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Abstract

We address the challenges associated with deploying neural
networks on CPUs, with a particular focus on minimizing
inference time while maintaining accuracy. Our novel ap-
proach is to use the data�ow (i.e., computation order) of a
neural network to explore data reuse opportunities using
heuristic-guided analysis and a code generation framework,
which enables exploration of various Single Instruction, Mul-
tiple Data (SIMD) implementations to achieve optimized
neural network execution. Our results demonstrate that the
data�ow that keeps outputs in SIMD registers while alsomax-
imizing both input and weight reuse consistently yields the
best performance for a wide variety of inference workloads,
achieving up to 3x speedup for 8-bit neural networks, and
up to 4.8x speedup for binary neural networks, respectively,
over the optimized implementations of neural networks to-
day.

CCS Concepts: •Computer systems organization→ Sin-

gle instruction, multiple data; Embedded software; • Soft-
ware and its engineering→ Source code generation; •
General and reference→ Performance.

Keywords: code generation, compiler support, SIMD vector-
ization, CPU optimization, data�ow, neural network
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1 Introduction

In recent years, neural networks have expanded their reach
beyond high-performance computing environments, perme-
ating low-end servers and edge devices such as smartphones,
IoT devices, and smart sensors [29, 55, 90, 91]. However, the
deployment of neural networks on these devices presents
various challenges, with inference time being a critical fac-
tor [31, 38, 40, 55, 95]. The Single Instruction, Multiple Data
(SIMD) capabilities of contemporary CPUs present an oppor-
tunity to accelerate neural networks. SIMD allows a single
instruction to be executed on multiple data elements con-
currently, thereby substantially improving computational
throughput and overall performance, and yielding bene�ts
in terms of both energy conservation and e�cient utilization
of computational resources at the same time [35, 59, 82].
Data�ow refers to the execution order of computational

operations of a neural network. It is an important consid-
eration when utilizing SIMD for inference. It determines
the reuse opportunities of di�erent variables (e.g., inputs,
weights, and outputs), and can therefore guide how to best
allocate valuable SIMD register resources to maximize reuse.
While data�ows for deep learning accelerators have been
extensively explored [12, 15, 32], the majority of previous
studies and libraries for CPUs do not consider data�ows
[2, 13, 39, 80]. Instead, weight stationary, i.e., keep using
the same weight value until all computations requiring this
value are done before moving on to computations requiring
a di�erent weight value, is widely adopted [20, 42, 68]. The
weight stationary data�ow turns out to be suboptimal – we
found that by carefully devising data�ows to maximize data
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reuse, and co-optimizing with other code optimization tech-
niques (i.e., blocking, operator fusion), inference speed and
energy e�ciency can be improved signi�cantly.
Unfortunately, compiler support for e�cient SIMD code

generation is inadequate [6, 28, 56], as evidenced in our ex-
periments on x86 and ARM architectures. Programs written
to explicitly utilize SIMD receive no further compiler opti-
mization, such as e�ectively utilizing unused vector registers
[69]. Furthermore, auto-vectorization features in compilers
[21, 64] tend to overlook opportunities for vectorizing scalar
implementations [6, 28, 50, 77], potentially because of the
vast search space as indicated in [103].

The intricacies of SIMD optimization, such as ensuring
independence among vector register values, are highlighted
in [50, 69]. These challenges are compounded by the reliance
on fragile heuristics in current auto-vectorization techniques,
as critiqued in [30, 56, 77]. This issue extends to highly opti-
mized frameworks like TVM [13], which depend on compiler
backends such as LLVM [57]. While maximizing data reuse
has been mentioned as a method to optimize neural network
inference programs on CPUs in prior work [68, 79], to the
best of our knowledge, there are no systematic approaches.
With these challenges, the burden of SIMD optimization pre-
dominantly falls on programmers. Hence, there is a pressing
need for a systematic approach to maximize the e�ciency
of SIMD programs for performing neural network inference
tasks.
To �ll in these blanks, we present the �rst work that em-

ploys the notion of data�ow to systematically explore the full
SIMD computation capacities for e�cient neural network
inference. The major contributions include:

1. We extended the existing data�ows, which typically
specify only one type of variable to be reused, to allow
all types of variables to be reused. Extended data�ows
enable SIMD register resources to be fully utilized, and
substantially reduce costs associated with data and
instruction movements.

2. We formalized a set of heuristics, based on data move-
ment costs, to optimize three basic, general neural
network data�ows (de�ned in Sec. 2) by maximizing
data reuse within each data�ow.

3. We implemented a code generator that automatically
uses SIMD instructions to implement various extended
and basic data�ows, for any given neural network con-
�guration. This code generator allows quantitative
comparison of di�erent data�ows to identify the most
e�cient implementation.

4. We quantitatively compared our best implementations
against state-of-the-art implementations using repre-
sentative workloads. The results demonstrate signi�-
cant improvements: our implementations achieve up
to a 3.5x speedup for 8-bit neural networks (against

TVM [13]), and up to a 4.8x speedup for binary neural
networks (against [68]), respectively.

This paper is organized as follows. We discuss the basic
data�ows in Sec. 2, and our methods to extend the basic
data�ows in Sec. 3 and 4. Experiment setup and results are
presented in Sec. 5 and 6, followed by related work and
conclusions.

2 Basic Data�ows of Neural Networks

Three major, basic data�ows have been identi�ed in the
literature for CPUs1[52, 86, 106], as shown in Algorithms 1,
2, and 3 following the semantics of ARM SIMD intrinsics
[63], using convolution layers as an example.

2.1 Input Stationary (IS)

IS operates by iterating through the entries in the input
tensor. It applies all relevant �lters to each input and accu-
mulates the results to the respective entries in the output
tensor.

Algorithm 1 IS Data�ow for Convolution Layers.

