
TransFusion: End-to-End Transformer Acceleration via Graph
Fusion and Pipelining

Linxuan Zhang
Department of Electrical and

Computer Engineering
University of Alberta

Edmonton, Alberta, Canada
linxuan2@ualberta.ca

José Nelson Amaral
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

jamaral@ualberta.ca

Di Niu
Department of Electrical and

Computer Engineering
University of Alberta

Edmonton, Alberta, Canada
dniu@ualberta.ca

Abstract
Transformer acceleration has increasingly emphasized local fusion
within isolated submodules, such as multi-head attention (MHA)
and softmax. However, as Transformer models continue to scale in
both depth and context length, such fragmented optimizations fail
to address end-to-end inefficiencies across the full encoder/decoder
stack. This paper presents TransFusion, a comprehensive frame-
work for end-to-end Transformer layers, including QKV projections,
MHA, LayerNorm, and FFN, as structured Einsum Cascades, en-
abling precise modelling of data dependencies and execution order.
TransFusion introduces DPipe, a unified graph-based scheduler
that partitions the Einsum-centric directed acyclic graph (DAG)
and applies latency-aware pipelining across hardware hierarchies
using dynamic programming (DP). To enable scalable execution
under strict memory budgets, TransFusion integrates TileSeek, a
Monte Carlo Tree Search (MCTS)-based tiling search algorithm
that balances buffer reuse and system constraints. Evaluated across
both cloud and edge architecture, TransFusion achieves up to an
average of 1.6× speedup on cloud and 2.2× on edge over the prior
state-of-the-art, FuseMax, by jointly optimizing inter-layer data
reuse, intra-layer pipelining, and operator scheduling.

Keywords
Transformer, Accelerator, Operator Fusion, Tensor Tiling, Pipelin-
ing Scheduler, Tiling Search

1 Introduction
Transformer [45] has emerged as the foundational architecture be-
hind a wide array of state-of-the-art models in natural-language
understanding [8] [38] [19] [22] and generation [4] [39] [56] [44].
The scaling of Transformers — with more layers — to handle longer
contexts shifts bottlenecks from computation to memory band-
width, data movement, and scheduling, has led to intensive research
into software-hardware co-designs for efficient deployment both
in cloud infrastructure and edge devices [3] [40] [18] [58].

A substantial body of prior work has concentrated on optimiz-
ing the attention mechanism to reduce the data transfer between
high-latency off-chip memory and on-chip buffer. FLAT [18] applies
multi-level granularity tiling and sub-operator fusion to linearize
memory growth. Frameworks such as xFormers [20], NVIDIA Ten-
sorRT [33], and Apple CoreML [1] follow similar principles to
optimize Transformer subgraphs across diverse platforms. Moving

MICRO 2025, Seoul, Korea
2025. ACM ISBN 978-X-XXXX-XXXX-X/XX/XX
https://doi.org/XXXXXXX.XXXXXXX

beyond DRAM-SRAM interactions, FuseMax [31] further minimizes
data movement between SRAM and register files by expanding PE
register capacity (10 entries per PE), allowing full in-register reten-
tion of intermediate results and deeper operator fusion.

Further work emphasizes pipeline-level optimization under hard-
ware constraints. FlashAttention [6] [5] [40] overlaps General Ma-
trix Multiplication (GEMM) and softmax via warp-level tiling for
NVIDIA A100/H100 GPUs, while MAS-Attention [41] adopts a
similar pipeline with row-wise chunking to improve data reuse
in the edge accelerators. FuseMax [31], focusing on cloud-centric
pipelines, employs Extended Einsum representations to guide op-
erator fusions and pipelines partial softmax over 2D PE arrays,
pushing PE utilization to its architectural limits.

However, the potential of end-to-end Transformer fusion is yet to
be fully explored. Fully fusing the QKV projection, multi-head atten-
tion (MHA), feed-forward network (FFN), and Layer Normalization
(LayerNorm) remains a significant challenge due to several factors.
First, the algorithm complexity and intermediate data movement
increase with context length and model hierarchy depth, exacerbat-
ing memory bottlenecks. Second, scheduling and fusion strategies
must be aware of and able to adapt to performance characteristics
and constraints of diverse hardware architectures on cloud and
edge. Third, end-to-end fusion necessitates joint tiling across mul-
tiple fused modules; as the fusion scope and operator complexity
increase, the difficulty of searching for global tiling factors escalates
dramatically, posing a major barrier to scalable optimization.

To address these challenges, this paper proposes TransFusion, a
comprehensive and architecture-aware framework for end-to-end
Transformer acceleration, that extends beyond attention calculation
[18] [6] [5] and does not depend on hardware-specific assumptions
[31] [41] [40]. TransFusion performs full-stack fusion by leveraging
Einsum Cascades to capture the fine-grained computational pat-
terns of QKV, MHA, FFN, and LayerNorm in Transformers. Guided
by Einsum formulations, we introduce DPipe, a directed acyclic
graph (DAG) pipeline scheduler as the backbone of on-chip execu-
tion strategy, which models the compute cost of each Einsum while
performing execution stage scheduling. Additionally, a full-stack
tiling search algorithm that spans the entire encoder-decoder stack
efficiently explores the expanded search space with fusion-aware
and hardware-specific considerations. TransFusion is open-source
on Github.1 In summary, this paper makes the following contribu-
tions:

• End-to-End Fusion: A two-level fusion strategy that spans
both inter-layer and intra-layer optimization. TransFusion

1https://github.com/FusedMindLab/TransFusion
1

https://doi.org/XXXXXXX.XXXXXXX
https://github.com/FusedMindLab/TransFusion

MICRO 2025, October 18–22, 2025, Seoul, Korea Linxuan Zhang, José Nelson Amaral, and Di Niu

expresses QKV, MHA, Add & LayerNorm, and FFN as struc-
tured Einsum Cascades, enabling fine-grained scheduling
across the entire encoder-decoder stack. At the inter-layer,
TransFusion performs sequence-wise outer tiling, enabling
on-chip propagation of intermediate results across layers. At
the intra-layer, TransFusion schedules fine-grained pipelin-
able inner tiles onto 1D/2D PE arrays to enable overlapped
execution across epochs and improve parallelism.2

• DPipe: A graph-based pipeline scheduling framework that
constructs operation-level DAGs from Einsum-based repre-
sentations of Transformer layers, enabling precise modelling
of computation dependencies. DPipe partitions the DAG
into pipelinable subgraphs, taking into account hardware-
specific characteristics such as memory hierarchy, compute
parallelism, and PE granularity to generate optimized ex-
ecution plans under hardware constraints using dynamic
programming (DP).

• TileSeek: A full-stack tiling search algorithm leveraging
Monte Carlo Tree Search (MCTS) to explore the joint design
space of tiling factors and mapping parameters to maximize
cache reuse and data locality, enabling effective adaptation
to hardware-specific memory hierarchies. TileSeek also ana-
lyzes tile feasibility and embedding vector integrity as criti-
cal requirements for module-level fusion, ensuring both the
implementability and correctness of end-to-end fusion.

2 Background
This section reviews a general architecture for cloud and edge
devices, the standard Transformer design, recent acceleration tech-
niques, and the Einsum-based abstractions that enable efficient
execution on modern hardware.

2.1 Architecture
Prior research primarily targets specific hardware: FlashAttention-
1/2/3 are optimized for NVIDIA GPUs (A100/H100), while Google’s
TPU v2/v3[32] underpins several spatial and dataflow accelerators[18,
31]. For edge scenarios, MAS-Attention builds on a modified spatial
accelerator from TileFlow[58].

TransFusion generalizes across both cloud (e.g., TPU v2/v3[32])
and edge-oriented neural processing units (NPUs)[18, 31, 58]. Our
evaluation adopts the architecture in Figure 1, featuring off-chip
memory, a shared on-chip buffer, and two compute arrays: a 2D PE
array for matrix-dense operations and a 1D PE array for stream-
ing/vector workloads.

Figure 1: Simulated Cloud and Edge and Architecture Design.
2The outer tile represents off-chip memory to on-chip buffer and the inner tile repre-
sents on-chip buffer to PE.

For hardware simulation, we adopt Timeloop and Accelergy,
developed by NVIDIA and MIT[34, 51]. Timeloop supports loop-
level dataflow and mapping analysis for deep neural networks
(DNNs) on spatial accelerators, while Accelergy offers cycle-level
energy estimation across compute and memory hierarchies. We
integrate both to model Einsum performance under cloud and edge
architectures, and to analyze energy breakdowns across compute
arrays and memory components.

