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Background, DaVinci Architecture

Performance modeling on DaVinci AI core, Journal of 
Parallel and Distributed Computing, 2023 
https://www.sciencedirect.com/science/article/pii/S07437
3152300014X

 Scalar Unit, Vector Unit, Cube Unit

 5 memory on-chip buffers 

 3 Memory Transfer Engines (MTEs)
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Background, DaVinci Architecture, GEMM

GEMM Formula: C = αC + βAB

Dataflow (assume α = 1.0, β = 1.0) :

1. Copy initial Matrix C from GM to UB (MTE2).

2. Copy data of Matrix A and B from GM to L1A and L1B (MTE2).

3. Load data of Matrix A and B from L1A and L1B to L0A and L0B (MTE1).

4. Cube multiplies data from L0A and L0B; Stores results to L0C (Cube).

5. Copy results from L0C to UB (Vector).

6. Copy results from UB to GM (MTE3).

• Fractal Layouts: 
• A (zZ), B (nZ), C (zN)
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Motivating Use case
LU Factorization

Many GEMMs with small K and large M, N, causing a large C 

• Performing post layout conversion on C can be expensive.

Problem & Existing Solution: 

• Difficult to keep data of each LU step in fractal layouts since computing Linv/Uinv requires 

row-wise operations. 

• Perform pre/post-layout conversions before/after each LU step.

Research Question: 

• Can we combine data layout conversions with data movement operations (i.e. DMAs) 

efficiently?  
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What happens with 
“fractalization-on-
demand”?Matrices are pre/post processed, so all is well!
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Consequence of “fractalization”: bring only thin slices of A and B into L1 each DMA, and mad of 2 slices
under utilizes cube unit and results in large C. 



Row, Column, Row
Execution Pipeline
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Once a column block is 

fetched, load from L1 

to L0 with stride and 

transpose is performed 

to load a slice into L0.

Now we need to do 3 DMAs before even getting a slice of B!



Row, Row, Row 
Execution Pipeline
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• C=AB, CT = BT AT (for each 16x16 fractal)

• TODO: After swap L0A and L0B, L0C size 
changes from bM*bN to bN*bM. UB is 
bM*bN. L0C and UB sizes don’t match.  
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As bad as RRR, now we need to do 3 DMAs before getting a slice of A!
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Performance Results

• Performance presented in half x half -> half, single aicore, 

ascend-910

• “Fractalizing” is limits the choices of tiling:

• RCR 
• bM * K + 2 * (16 * bN) <= L1_size

• bM * 16 <= L0A_size

• 16 * bN <= L0B_size

• bM * bN <= L0C_size

• 2 * bM * bN <= UB_Size

• RRR
• bM * K + 2 * (K * bN) <= L1_size

• bM * 16 <= L0A_size

• 16 * bN <= L0B_size

• bM * bN <= L0C_size

• 2 * bM * bN <= UB_size



Performance Results

Why does RRR perform poorly?

1. Suffers from long start-up 

latency in the initial stage. 

2. Unbalanced computation, 

DMA overlap in normal stage.

• MTE2 not busy all the time, 

i.e. can not overlap with K/16 

worth of the compute 

pipeline.



Performance Results

Why does fractal layout perform so well?
• Fully utilize L0 to achieve largest MAD 

possible

• Double buffering at L0 makes a difference

But let’s account of pre/post layout 

conversions with 16 CPU cores
• Performance drops from 7.2 to 2.8 TFlops

Conclusion:  How do we improve it?

1.8 TFlops (RRR) < 2.8 Tflops < 3.6 

(RCR) Tflops

….. To be continued..
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Thank you!

Q & A


