
Reducing Latency in Multi-Tenant Data Centers
via Cautious Congestion Watch

The 49th International Conference on Parallel Processing (ICPP) 2020

Ahmed M. Abdelmoniem, Hengky Susanto, and Brahim Bensaou

Outline

• Introduction and background

• Preliminary Investigation

• Exploring solution design space

• The solution (Hwatch) design

• Evaluation

• Conclusion

Living in Big Data Era

• Massive amount of data being generated, collected, and processed daily.

› Data for recommendation, machine learning, business intelligence, scientific research, etc.

• To accelerate the processing speed, this massive amount of data must be processed in parallel.

Congestion Control in Data Center

• Data parallel processing is generally conducted in a data center.

• Modern datacenter employ Data Center TCP (DCTCP).

• DCTCP is a TCP-like congestion control protocol designed for data center networks.

• DCTCP leverages Explicit Congestion Notification (ECN) to provide multi-bit feed-back to the end host.

DCTCP DCTCP DCTCP

Data parallel processing application

DCTCP Overview

Sender Switch Receiver

ECN threshold

Switch Buffer

Packet

Marked by
ECN marking

TCP ACK

ACK packets carry ECN echo

Incast Problem in Datacenter Network

Switch Buffer

Worker 1

Worker 2

Worker 3

Aggregator
ECN threshold

Packets drop

• Incast is bloated buffer incident.
• Caused by burst of packets arriving at the same time.

• Common occurrence for data parallel processing in data center network.

• Often leads to network and application level performance degradation.

Data parallel processing

Preliminary Investigation
Better understanding of how well DCTCP coping with the incast problem.

Investigating Incast Problem

Conduct preliminary experiment via NS2 simulator in dumbbell network topology.

• Short-lived flows are sensitive to the choice of the initial sending window size.

• DCTCP marking results in the more aggressive acquisition of the available bandwidth.
• Favor large flows (e.g. data backup traffic) over short-lived flow (e.g. search query) that may degrade the

performance short-lived flow .

The Root of The Performance Degradation

• Observation 1 : Short-lived flows (e.g. 1 to 5 packets) do not have enough packets to

generate 3 DUPACKs to trigger TCP fast re-transmission scheme.

• Or the sender may lose the entire window of packets.

• Sender must rely on TCP RTO to detect packet drops. (Default Linux’s RTO = 200 ms to 300 ms).

• Observation 2: Incast problem primarily affects short-lived flows.

• Today’s data parallel processing applications (E.g. Map-Reduce) generate many short-lived flows.

Our findings show that, short-lived flows in DCTCP still suffer from
packet losses due to the use of large initial congestion windows that

results in incast problem.

Research Question

What is the optimal choice of initial congestion window for DCTCP

that mitigates incast problem, while minimizing the average

completion time of short-lived flows?

Exploring Solution Design Space
To provide a holistic view of the problem and better understanding on the complex

interactions between network components (switch, sender, and receiver).

Exploring The Design Space at Sender and Receiver

Sender Switch
Receiver

Due to nature of TCP based protocol, there is a wealth
of information available at the sender.
• Number of transmitted packets, congestion window

size, RTT, .., etc.

A receiver has a natural position to evaluate information
carried by packets with ECN marking from inbound traffic.

Combining information gathered from both the sender and receiver provides a sender with a richer and more holistic
view of the network condition.
• For instance, the number of packets dropped can be approximated by subtracting the number of packets received

by the receiver from the total number of transmitted packets by the sender.

Exploring The Design Space at The Switch

At time t

Worker 1

Worker 2

Worker 3

Aggregator

Switch Buffer

Switch

Worker 2

Worker 3

Worker 1

Observation : Transmitting packets at different time helps to mitigate packets drop.

At time t+1

Visualizing Queue Management as Bin-Packing

At time t

Worker 2 Worker 3Worker 1

At time t+1

Switch Buffer

Visualize switch
buffer as the bin.

Visualize packet as
the items that are
packed into a bin.

Visualizing Incast As Bin-Packing

• Different perspective in understanding incast problem.
• Starting point to think how to transmit a bulk data of short-lived flows, which only consists

of few packets.

• Allowing us to inherit wisdom from earlier study on bin-packing problem.
• Our solution draws inspiration from the classic solution, Next Fit Algorithm.

• Emulate Bin-Packing problem by utilizing ECN used in DCTCP.
• The ECN setup follows the recommendation for DCTCP.

Theoretical Results

Key insight gained from our theoretical results:

• The initial congestion window size can be approximated by leveraging
information base on the number of packets marked and unmarked by ECN.

• Given the number of packets marked by ECN, the first 𝑛 transmitted packets
should be transmitted in at least two batches (rounds).

From Theory to Practice - Practical Challenges

Despite encouraging outcomes from our theoretical results, to realize the theory to
practice, we must consider the practical challenges.

• Incast problem is a distributed online problem.
• Bin-packing is an offline problem.