2.2 Transformer
The Transformer [45] is a fully attention-based architecture for
sequence modelling, eliminating recurrence and convolutions. It
adopts a modular encoder-decoder design built from stacked multi-
head self-attention (MHA) and feed-forward networks (FFN), each
wrapped with residual connections and layer normalization for
training stability. The encoder transforms token embeddings into
contextual representations via repeated MHA-FFN layers, while
the decoder employs masked self-attention for auto-regressive gen-
eration and encoder-decoder attention to integrate source context.
Self-attention enables the model to capture global dependencies
across the sequence in parallel.

At the core of the architecture is MHA, which projects input
sequences into multiple sets of queries Q, keys K, and values V
via learned linear transformations. Each head computes scaled
dot-product attention in parallel to capture diverse contextual de-
pendencies.

Attention(𝑄,𝐾,𝑉) = softmax
(
𝑄𝐾⊤√︁
𝑑𝑘

)
𝑉 (1)

These heads operate in distinct representation subspaces, en-
abling the model to capture diverse relational patterns. Their out-
puts are concatenated and linearly projected:

MultiHead(𝑄,𝐾,𝑉) = Concat(head1, . . . , headℎ)𝑊𝑂 (2)
Each sub-layer is surrounded by a residual connection, followed

by layer normalization, which stabilizes training by re-centering
and re-scaling the inputs:

LayerNorm(𝑥) = 𝛾 ⊙ 𝑥 − 𝜇
𝜎

+ 𝛽 (3)

where 𝜇 and 𝜎 are the mean and standard deviation of the input
vector, and 𝛾 , 𝛽 are learnable affine parameters.

The FFN in each layer is applied identically and independently
to each position, transforming representations through two linear
layers separated by a non-linear activation:

FFN(𝑥) = Linear2 (𝜙 (Linear1 (𝑥))) = 𝜙 (𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (4)
Common choices for 𝜙 include Rectified Linear Unit (ReLU),

Gaussian Error Linear Unit (GeLU), and Sigmoid Linear Unit (SiLU),
enabling the network to learn rich, token-specific transformations.

2.3 Transformer Acceleration
Recent acceleration efforts for Transformers primarily target MHA,
aiming to reduce intermediate memory traffic and enhance com-
pute efficiency. These approaches commonly employ tile-and-fuse

2

TransFusion: End-to-End Transformer Acceleration via Graph Fusion and Pipelining MICRO 2025, October 18–22, 2025, Seoul, Korea

strategies to avoid off-chip writes of large intermediate results such
as 𝑄𝐾𝑇 and softmax outputs.

For instance, FlashAttention [6] and FlashAttention-2 [5] tile
the 𝑄 , 𝐾 , and 𝑉 matrices, stream data from GPU High-Bandwidth
Memory (HBM) to on-chip SRAM, compute attention outputs block-
wise, and fuse multiple operators to minimize intermediate writes.
This leads to both lower memory overhead and better compute
throughput on architectures such as NVIDIA A100.

FLAT, targeting TPUs and general spatial accelerators, applies
row-wise fusion across the entire attention computation. It pro-
cesses one row of 𝑄 at a time, computes the corresponding 𝑄𝐾𝑇 ,
softmax, and final output entirely on-chip, reducing buffer demands
while maintaining full operator fusion.

To improve compute utilization further, FlashAttention-3 intro-
duces pipelining across warp groups using ping-pong scheduling,
overlapping MatMul and softmax stages to keep GPU cores busy.
Similarly, FuseMax maps fused attention onto spatial arrays using
Einsum-based designs, tailored for high-throughput cloud deploy-
ments.

2.4 Einsum
Recent advances in tensor algebra introduce Einsum, a formal ab-
straction that models sequences of dependent tensor operations.
Traditionally, Einsum denotes tensor contractions using compact
index notation, defining computations over shared indices—for
example, matrix multiplication as:

𝑍𝑚,𝑛 =
∑︁
𝑘

𝐴𝑚,𝑘 · 𝐵𝑘,𝑛 (5)

Traditional Einsums are limited to basic operations. The Ex-
tended Einsum abstraction allows user-defined map-and-reduce
operations. For instance, the softmax computation over a vector 𝐼𝑚
can be expressed as:

𝐺 = max
𝑚

𝐼𝑚 (6)

𝑆𝑚 = exp(𝐼𝑚 −𝐺) (7)

𝐴𝑚 =
𝑆𝑚∑
𝑘 𝑆𝑘

(8)

where 𝑆𝑚 is the exponentiated and shifted score for element𝑚, and
𝐴𝑚 is the final normalized attention weight or softmax output for
element𝑚.

For sequences of dependent tensor computations, the Cascade
of Einsums abstraction represents a series of Einsums where inter-
mediate results feed into subsequent computations. For instance,

𝑌𝑘 = 𝐴𝑘 · 𝐵𝑘 (9)
𝑋 = 𝐴𝑘 (10)
𝑍 = 𝑌 · 𝑋 (11)

represent a typical cascaded pattern from [31], which appear through-
out Transformer layers.

To implement such a cascade, FuseMax [31] adopts the 1-pass
attention dataflow from FlashAttention-2 [5] shown in Figure 2 and
referred to as Einsum Cascade 1. This dataflow has the following
steps: (1) partition the key (𝐾) and value (𝑉) tensors into blocks
(𝐵𝐾 and 𝐵𝑉) indexed by𝑚1 and𝑚0 where𝑚1 represents the outer
sequence tile and𝑚0 is the inner sequence tile size; the attention

𝐵𝑄𝐾ℎ,𝑚1,𝑚0,𝑝 = 𝑄ℎ,𝑒,𝑝 × 𝐵𝐾ℎ,𝑒,𝑚1,𝑚0 (12)

𝐿𝑀ℎ,𝑚1,𝑝 = 𝐵𝑄𝐾ℎ,𝑚1,𝑚0,𝑝 ::
∨
𝑚0

max(∪) (13)

𝑅𝑀ℎ,𝑚1+1,𝑝 = max(𝑅𝑀ℎ,𝑚1,𝑝 , 𝐿𝑀ℎ,𝑚1,𝑝) (14)

𝑆𝐿𝑁ℎ,𝑚1,𝑚0,𝑝 = 𝑒𝐵𝑄𝐾ℎ,𝑚1,𝑚0,𝑝−𝑅𝑀ℎ,𝑚1+1,𝑝 (15)
𝑆𝐿𝐷ℎ,𝑚1,𝑝 = 𝑆𝐿𝑁ℎ,𝑚1,𝑚0,𝑝 (16)

𝑆𝐿𝑁𝑉ℎ,𝑓 ,𝑚1,𝑝 = 𝑆𝐿𝑁ℎ,𝑚1,𝑚0,𝑝 × 𝐵𝑉ℎ,𝑓 ,𝑚1,𝑚0 (17)

𝑃𝑅𝑀ℎ,𝑚1,𝑝 = 𝑒𝑅𝑀ℎ,𝑚1,𝑝−𝑅𝑀ℎ,𝑚1+1,𝑝 (18)
𝑆𝑃𝐷ℎ,𝑚1,𝑝 = 𝑅𝐷ℎ,𝑚1,𝑝 × 𝑃𝑅𝑀ℎ,𝑚1,𝑝 (19)
𝑅𝐷ℎ,𝑚1+1,𝑝 = 𝑆𝐿𝐷ℎ,𝑚1,𝑝 + 𝑆𝑃𝐷ℎ,𝑚1,𝑝 (20)

𝑆𝑃𝑁𝑉ℎ,𝑓 ,𝑚1,𝑝 = 𝑅𝑁𝑉ℎ,𝑓 ,𝑚1,𝑝 × 𝑃𝑅𝑀ℎ,𝑚1,𝑝 (21)
𝑅𝑁𝑉ℎ,𝑓 ,𝑚1+1,𝑝 = 𝑆𝐿𝑁𝑉ℎ,𝑓 ,𝑚1,𝑝 + 𝑆𝑃𝑁𝑉ℎ,𝑓 ,𝑚1,𝑝 (22)

𝐴𝑉ℎ,𝑓 ,𝑝 =
𝑅𝑁𝑉ℎ,𝑓 ,𝑀1,𝑝
𝑅𝐷ℎ,𝑀1,𝑝

(23)

⋄ : 𝑚1 ≡ 𝑀1 + 1 (24)