Require: inputs[� ], weights['], outputs[�]

for ℎ in � do

input← E;>03(&inputs[ℎ]);

for A in ' do

weight = E;>03(&weights[A ]);

calculate corresponding input index 4 from 8 , A , if the

corresponding output index 4 falls out of the range then continue;

outputs[4] += EA43BD<(E<D; (input, weight));

end for

end for

2.2 Weight Stationary (WS)

WS iterates through weight tensors. For each output entry
whose computation depends on the current weight tensor,
WS collects each relevant entry from the input tensor for
computations and accumulates the result to the correspond-
ing output entries.

Algorithm 2WS Data�ow for Convolution Layers.

Require: inputs[� ], weights['], outputs[�]

for A in ' do

weight← E;>03(&weights[A ]);

for 4 in � do

calculate input index 8 from 4 , A ;

input = E;>03(&inputs[8]);

outputs[4] += EA43BD<(E<D; (input, weight));

end for

end for

1We exclude data�ows that are tailored to speci�c deep learning accelera-

tor architectures (e.g., Row-stationary [15], No-local-reuse [5], etc.) as they

cannot be applied to CPUs. For example, row-stationary keeps software

variables stationary in the rows of processing engines of a 2D systolic array;

however, there is no notion of “rows of cores” in CPUs.
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2.3 Output Stationary (OS)

OS iterates through the entries in the output tensor. It per-
forms all necessary multiply-accumulate computations to
obtain the �nal result for one output entry before moving
on to the next.

Algorithm 3 OS Data�ow for Convolution Layers.

Require: inputs[� ], weights['], outputs[�]

for 4 in � do

output = E<>E(®0)

for A in ' do

calculate input index 8 from 4 , A , if 8 falls out of the range

then continue;

input, weight = E;>03(&inputs[8]), E;>03(&weights[A ]);

output = E033(E<D; (input, weight), output);

end for

outputs[4] = EA43BD<(output);

end for

2.4 Memory Layout and Computation Order

Naturally, the computation order under a data�ow follows
the sequential memory addresses of the corresponding data
elements. We illustrate the memory layout scheme in Fig. 1.
We opt for the NCHW[xc] memory layout for each in-

put/output tensor. In traditional NCHW alignment, tensors
are arranged �rst by the number of images (batch size, N),
then channels (C), followed by height (H), and lastly width
(W). In NCHW[xc], data are grouped into blocks of size
G × � ×, , and we call these blocks channel blocks. The
channel blocks follow the NCHW layout, while data in each
channel block follows the HW[xc] layout, and G is typically
chosen so that G × 4;4<4=C_F83Cℎ is a multiple of the size of
the physical vector registers (1-3× in our implementation).
Previous works have demonstrated the e�ectiveness of

this scheme for �oating-point, integer, and binary neural
networks [39, 68, 87]. We attribute this to two main reasons.
First, vectorization in the channel dimension streamlines
vector computations, avoiding excessive operations such as
shifting, because the number of channels multiplied by data
size in a neural network layer is usually a multiple of the
size of SIMD registers (or vice versa). Second, NCHW[xc]
enables data reuse between successive channel blocks. In
NHWC, no element engages in calculations across two spa-
tially successive elements, be it inputs, weights, or outputs,
under any data�ow. In contrast, NCHW[xc] allows for the ex-
ploration of various data�ows to maximize data reuse (refer
to Sec. 3). Note that, for binary networks, NHWC can yield
performance comparable to NCHW[xc] since the number
of channels in most network architectures is ≤ 512 and a
multiple of the vector register size in modern ISAs [39].
To optimize weight data access locality, we adopt the

CKRS[xc] memory layout (matching the input/output tensor
layout), where � ,  , ', ( denote #Input Channels, #Output

Figure 1.Memory layout of tensors. Red arrows show a sub-
set of data elements following sequential memory addresses.
Input channel blocks are traversed �rst along the output
channel dimension. The purple shade covers a single vector
variable.

Channels, #rows/�lter height, #columns/�lter width, respec-
tively, and G for weight tensors is set to the exact same value
as the G chosen for the input tensor. Following this layout,
output tensors can be written back sequentially regardless of
the size of the input/output channel blocks and the data�ow.

In terms of the compute order across input channel blocks,
for better memory locality, we proceed along the output
channel dimension before moving on to the next input chan-
nel block. In other words, the loop on the input channel
dimension is an outer loop of that on the output channel
dimension.

2.5 Implementation and Performance of Basic SIMD

Data�ows

In software, we declare three vector variables to implement
any of the three basic data�ows, one for each of the input,
weight, and output data types. The size of each vector vari-
able is G × 4;4<4=C_F83Cℎ (as shown in Fig. 1, shaded in
purple), which is a multiple of the vector register size. Also,
the total size of all vector variables is less than or equal to
the total size of all vector registers. We use the term vector
variable in addition to vector registers because physical vec-
tor registers in some architectures can be concatenated to
form longer vectors. For example, in ARM, vector registers
are 128 bits in size, but vector variables can be multiples of
128 bits occupying multiple physical registers.

We compared the three basic data�ows (the experiment
setup is outlined in Sec. 5), and the results can be found in
Fig. 2. We see that OS consistently outperforms the other
data�ows in terms of runtime. With a stride of 1, OS is by
median 1.93x and 3.50x faster than IS and WS, respectively.
With a stride of 2, OS is, by median, 5.39x and 2.81x faster
than IS and WS, respectively. The superior performance of
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Figure 2. Relative latency of basic data�ows for various
convolution layers for Vector Length = (4;4<_F83Cℎ × 2) ∈
{128, 256, 512} (mean of 100 runs), normalized to the latency
of OS. Con�gurations on the y-axes are in the format of
(weight width/height, input width/height, number of output
channels).

OS can be attributed to several factors, including smaller
numbers of reduction sum operations, less frequent output
tensor data movement, and more regular instruction and
memory access patterns.

