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Background: Massive-scale ML in product environments

• Datasets updated hourly or daily

• data collected and stored in an HDFS-like distributed filesystem

• periodically offline training for online inference

• Challenges of the data-reader pipeline while training

• extremely heavy read workloads: millions to billions of files per epoch

• random access pattern: up-level shuffling for convergence speed
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Background: Massive-scale ML in product environments

• Workers interact with a DFS

• Metadata request

-> metadata server (MDS)

• File I/O 

-> object storage devices (OSD)

3

OSD

Distributed filesystem

requests / data

Metadata Server

OSD OSD OSD

Training workers

……



OSD

When the number of training workers grows…

• Extremely stressed workloads

• Metadata access step
bottlenecks the data-reader 
pipeline

• Potential single point of failure 
on MDS
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Typical industrial response: Scaling out likewise

• Concerns to be addressed:

• Cost-effectiveness

• Scalability

• Run-time stability
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To achieve load-balance…
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Load balancer

•A middle layer load-balancer
• Pros:

• good global load balancing

• more features are optional

• Cons:
• load-balancer is stressed

• reintroduce a potential single 
point of failure 

• not cost-effective



To achieve load-balance…
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Try client-side solutions

• Easy to implement

• Cost-effective
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Client-side solution: Round-Robin

• Round-Robin

• Pros:
• simple yet effective in 

homogeneous environments

• Cons:
• inflexible and inefficient in 

shifting or heterogeneous 
environments
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Client-side solution: Heuristic selection

•Heuristic selection
• e.g., prefer lowest MART (moving 

average of response time)

• Pros:
• effective when facing light-

weight workloads
• Cons:

• cause herd-behavior and load-
oscillations

1010

MDS 
0

MDS 
1

MDS 
3

MDS 
2

20 ms40 ms 15 ms 25 ms

Clients



Client-side solution: Round-Robin with Throttling
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CARD: Congestion-Aware Request Dispatching scheme

• Core idea: Round-Robin with adaptive rate-control
• inspired by CUBIC for TCP protocol
• counting-based implementation
• no extra info required from servers

• Light-weight workloads
• = Round-Robin

• Heavy workloads
• redirect requests from overloaded MDS to underloaded MDS
• suppress upcoming requests: if and only if all servers are overloaded
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• Queue: place pending requests

• Selector: Round-Robin dispatching

• Rate-limiter: rate-control module

• Feedback: process feedbacks and 
forward replies
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• Restrict requests routed to each MDS
per 𝛿 time window

• Gradually increase the restriction 
according to a cubic growth function

• Feedback module computes receiving
rates after each time window and 
forwards to RLs

15

Congestion-aware rate-control mechanism

MDS 
0

Process unit at clients

MDS 
1

MDS 
3

MDS 
2

RL

Selector Feedback

RL RL RL

repliesrequests

Queue



• How to identify a congestion event?
• sending rate > receiving rate

• elapsed time since last sending rate ↑
event > 𝜆 (a hysteresis period )

• What to do then?
• record current sending rate as 

saturated sending rate

• reduce current sending rate
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• ∆𝑡: elapsed time since the last 
congestion event

• 𝑀𝑖𝑗 : saturated sending rate

• Changed to current sending 
rate adaptively whenever a 
congestion event happens

• Then, current sending rate 
reduced to (1 − 𝛽) ∙ 𝑀𝑖𝑗 , 
and start to grow all over 
again accordingly
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Evaluation setup

• We implemented a prototype RMSC for simulation purposes

• Up to 8 servers to measure system scalability

• Crafted descending setup for heterogeneous experiments

• 10 clients run on separate machines launching request with 
Poisson arrivals

• 𝛿 = 5 ms, 𝜆 = 10 ms, 𝛽 =0.20

• To compare against CARD, we implemented aforementioned
Round-Robin, MART and LADS as well

• Refer to the paper for more setup details
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Evaluation highlights

• Do CARD’s rate-control mechanism work as expected?

• Yes, the rate-control process is effective and adaptive

• Loads among servers are balanced under heavy workloads

• Can CARD achieve better scalability?

• In homogeneous clusters: CARD ≈ Round-Robin > other strategies

• In heterogeneous clusters: Yes, CARD > other strategies
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Examples of the rate-control procedure

The sending rate from each client to each server is adjusted adaptively 
according to the receiving rate
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Overall arriving rates in the homogeneous cluster

1) Heuristic selections cause severe herd behavior and load-oscillations

2) A data loading job is completed earlier when using CARD 
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Overall arriving rates in the heterogeneous cluster
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1) A basic threshold throttling strategy is not sufficient enough

2) Arriving rates are stabilized around servers’ capacity when using CARD



Overall throughput in the homogeneous cluster
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• Heuristic selection is a bad 
choice under heavy 
workloads

• In ideal homogenous 
environments, Round-Robin 
and CARD achieve great 
scalability



• Round-Robin is ineligible 
when facing heterogenous 
setups

• CARD outperforms other 
strategies and achieves 
excellent scalability

Overall throughput in the heterogeneous cluster
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Summary: CARD

• Adaptive client-side throttling method: easy and efficient

• Redirect requests from the overloaded server to the underloaded 
server adaptively under heavy workloads

• Degrade into pure Round-Robin when facing light-weight 
workloads

• Boosts throughput significantly over competing strategies in 
heterogeneous environments 
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