Figure 2: Einsum Cascade 1: 1-pass attention cascade used in
FuseMax (from [31]).
computation is carried out block by block. (2) perform the following
computations for each tile𝑚1: (a) compute the block dot product
𝐵𝑄𝐾 ; (b) compute the local maximum (𝐿𝑀) across the𝑚0 dimen-
sion; (c) update the running max 𝑅𝑀 as the maximum between the
current 𝑅𝑀 and the new local max 𝐿𝑀 ; (d) subtract the current 𝑅𝑀
from 𝐵𝑄𝐾 and exponentiates the result to form the local softmax
numerator (𝑆𝐿𝑁); (e) compute the local softmax denominator as the
sum of 𝑆𝐿𝑁 (𝑆𝐿𝐷) along the𝑚0 dimension; (f) compute a matrix
multiplication with 𝐵𝑉 , producing the result 𝑆𝐿𝑁𝑉 . (3) scale past
values 𝑅𝐷 and 𝑅𝑁𝑉 using a correction factor 𝑃𝑅𝑀 to accumulate
results across tiles, generating 𝑆𝑃𝐷 and 𝑆𝑃𝑁𝑉 respectively to align
them with the current numerical base; (4) combine these scaled past
values with the local results to update the running sums (𝑅𝐷 and
𝑅𝑁𝑉). (5) normalize the accumulated numerator-times-V product
(𝑅𝑁𝑉) by the accumulated denominator (𝑅𝐷) to produce the final
attention output (𝐴𝑉).

The core idea is to stream attention computation in a tile-wise
and stateful manner, maintaining a running max and scaled run-
ning denominator across𝑚1 chunks, to compute numerically stable
softmax without materializing large intermediates like 𝑄𝐾 or soft-
max outputs. Represented as a cascade of Einsums, this formulation
maps naturally onto spatial architectures, enabling FuseMax to
express attention as a fused, pipelined stream that eliminates inter-
mediate memory writes and supports efficient end-to-end execution
on specialized hardware.

3 TransFusion
TransFusion implements end-to-end fusion across full-stack en-
coder/decoder sub-modules (QKV projection, MHA, Add & Lay-
erNorm, and FFN). As shown in Figure 3, starting with the QKV
projection, TransFusion first partitions the input tensor into the
outer tiles, which are loaded into on-chip buffers and processed by
three separate linear layers to generate the corresponding𝑄 , 𝐾 and

3

MICRO 2025, October 18–22, 2025, Seoul, Korea Linxuan Zhang, José Nelson Amaral, and Di Niu

Figure 3: TransFusion Dataflow for a single-token tile (𝑝 = 1) showing the flow of data across off-chip memory, on-chip buffer,
and PE arrays across the QKV projection, MHA, Add & LayerNorm, and FFN. Each layer operates on a tile that preserves the
full head and embedding dimensions (𝐻 ,𝐹). Intermediate results are retained on-chip and forwarded between layers, except for
𝐾 and 𝑉 , which are stored in off-chip memory to enable reuse across 𝑄 tiles.

𝑄ℎ,𝑒,𝑝 = 𝐼𝑁𝑃𝑈𝑇𝑑,𝑝 ×𝑊𝑄𝑑,ℎ,𝑒 (25)
𝐵𝐾ℎ,𝑒,𝑚1,𝑚0 = 𝐼𝑁𝑃𝑈𝑇𝑑,𝑚1,𝑚0 ×𝑊𝐾𝑑,ℎ,𝑒 (26)
𝐵𝑉ℎ,𝑓 ,𝑚1,𝑚0 = 𝐼𝑁𝑃𝑈𝑇𝑑,𝑚1,𝑚0 ×𝑊𝑉𝑑,ℎ,𝑓 (27)

Figure 4: Einsum Cascade 2: Tiled QKV Projectoions with
Shared Input.
𝑉 tiles. The 𝐾 and 𝑉 tiles are written back to off-chip memory, and
cached for reuse by all𝑄 tiles during full-stack computation. Trans-
Fusion then propagates each 𝑄 tile through the MHA layer using
intra-layer pipelining and passes its output to the subsequent layers
(Add & Layer and FFN). TransFusion continues the process as inter-
mediate results are forwarded on-chip through each Transformer
layer, until producing the final output at the topmost layer.

This section first defines 1 the Einsum Cascades for each layer
(QKV, MHA, Add & LayerNorm, FFN), followed by the details of
2 the inter-layer mechanism which enables direct on-chip propa-
gation of intermediate results across each layer, and 3 the intra-
layer strategies that achieve efficient computation within each layer
through pipelining execution.

3.1 Transformer as Einsum Cascades
The definition of the Einsums cascades for each Transformer layer
begins with the QKV projection shown in Einsum Cascade 2. This
projection captures the QKV projection phase, where the input

activations are linearly projected into 𝑄 (Equation 25), 𝐾 (Equa-
tion 26), 𝑉 (Equation 27) tensor using shared or separate inputs
and weights. Here, ℎ denotes the number of attention heads, and
𝑒 is the per-head embedding dimension. The 𝐾 and 𝑉 tensors are
partitioned into multi-sequence tiles (𝐵𝐾 and 𝐵𝑉), following the
same layout used in Einsum Cascade 1.

TransFusion then feeds the𝑄 , 𝐵𝐾 , and 𝐵𝑉 into the MHAmodule
using the 1-pass MHA execution pattern introduced in Einsum
Cascade 1, where TransFusion propagates each 𝑄 tile through the
whole layer, but with a key difference: while FuseMax loads only a
single head per tile into the on-chip buffer, TransFusion fuses and
retains the full head dimension to ensure correctness and complete-
ness of the subsequent FFN computation.

Thus, the Add & LayerNorm Einsum Cascade is in Einsum Cas-
cade 3. TranFusion performs element-wise addition with the resid-
ual input (Equation 28), followed by normalization (Equation 29-
Equation 36) across the head (ℎ) and embedding (𝑓) dimensions at
each sequence position (𝑝). TransFusion computes the mean (Equa-
tion 30) and variance (Equation 34) per token, and then normalizes
the activation (Equation 36). The scaling (𝛾) and shifting (𝛽) follow
the design of Li et al. [23] by deferring and fusing them into the
subsequent layer.

Finally, We define the FFN Einsum Cascade in the Einsum Cas-
cade 4. TransFusion computes a complete sub-block of FFN1 for
each tile (Equation 37), which is immediately passed through the
activation function in a pipeline manner (Equation 38). TransFusion

4

TransFusion: End-to-End Transformer Acceleration via Graph Fusion and Pipelining MICRO 2025, October 18–22, 2025, Seoul, Korea

𝐼𝐴𝑉ℎ,𝑓 ,𝑝 = 𝐼𝑁𝑃ℎ,𝑓 ,𝑝 +𝐴𝑉ℎ,𝑓 ,𝑝 (28)
𝑆𝐴𝑉𝑝 = 𝐼𝐴𝑉ℎ,𝑓 ,𝑝 (29)

𝑀𝐴𝑉𝑝 =
1

𝐻 × 𝐹 × 𝑆𝐴𝑉𝑝 (30)

𝐷𝐴𝑉ℎ,𝑓 ,𝑝 = 𝐼𝐴𝑉ℎ,𝑓 ,𝑝 −𝑀𝐴𝑉ℎ,𝑓 ,𝑝 (31)
𝑄𝐴𝑉ℎ,𝑓 ,𝑝 = 𝐷𝐴𝑉ℎ,𝑓 ,𝑝 × 𝐷𝐴𝑉ℎ,𝑓 ,𝑝 (32)
𝑆𝑄𝐴𝑉𝑝 = 𝑄𝐴𝑉ℎ,𝑓 ,𝑝 (33)

𝑀𝑄𝐴𝑉𝑝 =
1

𝐻 × 𝐹 × 𝑆𝑄𝐴𝑉𝑝 (34)

𝑆𝑅𝑝 =
1√︁

𝑀𝑄𝐴𝑉𝑝
(35)

𝑁𝑅ℎ,𝑓 ,𝑝 = 𝐷𝐴𝑉ℎ,𝑓 ,𝑝 × 𝑆𝑅𝑝 (36)

Figure 5: Einsum Cascade 3: Add & LayerNorm Layer.