The implementations of all basic data�ows are only capa-
ble of utilizing a limited number of vector registers (precisely
3×vector variable size
vector register size ), leaving all others idle. This is because, as

discussed in Sec. 1, compilers today are not able to discover
vectorizable code e�ectively and fully utilize all vector regis-
ters automatically. This necessitates the need to extend and
optimize the basic data�ows.

3 Extending the Basic Data�ows

We say that a data�ow utilizes the stationarity of some data
if it keeps that data close to the compute units — in vector
registers in our case — for reuse. A data�ow is f station-
ary if it uses f stationarity, where f is a prede�ned type of
data (inputs, weights, or outputs). We extend the notion of
data�ow by de�ning two types of stationarities, i.e., anchor-
ing stationarities and auxiliary stationarities.

Anchoring stationarity is the stationarity that decides the
execution order of computations. For example, output sta-
tionary data�ows have the outputs as their anchoring data
type, so we always complete all computations involving an
output element before moving on to the next. One data�ow
can have at most one anchoring stationarity. The most naive

implementation of a data�ow is constituted of an anchoring
stationarity only, which is equivalent to one of the basic
data�ows discussed in Sec. 2. A major limitation of all basic
data�ows is that not all vector registers are utilized.
In more optimized implementations, vector registers are

fully utilized to minimize data movement costs associated
with both anchoring and non-anchoring data types (i.e.,
auxiliary data types). The auxiliary stationarities determine
which auxiliary data types should be allocated in vector reg-
isters. For example, an output-anchored data�ow may be
accompanied by weight or input auxiliary stationarity. More
than one auxiliary stationarity can accompany an anchoring
stationarity.

An important question is to decide how to allocate vector
registers to store (or stash) anchoring and auxiliary data
types, which is dependent on two factors: (1) the total number
of available vector registers, which constraints the overall
SIMD capability, and (2) data reuse opportunities, which
a�ects data movement costs, and also bounds the bene�ts
that can be obtained by stashing the corresponding data in
vector registers.

4 Optimizing Extended Data�ows

Our methodology for optimizing an extended data�ow fol-
lows two steps. First, we analyze reuse opportunities and
develop heuristics to maximize data reuse bene�ts within
each basic (i.e., anchoring stationarity only) data�ow to de-
rive the corresponding auxiliary stationarities. Next, we em-
pirically compare di�erent implementations of the extended
data�ows by varying vector register allocation schemes us-
ing a code generator to determine the best data�ow for per-
formance.
While this methodology can be applied to most layers

in neural networks, we focus our discussions on convolu-
tion layers, including simple convolutions [58], depthwise
convolutions [38, 92], grouped convolutions [51], shu�ed
grouped convolutions [111], and so on. This is because these
layers are common, and their latencies are generally longer
compared to other layers [18, 38, 40, 95, 112]. However, our
methodologies and techniques can be generalized to other
types of layers or operations where data reuse can enhance
performance. For instance, in tensor-contraction operations
like MatMul, we can calculate multiple output data simulta-
neously, allowing for the reuse of the same input row with
di�erent columns (or vice versa, and can be expressed as in-
put or weight auxiliary stationarity under output-anchored
stationarities with multiple anchored elements). In pooling
operations, the basic OS data�ow already achieves maximal
reuse. As for softmax, data�ow choices are less critical.
The convolution operation is shown in Fig. 3. Notation-

wise, we use 8ℎ, 8F , 5 ℎ, 5 F , >ℎ, >F for input height, in-
put width, �lter/weight height, �lter/weight width, output
height, and output width, B for strides, G for the number of
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Figure 3. Convolution operations and notations, showing
only 1 channel and 1 kernel.

data elements in a vector variable. We also de�ne � , ', � for
the sizes of input, �lter/weight, and output tensors within a
single channel block. Thus, � = 8ℎ · 8F · G , ' = 5 ℎ · 5 F · G ,
� = >ℎ · >F . Below, we describe our approach for optimizing
data�ows within the context of the combination of a single
input channel block and a single kernel for clarity, and the
same approach is applied across all such combinations.

4.1 Maximizing Data Reuse under Each Basic

Data�ow

4.1.1 Reuse under Output Stationary Data�ows. Un-
der output-anchored data�ows with the computation se-
quence following the description in Sec. 2.3, all correspond-
ing weights, totaling ', are reused between the computations
for two successive output elements. Additionally, there are
(5 F − B) · 5 ℎ reusable input elements involved in the com-
putations for two successive outputs. We demonstrate these
reuse opportunities in Fig. 4a.

The reuse scheme of inputs is similar for B > 1, as shown
in Fig. 4b, di�ering only by the number of inputs reusable
between the computations around two successive outputs.

4.1.2 Reuse under Input Stationary Data�ows. Given
the algorithm of the basic input-anchored data�ow (Sec. 2.1),
when B = 1, all corresponding weights, totaling ', can be
reused between the computations around two successive
input elements. Outputs (partial sums) under input-anchored
data�ows can be reused in a way similar to how inputs are
reused under output-anchored data�ows. We demonstrate
this reuse scheme in Fig. 4d. Note that we would need to
reverse the sequence of the weights (i.e., following the order
of the outputs) to enable this reuse scheme (see Fig. 4d).
When B > 1, reusing both outputs and weights becomes

more di�cult. Not all weights are applied to every input.
For B = 2, the number of weights/outputs associated with
the computations around one input can be 1, 2, or 4, as
demonstrated in Fig. 5. Consequently, the reuse opportunities
become more sparse. Additionally, code structure becomes
less regular.

(a) Output-anchored data�ows,

stride 1, 2 × 2 weight �lter.

(b) Output-anchored data�ows,

stride 2, 3 × 3 weight �lter.

(c) Weight-anchored data�ows,

stride 1, 2 × 2 weight �lter.

