
GOSH
 Embedding Big Graphs 

On Small Hardware



● An ultra-fast embedding on a single GPU for 
any arbitrarily large graph.
○ Provides link prediction AUC ROCs that 

match the state-of-the-art methods.
○ A parallel coarsening with small overhead 

that increases embedding performance
● A flexible and dynamic task scheduling for 

memory restricted devices. 

GOSH: Embedding Big Graphs on Small Hardware

Graph GOSH Speedup

Hyperlink (40m vertices, 
600m edges)

0.2 hours (97% AUC) on a single TITAN X 
SotA with comparable AUC: 5.4 hours on 4 Tesla P100 

26.7x

Wiki-topcats (1.7m 
vertices, 28m edges)

11 seconds (98% AUC) on a single TITAN X
SotA with comparable AUC: : 310 sec. on a single TITAN X

27.4x
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Introduction



Graphs are ubiquitous 
Graph types:

- Protein-protein interaction networks
- Citation networks
- Road networks
- Social networks

Graphs can have up to tens millions of vertices and billions of edges. 
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Machine learning on graphs

Link Prediction Node Classification Anomaly Detection
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Graph Embedding
- Connectivity information is highly unstructured and not suitable for machine 

learning tasks
- Graph embedding transforms the connectivity data of a graph into a standard 

𝑑-dimensional representation that is more suitable for machine learning tasks
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Graph Embedding is Expensive
Requires hours of CPU (and multi-CPU parallelization) time for graphs with 
100,000’s of vertices and larger graphs could require days. Solution?

Distributed systems - hardware requirements scale with the graph size

GPU parallelization - bigger graphs require more GPUs

Graph coarsening (compression) - current approaches are slow and inefficient

GOSH: an ultra-fast embedding requiring a single GPU for any arbitrarily 
large graph.
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Definitions
Given a graph 𝐺 = (𝑉, 𝐸) consisting of the set of vertices 𝑉 and the set of edges 𝐸

Graph embedding is the process of creating the embedding matrix 𝐌 with |𝑉| rows 
and 𝑑 columns (dimensions), where vector 𝐌[𝑣] is the embedding of vertex 𝑣 in the 
graph.
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Coarsening a graph 𝐺𝑖 into the graph 𝐺𝑖+1 will give every group of 𝑘 ≥ 1 vertices in 
𝐺𝑖 a super node in 𝐺𝑖+1 and transfer the edge information from the sub to the super 
nodes.

Definitions
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GOSH



General Flow
Algorithm starts by coarsening the input graph into smaller and smaller graphs 
until some ending criteria is met. 

The smallest graph will be embedded, and its embeddings will be projected to the 
previous level by setting the embedding of every node in the finer graph to the 
embedding of its super node.

Process continues until the original graph has been embedded.
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Embedding procedure
Embedding a graph employs the process of Noise Contrastive Estimation (NCE) 
through Stochastic Gradient Descent (SGD).
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Embedding on a Single GPU is Memory Intensive
A social network with 100 million vertices and a standard embedding 
dimensionality of 128 would require around 51 GB of memory to store the 
embedding values even in single precision.

Way above the capacity of any single GPU

GOSH: a specialized embedding algorithm for large graphs which partitions a 
large graph into smaller subgraphs that can be processed by a single GPU to 
embed the whole graph in rotations.
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Revised Flow
After coarsening the graph, and during the embedding stage, every graph is 
checked to see if its embedding matrix will fit the GPU.

- If it does, a single-kernel embedding job is dispatched to the GPU.
- If it doesn’t, the large graph embedding procedure is used.

At the end of the embedding, the embedding projection phase is carried out 
normally.

14



Work Distribution Across Graphs
When GOSH embeds a graph, it embeds a variable number of levels. How do the 
epochs (work done) get distributed across levels?

- Embedding the coarser levels is faster and accounts for more updates, but 
updates to the finer levels create more finely tuned embeddings

GOSH: a hybrid work distribution approach in which a portion p of the epochs is 
distributed evenly across the levels, and the remaining epochs are distributed 
geometrically such that coarser levels get more epochs.
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GPU Embedding Step
To maximize GPU utilization and minimize race conditions, GOSH employs a one 
update per GPU warp approach
Thread 𝑡𝑖 is responsible for elements 𝑒𝑖, 𝑒𝑖+𝟑𝟐,𝑒𝑖+𝟔𝟒… of an embedding vector
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If an embedding has a dimensionality 𝑑 <= 16, the previous method will result in 
(32-𝑑) threads to be idle at any time

GOSH: A specialized method for such a case where groups of multiples of 8 or 16 
threads are responsible for a single vertex. 