𝐹𝐹𝑁 1𝑠,𝑝 = 𝑁𝑅ℎ,𝑓 ,𝑝 ×𝑊𝐹1ℎ,𝑓 ,𝑠 + 𝐵𝐹1𝑠 (37)
𝐴𝑅𝑠,𝑝 = 𝐴𝑐𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝐹𝐹𝑁 1𝑠,𝑝) (38)

𝐹𝐹𝑁 2ℎ,𝑓 ,𝑝 = 𝐹𝐹𝑁 1𝑠,𝑝 ×𝑊𝐹2ℎ,𝑓 ,𝑠 + 𝐵𝐹2ℎ,𝑓 (39)

Figure 6: Einsum Cascade 4: Feed Forward Network Layer.

then consumes the resulting activated tile to compute an incom-
plete fragment of FFN2 via the second matrix multiplication (Equa-
tion 39), with buffering the partial results on-chip and awaiting
accumulation with subsequent tiles.

For clarity, this presentation omits the batch dimension (𝑏) in all
Einsum cascades because it does not affect the core computation
patterns. Section 5 will revisit batch size (𝑏) tiling and its impact
on performance.

3.2 Inter-layer Fusion: On-chip Intermediate
Propagation

TransFusion implements inter-layer fusion by retaining interme-
diate activations on-chip and directly forwarding them between
layers. This section describes how TransFusion enables end-to-end
propagation across the full encoder/decoder stack, including QKV
projection, MHA, Add $ LayerNorm and FFN as follows:

QKV Projection. TransFusion partitions both the input se-
quences (𝐼𝑁𝑃𝑈𝑇) and projection weights (𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉) along
sequence dimension (𝑝) and hidden dimension (𝑑), generating the
outer tiles processing for each input segment. For each outer tile,
TransFusion iterates over the full hidden dimension (𝑑) to compute
the 𝑄 , 𝐵𝐾 , and 𝐵𝑉 via three separate linear transformations. The
resulting 𝑄 , 𝐾 , and 𝑉 tensors serve as inputs to the MHA module.
To preserve correctness in downstream computation (particularly
in the FFN), each outer tile fully retains the head and embedding (𝐻 ,
𝐸, 𝐹) on-chip. Among the projected outputs, 𝐵𝐾 and 𝐵𝑉 tiles are
written back to off-chip memory for reuse across all 𝑄 tiles during
attention computation in the full-stack encoder/decoder pipelining.

MHA. TransFusion operates MHA and the subsequent layers
in a 𝑄-tile-wise execution pattern: TransFusion propagates each
𝑄 tile through each Transformer layer to generate its final output
before processing the next 𝑄 tile. Within MHA, TransFusion feeds
the current 𝑄 tile over the entire set of 𝐾 and 𝑉 tiles (from off-
chip memory as needed). Thus, TransFusion must iterate over the
𝑚1 dimension to accumulate the complete attention result. There-
fore, it performs a localized inter-layer fusion between QKV and
MHA layers: along the𝑚1 axis, TransFusion jointly computes the
accumulated numerator-times-V product (𝑅𝑁𝑉) and accumulated
denominator (𝑅𝐷), allowing the attention result (𝐴𝑅, tensor shape
[𝐵,𝐻, 𝐹, 𝑃]) to be computed on-chip and forwarded immediately to
the next layer.

Add & LayerNorm and FFN. TransFusion adopts a shape-
consistent fusion pattern to connect Add & LayerNorm and FFN
with MHA, leveraging their identical input/output tensor shape
[𝐵,𝐻, 𝐹, 𝑃] to enable seamless data forwarding. TransFusion com-
poses and reorders Add & LayerNorm, FFN and MHA by their
uniform input/output tensor shape, supporting different model
structures such as encoders, decoders, or hybrid configurations.

3.3 Intra-layer Fusion: On-chip Tile Execution
within Layers

TransFusion implements intra-layer fusion by partitioning the on-
chip buffer into smaller inner tiles that match the size of the un-
derlying 2D PE array. TransFusion executes each inner tile as a
self-contained unit, running through the entire Cascades of Einsum
for each layer. TransFusion schedules the inner tiles in a pipelining
manner across the PE array, allowing overlapping execution across
multiple inner tiles. While the pipelining scheduling strategy is
detailed in Section 4, this section focuses on how the inner tiles are
formed based on the Einsum structure of each layer.

TransFusion determines tiling boundaries by mapping shared
Einsum dimensions, typically the sequence length (𝑝 , 𝑚0), head
count (ℎ), and embedding size (𝑒, 𝑓), onto the 2D PE array, as shown
in Table 1. When operating on a 1D PE array, TransFusion retains
the row-based mapping along the sequence dimension (𝑝 , 𝑚0),
and when additional compute resources are available, further un-
folds computation along dimensions originally assigned to 2D PE
columns.

Table 1: Dimension mapping of each Transformer layer onto
the 2D PE array.

Layer 2D PE Row 2D PE Column
QKV 𝑝/𝑚0 ℎ, 𝑒

MHA 𝑝 𝑚0
LayerNorm 𝑝 ℎ, 𝑓

FFN 𝑝 𝑠

The tiling strategy used in each layer works as follows:
QKV. TransFusion treats the Einsums for 𝑄 (Equation 25), 𝐵𝐾

(Equation 26) and 𝐵𝑉 (Equation 27) as independent, dependency-
free computations. Thus, TransFusion maps each Einsum to dif-
ferent dimension assignments over the 2D PE array. For 𝑄 , Trans-
Fusion maps the sequence dimension (𝑝) to PE rows, and (ℎ,𝑒) to
columns. For 𝐵𝐾 and 𝐵𝑉 , TransFusion maps the sequence’s inner

5

MICRO 2025, October 18–22, 2025, Seoul, Korea Linxuan Zhang, José Nelson Amaral, and Di Niu

Figure 7: DPipe Pipelining Scheduling overview showing the computation DAGs and one valid bipartition for Transformer
sublayers (a) MHA, (b) Add & LayerNorm, and (c) FFN. (d) illustrates how DPipe constructs a pipelined execution from a given
bipartition. It first overlaps the execution of Einsums across epochs by interleaving subgraph schedules. DPipe then adds a
virtual root node (𝑅𝑂𝑂𝑇) to connect the overlapping subgraphs and form a new DAG. Finally, DPipe generates latency-aware
pipelining schedules using DP strategies.

sequence dimension (𝑚0) to rows, and (ℎ, 𝑒) and (ℎ, 𝑓) respectively
to columns.

MHA. TransFusion maps the sequence (𝑝) to PE rows and the
inner sequence dimension (𝑚0) to PE columns. During intra-layer
pipelining, TransFusion partitions the attention computation into
multiple head-specific tiles. When the resulting 2D tile from PE
mapping does not fully utilize the available 1D PE array, TransFu-
sion packs multiple head tiles into a single pipeline pass to increase
computational efficiency across the PE array.

Add & LayerNorm. TransFusion distributes the sequence di-
mension 𝑝 across 2D PE rows, assigning each row to one token.
Then, TransFusion flattens the head (ℎ) and embedding (𝑓), distribut-
ing them across 2D PE columns with each inner tile processing an
entire feature vector for the given token. TransFusion computes
the full normalization over (𝐻 × 𝐹), within each tile, for one token
position 𝑝 .

FFN. TransFusion maps the sequence length (𝑝) across PE rows,
while the hidden (𝑠) dimension is mapped across PE columns. Dur-
ing execution, TransFusion defines a inner tile by a slice over the
𝑠 and 𝑝 based on 2D PE array size. TransFusion uses each inner
tile to compute a sub-block of FFN1 (Equation 37), and immediately
passes it through the activation function (Equation 38) in a pipelin-
ing manner. Then, TransFusion consumes the resulting activated
inner tile to compute an incomplete fragment of FFN2 via Equa-
tion 39, with the partial results being buffered on-chip and awaiting
accumulation with subsequent tiles.

4 DPipe: an Einsum Pipelining Scheduler via
DAG Traversal and Dynamic Programming

This section describes DPipe, a DAG-based, Einsum-centric pipelin-
ing scheduler that uses DP to optimize intra-layer inner tile ex-
ecution. Instead of relying on heuristic or static scheduling [40]
[41] [31], DPipe introduces flexible adaptation to diverse hardware
and model configurations, forming latency-aware and overlapped
pipelining strategies for optimal execution.

DPipe, depicted in Figure 7, models fused Transformer computa-
tions as a computation DAG where nodes represent an inner tile of
Einsum operations and edges encode data dependencies. By enu-
merating valid DAG partitions and their corresponding execution
orders, DPipe identifies pipelined schedules that enable overlapped
execution across sub-graphs. DPipe applies a DP-based cost model
to estimate the latency of each schedule, taking into account opera-
tion dependencies, tiling granularity, and PE-level parallelism. By
combining this graphical representation with performance analysis,
DPipe provides a principled solution for scheduling fused Einsum
layers onto parallel hardware architectures.