(d) Input-anchored data�ows,

stride 1, 2 × 2 weight �lter.

Figure 4. Reuse opportunities under each anchoring
data�ow, showing only one channel and one kernel.

4.1.3 Reuse under Weight Stationary Data�ows. In
weight-anchored data�ows (Sec. 2.2), between the compu-
tations around two successive weights in an input channel
block, all � inputs and � outputs can be reused, as depicted
in Fig. 4c.
When using vector registers to stash an input, the input

will not be reused in the computation involving each weight
when B > 1. On the other hand, stashed outputs are guaran-
teed to be reused with each weight. As stashing outputs also
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Table 1. Summary of gains from auxiliary allocation for each operation involving one input channel block and one kernel.

Anc. Data�ow Aux. # vector variables for aux. Stride Reduction in # mem. reads for each ad-

ditional vector variable allocated to aux-

iliary data

Reduction in # mem. writes for each

additional vector variable allocated to

auxiliary data

OS Both [1, ' ] [1, 5 F − 1] � 0

WS
Input [1, � ] [1, 5 F − 1] ' 0

Output [1, � ] [1, 5 F − 1] ' '

IS

Weight [1, ' ] 1 � 0

Weight [1, 5 F ] [2, 5 F − 1] �
B 0

Weight [ 5 F + 1, 2 · 5 F ] [2, 5 F − 1] �
(5 F−B )B

0

Output [1, ' ] 1 � �

Output {1} [2, 5 F − 1] � + �
5 F � + �

5 F

Output {2} [2, 5 F − 1] 8ℎ
5 F−B (� +

�
5 F ) +

8ℎ
B (5 F − B − 1) 8ℎ

5 F−B (� +
�
5 F ) +

8ℎ
B (5 F − B − 1)

Output [3, (3 + 5 F − B ) ] [2, 5 F − 1] (5 ℎ − B ) (5 F − B ) �' (5 ℎ − B ) (5 F − B ) �'

Figure 5. Under input-anchored data�ows: weights and out-
puts associated with each input when s=2 for each channel.
Darker colors in the input indicate more data are associated
with that input element.

saves write-related operations and the size of the output ten-
sor is almost always greater than the remaining SIMD vector
registers, we will later demonstrate that it is su�cient to only
include output auxiliary stationarity under weight-anchored
data�ows.

4.1.4 Heuristics to Quantify the E�ectiveness of Data

Reuse under Each Data�ow. We use the reduction in the
number of memory instructions (both read and write, data
size = G × 4;4<_F83Cℎ) for each input channel as the guid-
ing metric for framing the heuristics for choosing auxiliary
stationarities, summarized in Table 1. The baseline con�g-
urations correspond to the basic data�ow implementations
discussed in Sec. 2, where only (3 × vector variable size ÷
vector register size) vector registers are allocated. For the
extended data�ows, we utilize additional vector variables
(which are mapped to vector registers) for the auxiliary data
types to further reduce data movement costs.

Output-Anchored Dataflows. Independent of the value
of B , the numbers of inputs and weights associated with an

output element, disregarding edge cases, are always equal to
' for each input channel. Thus, every time we stash an input
or weight vector variable in one or more vector register(s),
the number of memory reads always goes down by the size
of the output tensor.

Input-Anchored Dataflows. When B = 1, the gains from
auxiliary allocation are similar to those under output an-
chored data�ows. We expect a reduction of � memory reads
and � memory writes for every vector variable allocated to
stash outputs for each input channel block. For each vector
variable allocated for stashing weights, we expect a reduc-
tion of � memory reads per input channel block. Note that
� ≈ � in this case. When B > 1, the gains from auxiliary
allocation depend on multiple factors, as shown in Table 1.

Weight-Anchored Dataflows. Recall from Sec. 4.1.3 that
we iterate through both the whole input and output tensors
under weight-anchored data�ows. While we proceed by 1

element on the output tensor, we need to leap forward by B
elements on the input tensor and also increment the starting
input index (i.e., the �rst weight starts with the input at index
0, the second weight starts with the input at index 1, and
so forth) for the computations associated with each weight
element. This implies that each vector variable allocated
for inputs saves ' ≈ �

B2
memory reads, and each vector

variable assigned to stash outputs saves ' reads and ' writes,
respectively, per input channel block.
Guided by the heuristics, we derive the following observa-
tions for typical convolution layers:

Observation 1: Weight-anchored data�ows will gain the
least performance improvement from auxiliary stationarities.
Observation 2: Output-anchored data�ows will likely

yield better performance than input-anchored data�ows
when both are fully optimized.

Observation 3: Under output-anchored data�ows, prior-
itizing input auxiliary stationarity and prioritizing weight
auxiliary stationarity will yield similar results.
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Observation 4: Under input-anchored data�ows, priori-
tizing output auxiliary stationarity will yield better perfor-
mance than prioritizing weight auxiliary stationarity.

Observation 5: Under weight-anchored data�ows, prior-
itizing output auxiliary stationary will yield better perfor-
mance than prioritizing input auxiliary stationary.

4.2 Extended Data�ow Implementations and Code

Generator

Based upon the above observations, we develop a code gen-
erator to extend all three basic anchoring data�ows with
auxiliary stationarities to further determine vector register
allocation schemes, which is done by varying the number of
vector registers allocated to each data type. We �rst allocate
a subset of vector registers (the number of these vector regis-
ters ranges from 1 to 3=, where n = vector variable size/vector
register size, vector variable size ∈ {128, 256, 512}, and vector
register size=128 in our implementation) to store the vector
variables corresponding to the anchoring data type, then the
remaining vector registers to the auxiliary data types.

Algorithm 4 Allocation sequence for inputs under
secondary-unrolled output-anchored data�ows. (The same
sequence applies for outputs under input-anchored data�ows
when B = 1.)