• Short-lived flows (e.g. 1 to 5 packets) may be completed before the sender
receives the ECN echo via ACK packets.
• Short-lived flows only learn about in network congestion after receiving ECN echo, which is

too late.

System Design Requirements of The Solution

• Improves the performance of short-lived flows with minimal
impact on large flows.

• Simple for deployment in data center.

• Being Independent of the TCP variant.

• No modifications to the VM’s network stack.

• Addresses the practical challenges.

HWatch
(Hypervisor-based congestion watching mechanism)

An active network probe scheme, that incorporates insights from our theoretical results, to
determine the initial congestion window based on the congestion level in the network.

Our solution:

HWatch System Design in a Nutshell

• Injects probe packets at connection start-
up during TCP synchronization stage.

• The probe packets carry the ECN marks to
the receiver in the case of congestion.

• Receiver sets the receive window (RWND)
according to number of probe packets
marked with ECN marking

• Conveys RWND to sender via ACK packet.

• Sender sets the Initial congestion window
(ICWND) according to RWND.

Hypervisor

NIC

Flow# ECN

S1:D1 7

S2:D2 3

Receiver

S1:data S3:data

ECN-ECHO

Sender

S3:D3 5

S2:data

VM2 VM1VM3

S1-D1S2-D2S3-D3

IN Hook

P
re

_
R

o
u

te

Ip
_

rc
v

OUT Hook

P
o

st
_

ro
u

te

Ip
_

fi
n

is
h

rwnd_update

D1:ACK D3:ACKD2:ACK

H-WATCH

ECN

HWatch Implementation Overview

• The Hwatch module is implemented in the shim-layer in both sender and receiver.
• Hwatch is implemented via Netfilters by inserting hooks in the forward processing path.

• HWatch is realized by modifying the OpenSwitch kernel datapath module.
• Adjusting the flow processing table.

• By doing so, Hwatch is deployable friendly in the production datacenter.

vSwitch daemon

flow_lookup

receive_from_vport

action:do_output
(Packet Interceptor)

send_packet_to_vswitchd handle_packet_cmd

send_to_vport

new

TCP Flow Table
ECN tracking

RWND Update

extract_key action_execute

User Space

Kernel Datapath

Local TCP/IP stack

RoutingPrerouting
Forward HWATCH Hook

(packet interceptor)

Input
Output

Postrouting

TCP Flow Table
ECN tracking

RWND Update

Evaluation and Analysis
(1) Simulation experiments.
(2) Testbed experiments.

ToR
switches

Aggregation
switches

core routers

Servers

pod

Simulation Experiment Setups

• NS2 simulator.

• Over 100s of servers connected by commodity switches.

• Compared to different type TCP traffic sources (TCP-DropTail, TCP-Red, and DCTCP).

Fat Tree Topology

Simulation Experiment Results

• HWatch improves the performance of short-lived flows by up to 10X compares to
TCP-DropTail, TCP-Red, and DCTCP.
• Minimal impact to the performance of large-flows.

Short-Lived flows: Avg FCT Long-Lived flows: Avg Goodput Persistent queue over time Bottleneck utilization over time

Performance of short-lived and long-lived flows in over 100 sources scenario.

Testbed Experiment Setup

• Build and deploy HWatch prototype in mini data center.

• Fat Tree topology connecting 4 Racks of DC-grade servers installed with Incast Guard End-host
Module.

• Commodity (EdgeCore) Top of Rack switches.

• Core Switch is PC installed with the NetFPGA Switch.

Rack 1 Rack 2 Rack 3

Core

ToR

Rack 4

NetFPGA
Switch

1 Gb/s

Fat Tree topology

Testbed Experiments Results

Test experiments confirms that HWatch mitigates packets drop.

• Improves the performance of short-lived flows by up to 100%.

• Minimal impact to the performance large flows.

Short-Lived flows: Average FCT
Long-Lived flows: Average Goodput

Key Insights From HWatch Performance

• Dispersing packets transmission over time, creates smaller size of incasts.
• Allowing buffer to observed the incoming packets with fewer packet drop.

• Fewer packet drop allows short-lived flows to achieve faster completion time.

• HWatch stochastically prioritizes the available buffer space to short-lived flows.
• Because probe packets indirectly reserve buffer space for short-lived flows.

• Probing mechanism functions as incast early warning system allowing long-lived
flows that are actively sending data to scale back to release some buffer space
for short-lived flows.

Conclusion

• HWatch mitigates incast problem in the data center.

• Hwatch strikes the balance between improving the performance of short-lived
flows while imposing minimal impact on the large flows.

• Hwatch is deployment-friendly in production data center.

Thank You

Exploring The Design Space at The Switch

Time

Number of packets

Y number of packets
burst (incast)

Packets are dropped
from buffer overflow

Time required to drain packets in
buffer that are queued at time t.

Packets queued
in the buffer

X number of existing
packets queued inside the
buffer prior the burst

Illustration of the switch buffer experiencing incast.

3

3

t t'

Buffer Size