This section first introduces 1 theDAGpartitioning and pipelin-
ing execution strategy, next describes 2 a latency estimation
method for each Einsum operation, and finally presents our 3
DP-based cost model that schedules the pipelining with awareness
of dependencies and resource utilization.

6

TransFusion: End-to-End Transformer Acceleration via Graph Fusion and Pipelining MICRO 2025, October 18–22, 2025, Seoul, Korea

4.1 DAG Partitioning and Pipelining Execution
Strategy

DPipe first constructs the computation DAG from the Einsum Cas-
cades introduced in Section 3.1, capturing operation-level dependen-
cies. And then, DPipe partitions theDAG into twoweakly connected
subgraphs, subject to the following constraints:

(1) Source-Sink Alignment: The source nodes (i.e., nodes with
zero in degree) must belong to the first subgraph, and the
sink nodes (i.e., with zero out-degree) must belong to the
second subgraph.

(2) Weak Connectivity: The partitioned subgraphs must re-
main weakly connected within the original DAG structure.

(3) Dependency Completeness: The first subgraph must be
dependency-complete: all its input dependencies must be
contained within the subgraph.

(4) Reachability: All nodes in the first sub-graph must remain
reachable from the DAG’s source nodes after partitioning.

Next, DPipe enumerates all valid bipartitions satisfying these
constraints. For each partition, DPipe constructs a pipelined execu-
tion model by applying intra-layer tiling to subdivide the workload
of each subgraph into multiple computational blocks. Each block
processes the full sequence of Einsum operations across the two
subgraphs, effectively creating an overlapped execution pipeline
across epochs. For each valid bipartition, DPipe introduces a vir-
tual root node to connect the source nodes of the two subgraphs.
DPipe then enumerates all valid topological orderings that respect
the new dependencies. Each ordering defines a schedule interleav-
ing Einsum operations from both subgraphs. DPipe evaluates each
candidate schedule by constructing a pipelined execution model
that applies intra-layer tiling — based on Table 1 — to partition the
workload into inner tiles along the sequence (𝑝,𝑚0), head (ℎ) and
embedding (𝑒, 𝑓) dimensions mapped onto the PE array. These inner
tiles form the pipeline’s execution units (epochs), with each epoch
executing the full sequence of Einsum operations in the prescribed
topological order. As the inner tiles traverse the fused computation
graph, intermediate results between subgraphs mapped to different
PE arrays (2D↔1D) are staged in the on-chip buffer. This strategy
decouples producer-consumer timing, allowing the next tiles to
begin subgraph-1 while the previous tile proceeds in subgraph-2,
forming a temporally overlapped pipeline across PEs. The on-chip
buffer enables smooth handoff and sustained parallelism.

4.2 Latency Estimation for Einsum Operations
This section describes how DPipe computes latency estimation for
each Einsum, which serves as input to the DP-based scheduling
cost model. An Einsum map operation is expressed in the form:
einsum(InputIndices → OutputIndices), where InputIndices denotes
a comma-separated list of index labels corresponding to each input
tensor, and OutputIndices specifies the index labels of the resulting
output tensor. For example, matrix multiplication 𝐴 ∈ R𝑚×𝑘 , 𝐵 ∈
R𝑘×𝑛 → 𝐶 ∈ R𝑚×𝑛 corresponds to 𝑒𝑖𝑛𝑠𝑢𝑚(𝑚𝑘, 𝑘𝑛 →𝑚𝑛).

The reduction dimensions (𝑘) are the set of index labels present
in multiple inputs but not in the output, and the output dimen-
sions (𝑚,𝑛) are those appearing in the output index. The estimated
compute latency of scalar arithmetic operations required is:

ComputeLoad𝑜𝑝 =
©­«

∏
𝑑∈OutputDims

𝑑
ª®¬ ·

(∏
𝑑∈ReductionDims

𝑑

)
(40)

ComputeCycles𝑜𝑝 =
ComputeLoad𝑜𝑝

NumPEs𝑜𝑝
(41)

Latency𝑜𝑝 =
ComputeCycles𝑜𝑝

𝑓clk
(42)

where 𝑑 denotes the extent of the dimension, OutputDims is the
output dimensions, ReductionDims refers to the reduction dimen-
sions, NumPEs𝑜𝑝 is the number of PEs assigned to the operation,
and 𝑓𝑐𝑙𝑘 is the clock frequency of the processing elements. The
metric captures the full computation complexity and the compute
latency of the Einsum.

DPipe estimates latency by modelling Einsum compute com-
plexity as the product of output dimensions and reduction di-
mensions (Equation 40), scaled by PE count and clock frequency
(Equation 41,Equation 42). This provides an accurate latency predic-
tion based on arithmetic intensity and parallelism, under compute-
bound conditions.

4.3 Latency-Aware Scheduling via DP
Next, DPipe applies a DP strategy to generate the optimal pipeline
schedule for each candidate’s topological ordering. This algorithm
computes the earliest feasible start time for each Einsum under
resource and dependency constraints, aiming to minimize total
completion time. The scheduler follows the update rules below:

StartT[𝑜𝑝𝑖] [𝑝𝑒 𝑗] = max
(
Time[𝑝𝑒 𝑗], max

𝑜𝑝𝑘→𝑜𝑝𝑖
EndT[𝑜𝑝𝑘]

)
(43)

EndT𝑃𝐸 [𝑜𝑝𝑖] [𝑝𝑒 𝑗] = StartT[𝑜𝑝𝑖] [𝑝𝑒 𝑗] + Latency[𝑜𝑝𝑖] [𝑝𝑒 𝑗] (44)

EndT[𝑜𝑝𝑖] = min
𝑝𝑒 𝑗 ∈[1𝑑,2𝑑]

(
EndT𝑃𝐸 [𝑜𝑝𝑖] [𝑝𝑒 𝑗]

)
(45)

Time
[
argmin

𝑝𝑒 𝑗

(
EndT𝑃𝐸 [𝑜𝑝𝑖] [𝑝𝑒 𝑗]

)]
= EndT[𝑜𝑝𝑖] (46)

Here 𝑜𝑝𝑖 denotes the 𝑖-th Einsum operation in the topologically
sorted computation graph, and 𝑝𝑒 𝑗 is the 𝑗-th processing element
in a 1D and 2D PE array. 𝑇𝑖𝑚𝑒 [𝑝𝑒 𝑗] tracks the total elapsed time
that 𝑝𝑒 𝑗 has already been occupied by previously assigned einsums.

Equation 43 computes the start time of 𝑜𝑝𝑖 on 𝑝𝑒 𝑗 by taking the
maximum of (a) the current cumulative workload on 𝑝𝑒 𝑗 , and (b)
the latest completion time among all its direct dependencies 𝑜𝑝𝑘 .
Equation 44 computes the completion time of 𝑜𝑝 𝑗 by adding the
known latency. Equation 45 determines the best PE assignment by
selecting the one yielding the earliest completion. Finally, Equa-
tion 46 updates the selected PE’s timeline to reflect the scheduled
operation.

The DP formulation ensures that each operation respects both
dependency constraints and hardware-level parallelism. It aims to
minimize the critical path while distributing the workload evenly
across available compute units.

In summary, our DAG-based pipelining scheduler is tailored for
Einsum-centric Transformer layers, and systematically explores
the space of valid subgraph partitions and their corresponding

7

MICRO 2025, October 18–22, 2025, Seoul, Korea Linxuan Zhang, José Nelson Amaral, and Di Niu

topological schedules, leveraging DP to compute latency-aware,
resource-constrained execution plans. This approach enables fine-
grained intra-module parallelism and balanced PE utilization, form-
ing the foundation for efficient hardware mapping of Einsum-based
Transformer layers.

5 TileSeek: an Outer Tiling Search Algorithm
This section introduces TileSeek, an outer tiling search algorithm
used to optimize data movement from off-chip memory to on-chip
buffer, to reduce energy consumption and off-chip memory traffic.
TileSeek focuses on determining tiling factors that ensure each
outer tile can support the complete computation of a Transformer
layer during end-to-end fusion. This process does not cover the
on-chip buffer to PE/register file level because the corresponding
inner tiling and pipelining strategies have already been discussed
in Section 3.3 and Section 4. To accommodate the full Transformer
stack, TileSeek applies fine-grained outer tiling over the dimensions
[𝐵, 𝐷,𝑀1, 𝑃, 𝑆], where each dimension is mapped according to the
on-chip constraints to balance the workload and reduce traffic.