Initialize the original (i.e., without secondary unrolling) alloca-

tion sequence with sequential row-major allocation.

for D= in range[1, ;2<(all #vector variables per row > BCA834))

do

if # vector variables in the current row > BCA834 then

Rotate stash indices in this row left by BCA834

else

The sequence stays the same

end if

end for

4.2.1 Implementation of Output-Anchored Data�ows.

For each output element under computation, we �rst deter-
mine if the required input and weight elements are already
stashed in vector variables. If so, we perform the compu-
tation using those stashed data. Otherwise, we load the re-
quired data from memory into 2 vector variables of length
G×4;4<4=C_F83Cℎ. Note that the sequence of vector variable
usage between every two consecutive outputs is identical for
weights but di�erent for inputs. This means that we incur the
cost of SIMD data transfer if we assign vector registers in the
same way across all unrolled iterations of the weight loop,
as the same position on the “window” covering all inputs
involved in the computations of an output data would be
matched to di�erent inputs in two successive iterations.

To circumvent unnecessary data transfers between vector
registers used for auxiliary input stationarity, we implement
secondary unrolling, performed on the output loop with a
magnitude of the least commonmultiple (lcm) of all numbers
of input vector variables per row (in the input tensor) that

are greater than B , so that each iteration of the secondary
unrolled loop uses vector variables di�erently: the speci�c
sequence of allocating input vector variables di�ers between
the computations around two successive outputs if the num-
ber of input vector variables in that row is greater than B ,
and remains the same otherwise. Algorithm 4 demonstrates
the sequences of vector variable allocations for input auxil-
iary stationarity across each secondary-unrolled iteration,
and Fig. 6 provides a graphical example of secondary loop
unrolling.
To further minimize data movements, we directly load

vectors of input data to be newly stashed into their corre-
sponding vector variables (thereby overwriting the previous
data), instead of using new vector variables.

It is also worth noting that, through our observations, we
found it advantageous to accumulate all results in a single
vector register (instead of a scalar register) and execute the
reduction sum operation only when all computations involv-
ing an output element have been completed. Although this
approach consumes more vector registers, it ultimately saves
costs related to performing a reduction sum operation on a
scalar variable upon the completion of each computation.
Algorithm 5 summarizes the implementation of output-

anchored data�ows.

Algorithm5 Implementation of Output-anchoredData�ows

Require: 8=?DCB [8ℎ · 8F · 82 ], F486ℎCB [8ℎ · 8F · 82 · >2 ], >DC?DCB [>ℎ ·

>F · 82 · >2 ]

Require: =D<�=(C0Bℎ, =D<,6C(C0Bℎ, G , B

Prep 1: Initialize a total of=D<�=(C0Bℎ input vector variables by loading

data from the input tensor.

Prep 2: Initialize a total of =D<,6C(C0Bℎ weight vector variables by

loading data from the weight tensor.

For each combination of one channel block (staring 2) and one kernel (:)

for ℎ in >ℎ by B do

for F in >F by B do ⊲ Secondary Unroll

Set the anchoring >DC?DC vector variable to ®0

for A in 5 ℎ do ⊲ Unroll

for B in 5 F do ⊲ Unroll

if A · 5 ℎ + 5 F < =D<�=(C0Bℎ then

Use the stashed vector as input

else if A · 5 ℎ + (5 F − B ) < =D<�=(C0Bℎ then

Overwrite a completely used input stash with the new

input by E;>03 (2 · 8ℎ · 8F + ℎ · 8F + F ) and then use it as 8=?DC

else8=?DC = E;>03 (2 · 8ℎ · 8F + ℎ · 8F + F )

end if

if A · 5 ℎ + 5 F < =D=,6C(C0Bℎ then

Use the stashed vector as weight

else F486ℎC = E;>03 (2 ·>2 ·8ℎ ·8F+: · 5 ℎ · 5 F+A · 5 F+B )

end if

A4B = E<D; (8=?DC, F486ℎC )

>DC?DC = E033 (>DC?DC, A4B )

end for

end for

>DC?DC [: · >ℎ · >F + ℎ · >F + F ]+ = E033E (>DC?DC )

end for

end for
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Figure 6. Secondary loop unrolling to bypass vector data
transfer, using one channel for demonstration. h refers to the
horizontal index of the current stationary input/output, and
the numbers on the blocks are indices of the vector registers
associated with that particular value.

Algorithm 6 Implementation of Input-anchored Data�ows

Require: 8=?DCB [8ℎ · 8F · 82 ], F486ℎCB [8ℎ · 8F · 82 · >2 ], >DC?DCB [>ℎ ·

>F · 82 · >2 ]

Require: =D<�=(C0Bℎ, =D<,6C(C0Bℎ, G, B

Prep 1: Initialize a total of=D<�=(C0Bℎ input vector variables by loading

data from the input tensor.

Prep 2: Initialize a total of =D<,6C(C0Bℎ weight vector variables by

loading data from the weight tensor.

For each combination of one channel block (staring 2) and one kernel (:)

for ℎ in 8ℎ do

for F in 8F do ⊲ Secondary Unroll

8=?DC = E;>03 (2 · 8ℎ · 8F + ℎ · 8F + F )

for ( (ℎ′, F′ ), (A, B ) ) in (0BB>2_83G (ℎ, F, 2 ) ) do

⊲ In reverse order

⊲ Output and weight indices. See Fig. 5

if A · 5 F + B ∈ BC0Bℎ43,486ℎCB�=3824B then

Use stashed vector as weight

elseF486ℎC = E;>03 (2 ·>2 · 8ℎ · 8F +: · 5 ℎ · 5 F +A · 5 F +B )

end if

if ℎ′ · 8F + F′ ∈ BC0Bℎ43$DC?DC�=3824B then

Use the stashed vector as output

A4B = E<D; (8=?DC, F486ℎC )

