average of response time)

• Pros:
• effective when facing light-

weight workloads
• Cons:

• cause herd-behavior and load-
oscillations

1010

MDS 
0

MDS 
1

MDS 
3

MDS 
2

20 ms40 ms 15 ms 25 ms

Clients



Client-side solution: Round-Robin with Throttling

11

MDS 
0

MDS 
1

MDS 
3

MDS 
2

30 ms25 ms 5 ms 20 ms

Threshold: 50 ms

• Round-Robin with throttling
• e.g., LADS, preset a MART threshold 

to mark servers as congested

• Light-weight workloads
• = Round-Robin

• Heavy workloads
• = Heuristic selection 
• herd-behavior and load-

oscillations remain

Clients



• Round-Robin with throttling
• e.g., LADS, preset a MART threshold 

to mark servers as congested

• Light-weight workloads
• = Round-Robin

• Heavy workloads
• = Heuristic selection 
• herd-behavior and load-

oscillations remain

12

MDS 
0

MDS 
1

MDS 
3

MDS 
2

60 ms
congested

55 ms
congested

40 ms

Threshold: 50 ms

65 ms
congested

Client-side solution: Round-Robin with Throttling
Clients



CARD: Congestion-Aware Request Dispatching scheme

• Core idea: Round-Robin with adaptive rate-control
• inspired by CUBIC for TCP protocol
• counting-based implementation
• no extra info required from servers

• Light-weight workloads
• = Round-Robin

• Heavy workloads
• redirect requests from overloaded MDS to underloaded MDS
• suppress upcoming requests: if and only if all servers are overloaded

13



• Queue: place pending requests

• Selector: Round-Robin dispatching

• Rate-limiter: rate-control module

• Feedback: process feedbacks and 
forward replies

14

Congestion-aware rate-control mechanism

MDS 
0

Process unit at clients

MDS 
1

MDS 
3

MDS 
2

RL

Selector Feedback

RL RL RL

repliesrequests

Queue



• Restrict requests routed to each MDS
per 𝛿 time window

• Gradually increase the restriction 
according to a cubic growth function

• Feedback module computes receiving
rates after each time window and 
forwards to RLs

15

Congestion-aware rate-control mechanism

MDS 
0

Process unit at clients

MDS 
1

MDS 
3

MDS 
2

RL

Selector Feedback

RL RL RL

repliesrequests

Queue



• How to identify a congestion event?
• sending rate > receiving rate

• elapsed time since last sending rate ↑
event > 𝜆 (a hysteresis period )

• What to do then?
• record current sending rate as 

saturated sending rate

• reduce current sending rate

16

Congestion-aware rate-control mechanism

MDS 
0

Process unit at clients

MDS 
1

MDS 
3

MDS 
2

RL

Selector Feedback

RL RL RL

repliesrequests

Queue



• ∆𝑡: elapsed time since the last 
congestion event

• 𝑀𝑖𝑗 : saturated sending rate

• Changed to current sending 
rate adaptively whenever a 
congestion event happens

• Then, current sending rate 
reduced to (1 − 𝛽) ∙ 𝑀𝑖𝑗 , 
and start to grow all over 
again accordingly

17

The cubic growth function for the rate-control



Evaluation setup

• We implemented a prototype RMSC for simulation purposes

• Up to 8 servers to measure system scalability

• Crafted descending setup for heterogeneous experiments

• 10 clients run on separate machines launching request with 
Poisson arrivals

• 𝛿 = 5 ms, 𝜆 = 10 ms, 𝛽 =0.20

• To compare against CARD, we implemented aforementioned
Round-Robin, MART and LADS as well

• Refer to the paper for more setup details

18



Evaluation highlights

• Do CARD’s rate-control mechanism work as expected?

• Yes, the rate-control process is effective and adaptive

• Loads among servers are balanced under heavy workloads

• Can CARD achieve better scalability?

• In homogeneous clusters: CARD ≈ Round-Robin > other strategies

• In heterogeneous clusters: Yes, CARD > other strategies

19



Examples of the rate-control procedure

The sending rate from each client to each server is adjusted adaptively 
according to the receiving rate

20



Overall arriving rates in the homogeneous cluster

1) Heuristic selections cause severe herd behavior and load-oscillations

2) A data loading job is completed earlier when using CARD 
21

CARDMART



Overall arriving rates in the heterogeneous cluster

22

CARDLADS

1) A basic threshold throttling strategy is not sufficient enough

2) Arriving rates are stabilized around servers’ capacity when using CARD



Overall throughput in the homogeneous cluster

23

• Heuristic selection is a bad 
choice under heavy 
workloads

• In ideal homogenous 
environments, Round-Robin 
and CARD achieve great 
scalability



• Round-Robin is ineligible 
when facing heterogenous 
setups

• CARD outperforms other 
strategies and achieves 
excellent scalability

Overall throughput in the heterogeneous cluster

24



Summary: CARD

• Adaptive client-side throttling method: easy and efficient

• Redirect requests from the overloaded server to the underloaded 
server adaptively under heavy workloads

• Degrade into pure Round-Robin when facing light-weight 
workloads

• Boosts throughput significantly over competing strategies in 
heterogeneous environments 

25