This section first introduces 1 the detailed implementation of
the TileSeek based on MCTS, and then analyzes 2 the on-chip
buffer requirements for executing each fused layer tile.

5.1 MCTS-based Exploration Framework
TileSeek adopts a search strategy leveraging MCTS for outer tiling
exploration. TileSeek defines each node in the search tree corre-
sponds to a decision along a specific outer tiling factor. TileSeek
maps each complete traversal from the root to a leaf node to a full
outer tiling configuration, specifying how data blocks are parti-
tioned and transferred from off-chip memory to on-chip buffer. The
MCTS framework in TileSeek has the following key components:

• Node: Each Node encodes a partial tiling decision. Collec-
tively, nodes along a path represent an outer tiling strategy
applied to the Einsum.

• Selection: Select child nodes based on the Upper Confi-
dence Bound (UCB) criterion during traversal, balancing
exploration of less-visited nodes and exploitation of high-
performing subtrees.

• Constraint Validation: TileSeek validates the tiling factors
against the hardware constraints of the target accelerator,
including memory capacity and bandwidth limitations. Sec-
tion 5.2 will discuss the buffer constraints analysis.

• Simulation (Evaluation): Evaluate the leaf tilling factors
using Timeloop and Accelergy [34] [51], which estimates
the energy consumption and latency for executing the tiled
computation. The resulting energy or latency can serve as
the reward signal for MCTS.

• Backpropagation: TileSeek propagates the estimated en-
ergy score back through the nodes along the selected path,
updating their statistics to inform future UCB-based selec-
tion decisions.

5.2 On-chip Buffer Requirements
This section analyzes the on-chip buffer requirements associated
with each intra-layer computation. Since our fusion strategy exe-
cutes a complete tile per layer, the on-chip buffer must be provi-
sioned to hold not only the layer input and output activations, but
also any intermediate state required for pipelined execution with
the layer.

Table 2 summarizes the buffer requirements of key Transformer
components (QKV, MHA, Add&LayerNorm, and FFN).

Table 2: Buffer requirements per tile for different intra-layer
modules.

Layer Buffer Req.
QKV Projection 𝐵𝐷 (4𝑃 + 3𝑀1𝑀0) + 3𝐷𝐻𝐸 + 2𝐵𝐻𝑃

MHA 𝐵𝐻𝐸 (𝑃 + 2𝑀1𝑀0) + 𝐵𝐻𝑃 (2 + 2𝐹)
+4𝑀0𝑃 ′ + 18𝑃 ′

Add & LayerNorm 3𝐵𝐻𝐹𝑃 + 4𝐻𝐹𝑃 ′
FFN 𝐻𝐹 (2𝐵𝑃 + 𝑆) + 𝑆 (𝑃 + 2) + 2𝑆𝑃 ′

In the Table 2, let 𝐵 denote the batch size per tile, 𝐷 the model
dimension, 𝑃 the sequence length, and 𝑀1, 𝑀0 the hierarchical
splits of the sequence introduced in the MHA computation. 𝐻
is the number of attention heads, while 𝐸 and 𝐹 represent the
key/query and value embedding dimensions, where 𝐸 = 𝐹 and
𝐷 = 𝐻 × 𝐸 = 𝐻 × 𝐹 . S denotes the hidden size in the FFN, and the
𝑃 ′ corresponds to the intra-tile sequence length processed per PE
row.

A layer’s input and output activations must be fully buffered on-
chip across all modules. In the QKV projection, the inputs include:

• 𝐼𝑁𝑃 [𝐵,𝐷,𝑃] and 𝐼𝑁𝑃 [𝐵,𝐷,𝑀1,𝑀0] ,
• Weight metrices𝑊 [𝐷,𝐻,𝐸]

𝑄
,𝑊 [𝐷,𝐻,𝐸]

𝐾
,𝑊 [𝐷,𝐻,𝐹]

𝑉
,

and the outputs are:
• 𝑄 [𝐵,𝐻,𝐸,𝑃] , 𝐵𝐾 [𝐵,𝐻,𝐸,𝑀1,𝑀0] , 𝐵𝑉 [𝐵,𝐻,𝐹,𝑀1,𝑀0] ,

MHA and QKV are localized and fused, TransFusion requires ad-
ditional buffers to store MHA intermediate states required across
𝑀1-loop iterations:

• 𝑅𝑀 [𝐵,𝐻,𝑃] , 𝑅𝑁𝑉 [𝐵,𝐻,𝐹,𝑃] , 𝑅𝐷 [𝐵,𝐻,𝑃] , 𝐴𝑉 [𝐵,𝐻,𝐹,𝑃] ,
The MHA module takes:

• 𝑄 [𝐵,𝐻,𝐸,𝑃] , 𝐵𝐾 [𝐵,𝐻,𝐸,𝑀1,𝑀0] , 𝐵𝑉 [𝐵,𝐻,𝐹,𝑀1,𝑀0] ,
as inputs and outputs:

• 𝐴𝑉 [𝐵,𝐻,𝐹,𝑃] ,
while also maintaining the recurrent state:

• 𝑅𝑀 [𝐵,𝐻,𝑃] , 𝑅𝑁𝑉 [𝐵,𝐻,𝐹,𝑃] , and 𝑅𝐷 [𝐵,𝐻,𝑃]

To support intra-layer pipelineing, each Einsum kernel requires
dedicated staging buffers. For large Einsums such as 𝐵𝑄𝐾 and 𝑆𝐿𝑁 ,
a full𝑀0 × 𝑃 ′ tile must be buffered; for others, a single 𝑃 ′-length
slice is sufficient.

For the Add & LayerNorm layer, both inputs 𝐴𝑉 [𝐵,𝐻,𝐹,𝑃] and
𝐼𝑁𝑃 [𝐵,𝐻,𝐹,𝑃] must reside in buffer, along side the output𝑁𝑅 [𝐵,𝐻,𝐹,𝑃] .
Additionally, only intermediate results like 𝐼𝐴𝑉 and𝐷𝐴𝑉 are reused
across non-consecutive Einsums, requiring a small number (typi-
cally two) of block-level cache buffers sized 𝐻 × 𝐹 × 𝑃 ′, maintained
via double-buffering.

In the FFN layer, the inputs are 𝑁𝑅 [𝐵,𝐻,𝐹,𝑃] , weights𝑊𝐹 [𝐹,𝐻,𝑆] ,
and bias𝐵𝐹 [𝑆] , producing the output 𝐹𝐹𝑁 2[𝐵,𝐻,𝐹,𝑃] . For pipelining,

8

TransFusion: End-to-End Transformer Acceleration via Graph Fusion and Pipelining MICRO 2025, October 18–22, 2025, Seoul, Korea

each stage in the FFN requires buffer space of size 𝑆 ×𝑃 ′, also main-
tained in double-buffered form to support overlapped execution.

This modelling of buffer-sensitive requirements for all intra-layer
components enables the incorporation of hardware constraints
into the outer tiling feasibility evaluation. Each candidate tiling
configuration must satisfy on-chip buffer capacity constraints, ac-
counting for input/output activations, intermediate recurrent states,
and pipeline staging buffers. These constraints directly prune the
search space and ensure that only implementable configurations
are passed to the performance evaluation stage.

TileSeek is a unified tiling search framework that jointly explores
buffer-sensitive fusion opportunities and hardware-constrained ten-
sor partitioning. By integrating fine-grained buffer modelling, outer
tiling strategies, and joint exploration via MCTS, TileSeek enables
high-throughput Transformer execution under strict memory bud-
gets.

6 Performance Impact of TransFusion
This section evaluates TransFusion’s ability to deliver improved
Transformer fusion across full-stack encoder-decoder workloads.
This experimental evaluation aims to answer the following key
questions: 1 Does TransFusion improve latency and energy ef-
ficiency compared to state-of-the-art baselines such as FLAT and
FuseMax? 2 Does TransFusion preserve its performance advan-
tage under varying compute resources (e.g., different PE sizes)?
3 What are the primary contributors to speedup in TransFusion
across different sequence lengths? 4 How does DPipe impact
entire Transformer modules, including QKV, MHA, FFN, and Lay-
erNorm? 5 What are the underlying factors influencing energy
efficiency at different hardware and sequence lengths ?