>DC?DC = E033 (A4B, >DC?DC )

if Last use of this output then

>DC?DC [: ·>ℎ ·>F +ℎ ·>F +F ]+ = E033E (>DC?DC )

end if

else if ℎ′ · 8F + F′ to be newly stashed then

Use a free vector as output

>DC?DC = E<D; (8=?DC, F486ℎC )

else >DC?DC [: · >ℎ · >F + ℎ · >F + F ]+ =

E033E (E<D; (8=?DC, F486ℎC ) )

end if

end for

>DC?DC [: · >ℎ · >F + ℎ · >F + F ]+ = E033E (>DC?DC )

end for

end for

4.2.2 Implementation of Input-Anchored Data�ows.

Under input-anchored data�ows, we can allocate the remain-
ing vector variables to both weights and outputs. When B is
1, the sequences of vector variable usage between every two
consecutive inputs are identical for weight data but di�erent
for output data. Similar to the output-anchoring data�ows,

this means that we incur the cost of vector data transfer if
we consistently use variables in the same sequence. There-
fore, again, we perform secondary unrolling on the output
loop, following a similar procedure as described in Sec. 4.2.1,
but with the sequence of weights in reverse. We write the
stashed outputs back to memory when their usage is com-
plete for this row, i.e., when the output is in the �rst column
of the current window of computation. The pseudocode of
Input-anchored data�ows is provided in Algorithm 6.

Algorithm 7 Implementation of Weight-anchored
Data�ows
Require: 8=?DCB [8ℎ · 8F · 82 ], F486ℎCB [8ℎ · 8F · 82 · >2 ], >DC?DCB [>ℎ ·

>F · 82 · >2 ]

Require: =D<�=(C0Bℎ, =D<$DC(C0Bℎs

Prep 1: Initialize a total of=D<�=(C0Bℎ input vector variables by loading

data from the 8=?DC tensor.

Prep 2: Initialize a total of =D<$DC(C0Bℎ output vector variables by

setting them to 0’s.

For each combination of one channel block (staring 2) and one kernel (:)

for 5 8 in 5 ℎ · 5 F do ⊲ Unroll to Split the last iteration

F486ℎC = E;>03 (2 · >2 · 8ℎ · 8F + : · 5 ℎ · 5 F + 5 8 )

for ℎ in >ℎ do

for F in >F do

Calculate 8ℎ and 8F with >ℎ, >F, ?0338=6, B

if 8ℎ · 8=?DC_F83Cℎ + 8F < =D<�=(C0Bℎ then

Use the stashed vector as input

else 8=?DC = E;>03 (2 · 8ℎ · 8F + ℎ · 8F + F )

end if

if ℎ · >F + F < =D<$DC(C0Bℎ then

Use the stashed vector as output

>DC?DC = E033 (E<D; (8=?DC, F486ℎC ) )

if 5 8 == 5 ℎ · 5 F − 1 then

>DC?DCB [: ·>ℎ ·>F+ℎ ·>F+F ]+ = E033E (>DC?DC )

end if

else >DC?DCB [: · >ℎ · >F + ℎ · >F + F ]+ =

E033E (E<D; (8=?DC, F486ℎC ) )

end if

end for

end for

end for

4.2.3 Implementation ofWeight-Anchored Data�ows.

Similar to output- and input-anchored data�ows, we de-
scribe a concrete and general method to implement weight-
anchored data�ows in Algorithm 7. For input and output
auxiliary stationarity under weight-anchored data�ows, we
always stash the earliest element that has not been stashed
to exploit locality. We perform a loop split on the weight
loop on top of unrolling to write stashed outputs back to
memory only when their last usage is complete. When B > 1,
inputs are reused once for every B weights.

4.3 End-to-End Optimization of Memory Layout

Sequence

Consistent memory layout alignment across consecutive lay-
ers is essential for e�cient neural network inference. Any
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layout discrepancy entails the need for transformations, lead-
ing to additional overhead. To combat this issue, we resort
to the commonly adopted dynamic programming approach
based on searched results [3, 68, 72]. The algorithm hinges on
minimizing layout transformations by using costs obtained
from repeated runs of di�erent scheduling schemes on each
layer, which minimizes variance. The algorithm leverages
these costs to determine optimal layouts that synchronize
every two successive layers, thereby reducing the need for
layout transformations.
In addition, we search for the optimal blocking schemes

in compile time by running the program under each of the
possible con�gurations and comparing their performance.

4.4 Code Generator Implementation

We develop a fully automated code generator that does not
require expertise from the user. Given neural network layer
con�gurations (type, tensor dimensions, precision), hard-
ware information (ISA, SIMD vector size, number of vector
registers), and the desired anchoring and auxiliary stationar-
ities, the code generator generates C++ inference programs,
following Algorithms 5, 6, or 7 to implement the correspond-
ing data�ows using ARM Intrinsics.

5 Experiment Setup

We use 64-bit quad-core ARM systems with Neoverse-N1
CPUs that support the aarch64 architecture to quantitatively
evaluate and compare data�ows implemented using our code
generator. Our experiments encompass executing convolu-
tion layers with various combinations of the following pa-
rameters, as well as collecting end-to-end runtime results for
neural networks, to facilitate a thorough and comprehensive
evaluation and comparison of di�erent data�ows. Each pro-
gram was executed 100 times to obtain the average/median
run time.

• Input Size:We focus on larger convolution layers that
are time-consuming with input sizes of 56 × 56 and
112 × 112.
• Weight Filter Size: We use �lters of sizes 3 × 3, 4 × 4,
and 5 × 5, as these dimensions are most widely em-
ployed.
• Stride:We use strides of 1 and 2, as these values are
the most common.
• Number of Filters: We tested with 128, 256, and 512

�lters to compare the di�erent data�ows across vari-
ous numbers of �lters.
• Vector Lengths: 128, 256, and 512, which are sup-
ported by modern ISAs such as ARM [64] and x86
[21, 43].