Smaller Dimensions
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Graph Coarsening



Graph Coarsening
- We aim to create a graph coarsening approach that will produce the best 

coarsening effectiveness and best coarsening efficiency

Corasening effectiveness is measured in terms of how well the resultant 
embeddings perform compare to other coarsenings

Coarsening efficiency at some level 𝑖 measures the rate of decrease in the number 
of vertices from level 𝑖-1 to level 𝑖, in other words

Coarsening efficiency of 𝐺𝑖  =
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MultiEdgeCollapse Coarsening
Sequentially process all vertices 𝑣 ∈ 𝑉. If a vertex 𝑣 is not yet “marked”, mark it to 
be a new super node 𝑣’ and “match” any of its unmarked neighbors by marking 
them as 𝑣’ as well.

Matching criteria: A vertex 𝑣 cannot mark a vertex 𝑢, and vice versa, if both 𝑢 and 𝑣 
have more edges than the average number of edges per vertex in the graph.

- Prevents two hub vertices from being coarsened into a single super vertex

Sorting vertices: Before processing the nodes, they are sorted in descending order 
based on the number of edges.

- Prevents hub vertices from being matched early on in the coarsening process.
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4. Mark 𝑓. Since all its neighbor 
are marked, none of them are 
matched.

1. Mark 𝑏 and match its 
neighbors 𝑐 and 𝑎. Cannot 
match 𝑓 due to matching rule.

3. Mark 𝑒 and match its neighbor 
𝑑. Cannot match 𝑓 due to 
matching rule.

0. Initial, uncoarsened graph
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5. Try to mark 𝑎, 𝑐, and 𝑑, but 
they are all marked already.

6. Generate the coarsened 
graph and reconstruct edges



Parallelizing Coarsening
- MultiEdgeCollapse has a space and time complexity of O(|𝑉|+|𝐸|) and has the 

potential of parallelization

Matching phase: process vertices in parallel using 𝑇 threads, but place locks on 
every vertex which the processing threads must acquire before marking or 
matching.

Reconstruction phase: when reconstructing the edges, every thread from the 𝑇 
threads will reconstruct the edges of a range of super vertices. Afterwards, the 
edge information generated by the threads are merged sequentially in O(𝑇) time
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Large Graphs



Partitioning The Work
Partition the embeddings into smaller parts such that 3 parts can fit inside the 
GPU concurrently.

Execute batches of small jobs, 
each of which carries out 
updates between the vertices 
in two parts.

A single rotation of jobs 
executes a job for every 
possible pair of parts.
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Partitioning The Work
When a part is used up on the GPU, it is switched out for another one from the 
CPU.
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Sample Space Partitioning
Storing the graph on the GPU is expensive, therefore edges are sampled on the 
CPU concurrently with the embedding and sent to the GPU.

The GPU will store 3 or more sample pools on the GPU and the CPU will bring new 
sample pools depending on the running embedding.
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Workflow
Four concurrent tasks:

1 - Samplers: Team of CPU samplers concurrently 
generating positive samples

2 - Pool manager: CPU thread that will dispatch 
copies of sample pools to the GPU

3 - Master: CPU thread which will copy embedding 
parts and dispatch embedding kernels

4 - Kernels: GPU jobs that execute the embedding 
jobs

27



Evaluation



Evaluation
Link prediction as the machine learning task to evaluate model and used AUC 
ROC as a metric

Evaluated systems:
- GOSH-fast, -normal, -slow: tweaked the smoothing factor, epochs and 

learning rate to demonstrate flexibility of the model 
- VERSE: multi-core CPU embedding which GOSH is based on
- Graphvite-fast, -slow: state-of-the-art multi-GPU graph embedding running 

with two different epoch settings
- MILE: coarsening based graph embedding
- GOSH-NoCoarse: Direct embedding using GOSH without coarsening.
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Datasets
Use the embeddings to train a Logistic 
Regression model

80%-20% train-test split

Rows in the training and test sets are 
edges (50% positive and 50% 
negative)

The row of edge (𝑢, 𝑣) is constructed by 
element-wise multiplying the 
embeddings of 𝑢 and 𝑣
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Evaluating Coarsening Efficiency 

Orders of magnitude 
faster

Better coarsening 
throughout levels

Better prediction accuracy 
(shown in a later slide)
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Speedup Breakdown
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Accuracy Comparison - Medium Scale Graphs

Maintain accuracy while 
being faster than other 
models

Flexibility between 
speed and accuracy
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Accuracy Comparison - Large Scale Graphs

Graphvite cannot run 
large scale graphs 
using a single GPU

MILE and VERSE time 
out after 12 hours of 
runtime
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Small Dimensions results

When d is smaller than 
32, assigning a single 
update to a warp is a 
waste of resources. 

We assign 32/d updates 
to a single warp to fully 
utilize all the GPU cores, 
where d = 16, 8. 
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Conclusion



GOSH provides high quality embeddings using minimal hardware and at a 
fraction of the time

Employs a novel parallel graph coarsening algorithm and a special scheduling 
schema to embed large graphs using a single GPU

Provides flexibility between quality and speed of embedding

Conclusion
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