6.1 Architectures, Modeling Tools, and
Workloads

This performance study evaluates TransFusion across two archi-
tectural models representing cloud and edge environments. The
cloud-setting evaluation adopts the TPU v2/v3 [32] accelerator
model used by Kao et al. and Nayak et al [18] [31]. This model maps
attention computation onto a spatial architecture consisting of 2D
and 1D PE arrays. Specifically, it features a 256 × 256 2D spatial
array, a 256-element 1D PE array, 16MB of on-chip buffer, and a
DRAM bandwidth of 400 GB/s. The edge architecture is based on
the edge DNN accelerator [58], representing a resource-constrained
design. It includes a 16 × 16 2D PE array, the same 256-element 1D
PE array, 5MB of on-chip buffer, and 30 GB/s of DRAM bandwidth.
Figure 1 and Table 3 summarize these architectural parameters.

Table 3: Architecture Specification in Evaluation.

Name 2D PE size 1D PE size On-chip
Mem. Size

DRAM
BW.

Cloud 256 × 256 256 16MB 400GB/s
Edge 16 × 16 256 5MB 30GB/s

Simulation and Modeling Tools: The performance estimation
of TransFusion uses the Timeloop [34] and Accelergy [51] simula-
tion frameworks for latency and energy prediction. We construct
architectural models of the accelerator at the 45nm technology node
to enable the evaluation of each Einsum operation in isolation. This

study integrates the individual Einsum results using heuristic meth-
ods introduced by Nayak et al. [30] [31] to model full Transformer
execution. These heuristics overlap Einsum executions following
the DPipe strategy to compute end-to-end latency. Accelergy es-
timates overall energy consumption by aggregating compute and
memory access statistics across all Einsums.

Workloads: This evaluation covers a diverse set of Transformer
models, including BERT-Base [8] (BERT), TrXL-wt103 [4] (TrXL),
T5-small [39] (T5), XLM [19], adopted from the benchmarks used in
FLAT and FuseMax, along with Llama3-8B [11] (Llama3). Following
the setup in FLAT and FuseMax, all experiments use a fixed batch
size of 𝐵 = 64.

Unfused: The unfused baseline is modelled by sequentially exe-
cuting QKV projections, MHA, Add & LayerNorm, and FFN, with
intermediate results written to off-chip memory between phases.
QKV projections are computed on the 2D PE array, followed by
𝑄𝐾𝑇 on the 2D array and full softmax on the 1D array. The result-
ing attention weights are multiplied with V using the 2D array, and
Add & LayerNorm are performed on the 1D array. In the FFN, linear
layers run on the 2D, while activations are handled by the 1D.

FLAT: FLAT applies local fusion to the attention layer in a tiled,
sequential fashion. For each Q tile, 𝑄𝐾𝑇 , softmax normalization,
and the weighted sum with V are computed on-chip with outputs
written back to off-chip memory. Other layers (e.g., QKV projection,
Add & LayerNorm, FFN) remain unfused and execute sequentially
with standard memory access.

FuseMax: The main baseline of my paper is FuseMax. FuseMax
adopts a fully fused design for MHA, structured as a sequence of 12
primitive Einsum operators (detailed in Einsum Cascade 1). Atten-
tion scores are computed via 𝑄𝐾𝑇 and normalized using a multi-
stage softmax, where 2D and 1D PE arrays operate in a pipelined
and partially parallel fashion. The softmax and the weighted sum
with 𝑉 are fused into a single pass pipeline, eliminating intermedi-
ate memory writes. The rest of the end-to-end execution, including
QKV projection, Add & LayerNorm, and FFN, follows the same
unfused flow as FLAT.

FuseMax+LayerFuse:As an ablation study, we extend FuseMax
by applying inter-layer fusion across QKV projection, MHA, Add
& LayerNorm, and FFN, forming an end-to-end fuse design. We
executed all layers within the same on-chip computation flow, fol-
lowing the method in Section 3.2. This variant, however, does not in-
corporate DPipe and executes layers sequentially without pipeline-
level overlap, except for the original intra-attention pipeline in
FuseMax.

Speedup Contribution:We decompose the speedup gain us-
ing a weighted attribution scheme to analyze which components
contribute most to the overall speedup. For each layer 𝑖 (e.g., QKV,
MHA, Add & LayerNorm, FFN), we first define the speedup:

S𝑖 =
𝑇 𝑖baseline

𝑇 𝑖TransFusion
(47)

where 𝑇 𝑖baseline and 𝑇
𝑖
TransFusion denote the execution time of com-

ponent layer 𝑖 under the baseline and TransFusion respectively.
The normalized proportional speedup (speedup contribution) of

each component 𝑖 is given by:
9

MICRO 2025, October 18–22, 2025, Seoul, Korea Linxuan Zhang, José Nelson Amaral, and Di Niu

SpeedupContribution𝑖 =
𝑆𝑖 · T𝑖𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒∑
𝑗 𝑆 𝑗 · T

𝑗

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

(48)

6.2 Evaluating TransFusion
The experimental results indicate that all the models studied ex-
hibit similar trends across sequence lengths. Thus, for conciseness,
this section presents (1) the scaling results for Llama3 in Figure 8a,
Figure 9a, Figure 10a, Figure 11, Figure 12a and Figure 13; and
(2) a cross-model comparison for 64K sequences in Figure 8b, Fig-
ure 9b, Figure 10b, and Figure 12b highlighting the robustness of
TransFusion.

(a) Llama3: Speedup over Unfused across sequence lengths (1K-1M)
on cloud and edge architecture.

(b) Model-wise speedup comparision (BERT, TrXL, T5, XLM, Llama3)
at 64K sequence length under the same hardware.

Figure 8: Speedup over Unfused of end-to-end Transformer
acceleration across sequence and models. (a) shows the scala-
bility on Llama3, while (b) benchmarks multiple models at a
64K sequence length.

Speedup. Answering 1 , TransFusion achieves a geometric
mean speedup of 1.3× over FuseMax with layer fusion, 1.6× over
FuseMax, and 7.0× over FLAT (Figure 8). A similar trend is observed
in the edge architecture, where TransFusion achieves a geometric
mean speedup of 1.8× over FuseMax with layer fusion, 2.2× over
FuseMax, and 3.2× over FLAT.

Addressing 3 , adding layer fusion to FuseMax offers the most
benefit over FuseMax at 1K (up to 2.1× on both edge and cloud) —
green bars in Figure 8a. However, its benefit diminishes as sequence
length increases, resulting in negligible gains for large sequences.
For short sequences, the processing is memory-bound, and reducing
on-chip memory accesses via fusion effectively improves perfor-
mance. As sequence length grows, the processing is dominated by
computation, limiting the impact of layer fusion.

(a) Llama3: Speedup over Unfused across sequence lengths (1K-1M)
on edge architecture with 2D PE sizes of 32 × 32 and 64 × 64.

(b) Model-wise speedup comparision (BERT, TrXL, T5, XLM, Llama3)
at 64K sequence length under 2D PE sizes of 32 × 32 and 64 × 64.

Figure 9: Impact of 2D PE size on end-to-end Transformer
acceleration. (a) reports Llama3 scalability from 1K-1M se-
quences under 32 × 32 and 64 × 64 PEs, while (b) compares
multiple models at 64K sequence length across the same PE
configurations.

In summary, layer fusion reduces data movement in memory-
bound scenarios (e.g., short sequences), and pipelining (DPipe) im-
proves PE utilization in compute-bound cases (e.g., long sequences).

Generalization across Computational Capability. An evalu-
ation of TransFusion on the edge architecture under two additional
different 2D PE sizes addresses 2 . For the 32 × 32 configuration,
TransFusion achieves up to 1.1× speedup over FuseMax with layer
fusion, 1.8× over FuseMax, and 3.0× over FLAT. For the larger
64 × 64 configuration, where the on-chip buffer size increases to
8MB, TransFusion still delivers strong performance gains, achiev-
ing up to 1.2×, 2.4×, 4.8× speedup over the same baseline. These
performance gains across different compute capacities and mem-
ory budgets indicate that Transfusion is robust and adaptable to
variations in hardware resource configurations.

Utilization. Under the cloud architecture, DPipe achieves rel-
atively higher 2D PE utilization (averaging 58%, 1.3× more than
FuseMax with layer fusion, 1.2× over FuseMax, 5.7× over FLAT),
with an acceptable trade off 1D utilization (Figure 10). This im-
provement stems from DPipe’s ability to offload a portion of the
1D operations (such as LayerNorm and FFN activation operators)
onto the 2D, alleviating the bottleneck on 1D and balancing the
overall load. In non-pipelined baselines, 2D PEs often remain idle
while waiting for dependent 1D to finish, leading to substantial
resource underutilization. A mirrored pattern occurs on the edge,
where DPipe prioritizes 1D PE utilization (averaging 82%) by shift-
ing more workload to 1D arrays to match the resource balance on
edge devices.