We use the GCC compiler [1] with the most aggressive
optimization �ags (-O3, -march=armv8.2-a+sve2) to com-
pile all programs. We also experimented with clang/LLVM,

upon which the Arm C++ Compiler is built. We observed
results and limitations similar to those of GCC.

6 Results and Discussions

We present our experiment results in this section. Although
our experiments were conducted for the ARM architecture,
we expect that our approach and �ndings are applicable to
other SIMD architectures. One piece of evidence is provided
by additional experiments we performed for the x86 archi-
tecture, which yielded results consistent with those observed
on ARM.

6.1 Validation of Heuristics

We generated programs that implement extended data�ows
for various convolution layers in ARM Intrinsics and ran ex-
periments following the setup described in Sec. 5 to validate
the heuristics described in Sec. 4.

We primarily present the results for B = 1, and summarize
the key results observed from experiments conducted using
B = 2 below. (1) With output-anchored data�ows, the rela-
tive gains from weight and input auxiliary stationarities stay
constant regardless of whether B is 1 or 2. (2) For weight-
anchored data�ows, the improvement of extended data�ows
over the basic, anchoring-only data�ow under B = 2 is ex-
pected to be less than that for B = 1. This can be explained
by our heuristics in Sec. 4.1.4, (3) Under input-anchored
data�ows, as B increases, the di�erence between the gains
from weight and output auxiliary stationarity ampli�es – we
have empirically observed this behavior. (4) Considering the
substantial performance gap of 5.39x between the basic OS
and IS data�ows for B = 2, it is unlikely that input-anchored
extended data�ows could surpass output-anchored extended
data�ows in terms of performance.

6.1.1 Comparing Di�erent Anchoring Stationarities.

Finding 1:Weight-anchored data�ows yield the
least improvement from auxiliary data�ow optimiza-
tions and are consistently the slowest by a large mag-
nitude.

Weight-anchored data�ows, even when fully optimized,
signi�cantly underperform in comparison to other anchor-
ing stationarities (Fig. 7). Fully optimized output-anchored
data�ow implementation is by median approximately 7.41x
faster than their weight-anchored counterpart. However,
when comparing the basic data�ows, we observe only a me-
dian performance di�erence of about 5 times between WS
and OS, and roughly 2.91 times between WS and IS, given
B = 1. This escalating disparity is attributed to the di�er-
ent performance enhancements yielded by adding auxiliary
stationarities for di�erent anchoring data�ows. The intro-
duction of auxiliary stationarities results in a modest me-
dian improvement of around 1.08x for WS, while IS and OS
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Figure 7. Relative Latency comparing the most optimized
extended data�ows, normalized to the performance of OS.

enjoy more substantial median speedups of approximately
x1.96 and x1.78 times, respectively. Moreover, we �nd that
adding auxiliary stationarities to the basic WS data�ow can
sometimes increase the run time. This is due to a low reuse
frequency of the stashed auxiliary data and a more dominant
increase in the code size. These results validateObservation
1 derived from our heuristics.

Finding 2: Output-anchored Data�ows outperform
input-anchored Data�ows in the majority of the
cases.

While IS seems to gain a larger performance improvement
from the addition of auxiliary stationarities, output-anchored
data�ows are still superior in terms of performance upon
full optimization. For the same convolution layer con�gura-
tion, optimized output-anchored data�ows are faster than
input-anchored data�ows for around 90% of the cases, which
validates Observation 2. The di�erences in performance for
the remaining cases are small, most likely due to noises.

6.1.2 Findings Related to Auxiliary Stationarity. Here,
we compare di�erent auxiliary stationarity schemes under
each anchoring data�ow.

Finding 3: Prioritizing stashing inputs or weights
does not signi�cantly impact performance under
output-anchored data�ows.

This �nding validates Observation 3. By comparing the
latency of data�ows that prioritize allocation for weight aux-
iliary stationarity and the ones that prioritize input auxiliary
stationarity, we observe that neither allocation scheme is
consistently superior to the other, and the di�erences be-
tween the two schemes are small (within 6%).

Finding 4: Allocating vector variables to outputs
�rst improves performance compared to prioritiz-
ing allocation for weights under input-anchored
data�ows.

By average, prioritizing stashing outputs yields an 8% per-
formance gain, which becomes more evident as we increase
the vector length. It follows that Observation 4 is validated.

Finding 5: Prioritizing output allocation yields only
slightly better performance than prioritizing input
allocation under weight-anchored data�ows.

We �nd that under almost all cases, prioritizing output
auxiliary stationarity brings a performance gain of up to 3%
over prioritizing weight auxiliary stationarity. This validates
Observation 5; however, the di�erences between these two
schemes are small.

Algorithm 8 Optimized Data�ow: Output Anchored Sta-
tionarity with Weight Auxiliary Stationarity

Require: =D<+42'46, E42+0A(8I4 , v42'46(8I4

A46B%4A+0A = E42+0A(8I4 / E42'46(8I4

=D<+0A�E08;01;4 = =D<+42'46 / A46B%4A+0A

0DG+0A�E08;01;4 = =D<+0A�E08;01;4 − 3

1. Use output stationary as the anchoring stationarity

2. Allocate 0DG+0A�E08;01;4 vector variables �rst to weight

and then to input (if some vector registers are still available).

6.1.3 Optimized Data�ow. From our analyses and re-
sults, we conclude that OS-anchored data�ow with auxiliary
weight stationarity is the most optimized data�ow in our
study. While there is generally little di�erence between pri-
oritizing auxiliary WS and prioritizing auxiliary IS, we �nd
the former to yield better code readability and more regular
instruction patterns. Algorithm 8 summarizes this data�ow.

6.2 Neural Network Speedup against State-of-the-Art

Implementations

Applying end-to-end optimizations discussed in Sec. 4.3, we
compare our approach to state-of-the-art baselines.

