
Matrix Computation Acceleration in the
Presence of Data Layout Conversion

(work-in-progress)

LATHC’23 Workshop

Chenchen Tang, Frank Gao, *Kai-Ting Amy Wang
Feb 26th, 2023

2

Background, DaVinci Architecture

Performance modeling on DaVinci AI core, Journal of
Parallel and Distributed Computing, 2023
https://www.sciencedirect.com/science/article/pii/S07437
3152300014X

 Scalar Unit, Vector Unit, Cube Unit

 5 memory on-chip buffers

 3 Memory Transfer Engines (MTEs)

3

Background, DaVinci Architecture, GEMM

GEMM Formula: C = αC + βAB

Dataflow (assume α = 1.0, β = 1.0) :

1. Copy initial Matrix C from GM to UB (MTE2).

2. Copy data of Matrix A and B from GM to L1A and L1B (MTE2).

3. Load data of Matrix A and B from L1A and L1B to L0A and L0B (MTE1).

4. Cube multiplies data from L0A and L0B; Stores results to L0C (Cube).

5. Copy results from L0C to UB (Vector).

6. Copy results from UB to GM (MTE3).

• Fractal Layouts:
• A (zZ), B (nZ), C (zN)

2

1

3

4

5

6

4

Motivating Use case
LU Factorization

Many GEMMs with small K and large M, N, causing a large C

• Performing post layout conversion on C can be expensive.

Problem & Existing Solution:

• Difficult to keep data of each LU step in fractal layouts since computing Linv/Uinv requires

row-wise operations.

• Perform pre/post-layout conversions before/after each LU step.

Research Question:

• Can we combine data layout conversions with data movement operations (i.e. DMAs)

efficiently?

B
(nZ)

A
(zZ)

Fractal Layouts

C
(zN)

first row
block of A

(bM x K)

first column
block of B

(K x bN)

M

K

K

N

Z
Z
Z

Z
Z
Z

Z
Z
Z

b1

b2

C1 C2

a1 a2

B1 B2

What happens with
“fractalization-on-
demand”?Matrices are pre/post processed, so all is well!

Row, Column, Row

C
(Row)

A
(Row)

B
(Col)

Z
Z
Z

Z
Z
Z

Z
Z
Z

first row
block of A

(bM x K)

first column
block of B

(K x bN)

M

K

K

N

32B

32B

Z
Z
Z

Z
Z
Z

Z
Z
Z

slice

slice

B1
B2

C1 C2

Consequence of “fractalization”: bring only thin slices of A and B into L1 each DMA, and mad of 2 slices
under utilizes cube unit and results in large C.

Row, Column, Row
Execution Pipeline

MTE2

MTE1

MTE3

V

Cube

copyC1 copyA copyB1 copyA copyB2 copyA copyB1 copyA copyB2 copyB1

A B A B A B A B

Load
L0C

Store
UB

MTE2

MTE1

MTE3

V

Cube

copyC2 copyB2

A B

Load
L0C

copyC1
back

copyB1

A B

copyB2

A B

First row block of A
(bM x K) copied into L1

Initial
Stage

Normal
Stage

Begin second
column block of B

Begin first column
block of B repeats . . .

repeats . . .

Row, Row, Row

C
(Row)

A
(Row)

B
(Row)

Z
Z
Z

Z
Z
Z

Z
Z
Z

first row
block of A

(bM x K)

first column
block of B

(K x bN)

M

K

K

N

32B

32B

Z
Z
Z

Z
Z
Z

slice

slice

Z
Z
Z

Z
Z
Z

Z
Z
Z

C1 C2

B1 B2

Once a column block is

fetched, load from L1

to L0 with stride and

transpose is performed

to load a slice into L0.

Now we need to do 3 DMAs before even getting a slice of B!

Row, Row, Row
Execution Pipeline

MTE2

MTE1

MTE3

V

M

copyC1 copyA copyB1 copyA copyB2 copyA copyA

A B A B A B A B

Load
L0C

Store
UB

MTE2

MTE1

MTE3

V

M

copyC2 copyB1

A B

Load
L0C

copyC1
back

A B A B

copyC1 copyB2

Load
L0C

copyC2
back

Initial
Stage

Normal
Stage

copyA

First row block of A
(bM x K) copied into L1

Store
UB

repeats . . .

repeats . . .

A B A B A B A B

Store
UB

A B

repeats . . .

• C=AB, CT = BT AT (for each 16x16 fractal)

• TODO: After swap L0A and L0B, L0C size
changes from bM*bN to bN*bM. UB is
bM*bN. L0C and UB sizes don’t match.

L1B

L0A

L0B

L1A

BT

AT

CT CMAD

Column, Column, Column

C
(Col)

first row
block of A

Z
Z

Z
Z

M

K

32B

slice

C1

C2

first column
block of B

(K x bN)

K

N

32B

slice

B
(Col)

A
(Col)

A1

A2

Column, Column, Column

As bad as RRR, now we need to do 3 DMAs before getting a slice of A!

copyC1 copyB copyA1 copyB copyA2 copyB copyB

A B A B A B A B

Load
L0C

Store
UB

copyC2 copyA1

A B

Load
L0C

copyC1
back

A B A B

copyC1 copyA2

Load
L0C

copyC2
back

copyB

First column block of B
(bM x K) copied into L1

Store
UB

repeats . . .

repeats . . .

A B A B A B A B

Store
UB

A B

repeats . . .

Column, Column, Column
Execution Pipeline

MTE2

MTE1

MTE3

V

M

MTE2

MTE1

MTE3

V

M

Initial
Stage

Normal
Stage

Performance Results

• Performance presented in half x half -> half, single aicore,

ascend-910

• “Fractalizing” is limits the choices of tiling:

• RCR
• bM * K + 2 * (16 * bN) <= L1_size

• bM * 16 <= L0A_size

• 16 * bN <= L0B_size

• bM * bN <= L0C_size

• 2 * bM * bN <= UB_Size

• RRR
• bM * K + 2 * (K * bN) <= L1_size

• bM * 16 <= L0A_size

• 16 * bN <= L0B_size

• bM * bN <= L0C_size

• 2 * bM * bN <= UB_size

Performance Results

Why does RRR perform poorly?

1. Suffers from long start-up

latency in the initial stage.

2. Unbalanced computation,

DMA overlap in normal stage.

• MTE2 not busy all the time,

i.e. can not overlap with K/16

worth of the compute

pipeline.

Performance Results

Why does fractal layout perform so well?
• Fully utilize L0 to achieve largest MAD

possible

• Double buffering at L0 makes a difference

But let’s account of pre/post layout

conversions with 16 CPU cores
• Performance drops from 7.2 to 2.8 TFlops

Conclusion: How do we improve it?

1.8 TFlops (RRR) < 2.8 Tflops < 3.6

(RCR) Tflops

….. To be continued..

16

Thank you!

Q & A