For INT8 neural networks, we use TVM as one of the base-
lines. TVM is a highly optimized machine learning compiler
stack for e�cient neural network deployment across vari-
ous hardware platforms [13]. We compare the end-to-end
inference latency of variants of ResNet [34] (Resnet-18 and
Resnet-34) and VGG [93] (VGG-11, VGG-13, and VGG-16)
with TVM-autotuned implementations (we use GridSearch-
Tuner as the KernelTuner, which enumerates through the en-
tire search space [27]) and untuned implementations (TVM
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default)2. We set TVM to target the architecture and SIMD
extension to match the physical machines used for our ex-
periments. Across all network architectures and numbers of
threads, we observe a ∼3x speedup over TVM’s implemen-
tations, and up to ∼14x over its untuned implementation.
Moreover, our multi-threaded scheme yields comparable
scalability. We also compare the end-to-end results with pro-
grams generated by GCC/clang (with the highest level of
optimization and auto-vectorization enabled). Ours achieve
signi�cant (4x-6x) speedup.

For the evaluation of binary neural networks, we compare
the inference latency of our implementations with Cowan
et al.’s TVM-based bitserial implementations [23]. Since the
code released by Cowan et al. only works for convolution
layers on CPUs (while their end-to-end code generation tool
targets Raspberry Pi and is not applicable to CPUs), we only
perform this comparison for convolution layers. Bitserial
implementations, although optimized for low-power con-
sumption, do not o�er satisfactory inference speed. Notably,
our implementations are over 12x faster for various con-
volution layers. Based on the end-to-end results reported
in their paper (which incorporates additional optimizations
through microkernel synthesis) [23], we anticipate that our
implementations will still outperform theirs by a large mar-
gin (6x or higher) in the end-to-end comparisons. We also
compare our implementations of various convolution layers
in VGG against those from [68], which already outperforms
Openvino, MXNet, and TensorFlow across numerous net-
works (ResNets, VGGs, DenseNets) and CPUs (Intel, AMD,
and ARM), and ours achieve up to 4.8x speedup.

7 Related Work

This section o�ers an overview of existing techniques for
accelerating neural network inference. Our work already
employs quantization [17, 22, 33, 36], vectorization [39, 60,
84, 87, 108], tiling/blocking [11, 96], and operator fusion
[45, 83, 85]. For operator fusion and quantization, convolu-
tion and batch normalization are mathematically fused by
preprocessing parameters, and activation and quantization
for each output can be performed on the accumulated results
before we store the quantized activation back to memory
[8, 13]. We compare and contrast our work with other related
e�orts.

Unroll-and-Jam. Unroll-and-jam reduces memory ac-
cess costs by reordering instructions without breaking data
dependencies [9, 10, 76], which can enhance the perfor-
mance of convolution and fully-connected layers in DNNs
[13, 74, 98]. Our technique bypasses unneeded load instruc-
tions previously handled by jamming, and further jamming

2We do not use Ansor, another TVM tuner, because Resnet-18, Resnet-34,

VGG-11,and VGG-13 became 3.76x, 7.28x, 3.90x, and 3.89x slower when it

is used.

Figure 8. End-to-end relative speedups for INT8 neural net-
works from our techniques, normalized to TVM’s default
mode without autotune (Note: TVM’s default mode did not
work for DenseNet-121, so we used a di�erent tuner called
TaskScheduler, and the �rst tuning trial is used as the base-
line).

Figure 9. Layer-wise latency comparisons for binary ResNet
Workloads between Ours and Cowan et al [23].

(performed by GCC in our implementation) can be applied
on top of our technique to reduce latency.

Winograd Convolution. Winograd convolution reduces
the complexity of convolution operations [4, 67, 78, 101, 104],
and there exist various optimizations of its implementation
on CPUs [46, 61, 62, 73]. Utilizing a similar concept of reusing
data to speed up convolution inference, DREW [102] opti-
mizes Winograd convolution by clustering data and reusing
computed results and trades o� accuracy and inference per-
formance. In contrast, our method retains accuracy and can
be applied to various SIMD architectures. Moreover, while
standard Winograd convolutions encounter challenges with
quantization [16, 25, 26, 62], our technique does not su�er
from this limitation.
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Transformer Optimizations. Transformers have revolu-
tionized several areas of machine learning [49, 88, 94, 97, 105,
107]. However, optimizing their performance, particularly
on CPUs, remains a signi�cant challenge [24, 44, 47, 99]. Ef-
forts to date include pruning [53, 54, 75, 115], quantization
[7, 19, 70, 81], knowledge distillation [14, 48, 66, 100], archi-
tecture search [65, 99, 109], GEMM optimizations [24, 37, 47],
and hardware-level optimizations [44, 113]. Moreover, while
there exist previous works on studying data�ows for trans-
formers on other hardware platforms [71, 89, 110, 114], no
data�ow work has been done on CPUs to the best of our
knowledge. Our technique is orthogonal to and may be com-
bined with other Transformer optimization techniques such
as GEMM optimizations (e.g., [24]).

Intel AMX Extension. Intel’s AMX [43] is designed to
accelerate tile-based operations on CPUs (e.g., matrix multi-
plication and accumulation along multiple dimensions), and
is only available in high-performance processors like the
4th Generation Xeon Scalable Processors [41]. Our research
focuses on prevalent SIMD architectures. It is essential to
develop data�ows that maximize data reuse opportunities in
AMX to further optimize its performance, and our method-
ology may be extended for this purpose.

8 Conclusions

In this paper, we present the �rst approach to systematically
explore data�ows to achieve e�cient neural network infer-
ence using SIMD capabilities. Our experiment results demon-
strate signi�cant performance improvements over state-of-
the-art implementations. We anticipate that this work will
catalyze further investigation of data�ows to reduce infer-
ence time on contemporary CPU architectures 3y.
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