10

TransFusion: End-to-End Transformer Acceleration via Graph Fusion and Pipelining MICRO 2025, October 18–22, 2025, Seoul, Korea

(a) Llama3: PE array utilization across sequence lenghts (1K-1M) on
cloud architecture

(b) Utilization comparison (BERT, TrXL, T5, XLM, Llama3) at 64K
sequence length on cloud architecture.

Figure 10: Utilization of 1D and 2D PE arrays in end-to-end
Transformer execution across sequence lengths and model
types.

Figure 11: Speedup contribution breakdown for each layers
(QKV, MHA, Add & LayerNorm, FFN) of TransFusion over
FuseMax on Llama3 across sequecen lengths (1K-1M) under
both cloud and edge architecture.

Layer-wise Speedup Contribution. Addressing 4 , using the
speed contribution method described in Section 6.1, the results in
Figure 11 confirm the earlier observation that for short sequences
(below 256K, memory-bound), TransFusion primarily accelerates
LayerNorm and FFN by efficiently fusing full stack and reducing
data movement on both cloud and edge architecture. When the
bottleneck shifts to the quadratic complexity of the MHA layer
for longer sequences, the performance improvement is primarily
driven by DPipe’s optimized pipeline schedules.

Energy Breakdown. The results in Figure 12 indicate that the
faster TransFusion also consumes less energy. To answer 5 , Fig-
ure 13 breaks down energy consumption by component (off-chip
memory, global buffer, register file, and PE computation). In the
cloud architecture, computation in the PE arrays consumes most of
the energy because, given the large on-chip buffer (16MB) and high
bandwidth (400 GB/s), the architecture enables more aggressive

(a) Llama3: Energy consumption over Unfused across sequence
lengths (1K-1M) on cloud and edge architecture.

(b) Model-wise energy consumption (BERT, TrXL, T5, XLM, Llama3)
at 64K sequence length under the same hardware.

Figure 12: Energy consumption over Unfused of end-to-end
Transformer acceleration across sequence and models.

(a) TransFusion

(b) FuseMax

Figure 13: Energy breakdown across memory hierarchy
(DRAM: off-chip memory, Global Buffer: on-chip buffer, Reg-
ister File, PE arrays) for end-to-end Transformer using Trans-
Fusion and FuseMax on the Llama3 model under both cloud
and edge architecture.

tiling and high data reuse, leaving fewer opportunities for further
energy reduction through fusion.

In contrast, the edge architecture’s limited on-chip buffer ca-
pacity and lower bandwidth result in smaller tile sizes and more
frequent off-chip accesses, amplifying the energy cost of data move-
ment. For short sequences in the edge architecture, up to 25% of the

11

MICRO 2025, October 18–22, 2025, Seoul, Korea Linxuan Zhang, José Nelson Amaral, and Di Niu

energy used by FuseMax is spent in DRAM (see Figure 13b), indi-
cating opportunities for further optimization. For shorter sequence
lengths (below 64K), TransFusion significantly reduces energy con-
sumption by improving data reuse via fusion and tiling strategies,
reducing redundant memory accesses. However, as sequence length
increases (above 64K), the workload becomes compute-bound, re-
ducing the effectiveness of these memory-centric optimizations.

7 Related Work
Approximate Acceleration Algorithm. Palletization [2, 43, 48],
quantization [7, 9, 12, 24–28, 36, 37, 47, 52, 53, 57], pruning [15, 29,
35, 46, 54, 55], and knowledge distillation [10, 13, 17, 42, 49, 50]
compress model size by reducing weight precision, removing re-
dundant parameters, or transferring knowledge from larger models,
thereby improving deployment efficiency, inference speed, and en-
ergy efficiency on resource-constrained hardware.𝐴3 [14] proposes
approximate attention by a sparse content-based search, selecting
likely relevant keys through preprocessing and computing only
a subset of scores during inference. FalshDecoding++ [16] elimi-
nates softmax synchronization via unified max value approxima-
tion. However, these methods often come at the cost of degraded
model quality due to reduced numerical precision or structural
simplification. TransFusion preserves original computation seman-
tics through our fusion strategies, making it a high-quality and
deployment-friendly optimization solution without compromising
model accuracy.

Exact Attention Acceleration Methods. Exact accelerator on
Transformer primarily focus on operation fusion [5, 6, 18, 21] and
pipelining [31, 40, 41, 58] to reduce memory traffic and improve
compute utilization. Early works like FLAT, and FlashAttention-
1/2 adopt fine-grained tiling to enable efficient on-chip fusion and
reduce data movement. Later methods, such as FlashAttention-3
and MAS-Attention, improve utilization by overlapping GEMM
and softmax on specific NVIDIA A100 GPU and edge architectures.
TileFlow generalizes pipelined execution via producer-consumer
tiling with shared resources. However, these approaches are limited
by the lack of end-to-end Transformer fusion and rely on static
pipelining strategies. TransFusion enables end-to-end Transformer
fusion with a flexible tile-level pipelining strategy that adapts to
computation patterns and hardware constraints.

8 Conclusion
This paper proposes TransFusion, a Transformer fusion framework
that performs full-stack operator fusion and pipelining scheduling
across the transformer encoder-decoder pipeline. By leveraging
Einsum-based abstractions, TransFusion models Transformer lay-
ers as Einsum Cascades, enabling fine-grained intra-layer pipelin-
ing and direct inter-layer propagation of activation. The paper
describes and evaluates DPipe, a DAG-based DP scheduler that
maps fused computation graphs onto spatial accelerators through
latency-aware pipelining. In addition, TileSeek explores the ex-
panded tiling space introduced by full-stack fusion using Monte
Carlo Tree Search to jointly optimize tiling factors and memory
locality under strict buffer constraints. Evaluated across both cloud
and edge architecture, TransFusion delivers up to an average of 1.6×
speedup on cloud architecture and 2.2× on edge architecture over

the prior state-of-the-art, FuseMax, by jointly optimizing inter-layer
data reuse, intra-layer pipelining, and operator scheduling.

Acknowledgement
HPCA anonymous reviewers provided valuable feedback and con-
structive comments that helped improve the quality of the paper.
In particular, one reviewer’s suggestions led us to include experi-
ments under varying computational capabilities, which made our
evaluation more comprehensive.

References
[1] Apple. 2024. Core ML Tools. https://apple.github.io/coremltools/docs-guides/

source/opt-palettization-overview.html.
[2] Minsik Cho, Keivan Alizadeh-Vahid, Saurabh N. Adya, and Mohammad Rastegari.

2021. DKM: Differentiable K-Means Clustering Layer for Neural Network Com-
pression. ArXiv abs/2108.12659 (2021). https://api.semanticscholar.org/CorpusID:
237353080

[3] Jaewan Choi, Hailong Li, Byeongho Kim, Seunghwan Hwang, and Jung Ho Ahn.
2022. Accelerating Transformer Networks through Recomposing Softmax Layers.
In 2022 IEEE International Symposium onWorkload Characterization (IISWC). IEEE,
92–103.

[4] Alexis CONNEAU and Guillaume Lample. 2019. Cross-lingual Language Model
Pretraining. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32.
Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2019/
file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf

[5] Tri Dao. 2024. FlashAttention-2: Faster Attention with Better Parallelism and
Work Partitioning. In International Conference on Learning Representations (ICLR).

[6] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022.
FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness.
In Advances in Neural Information Processing Systems (NeurIPS).

[7] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022.
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale. In Proceed-
ings of the 36th International Conference on Neural Information Processing Systems
(New Orleans, LA, USA) (NIPS ’22). Curran Associates Inc., Red Hook, NY, USA,
Article 2198, 15 pages.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association
for Computational Linguistics, Minneapolis, Minnesota, 4171–4186. https://doi.
org/10.18653/v1/N19-1423

[9] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2022. GPTQ:
Accurate Post-Training Quantization for Generative Pre-trained Transformers.
arXiv preprint arXiv:2210.17323 (2022).

[10] Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang, Hassan
Sajjad, Preslav Nakov, Deming Chen, and Marianne Winslett. 2021. Compressing
Large-Scale Transformer-Based Models: A Case Study on BERT. Transactions
of the Association for Computational Linguistics 9 (2021), 1061–1080. https:
//doi.org/10.1162/tacl_a_00413

[11] AaronGrattafiori, AbhimanyuDubey, Abhinav Jauhri, Abhinav Pandey, Abhishek
Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, et al. 2024. The Llama 3 Herd of Models. arXiv preprint arXiv:2407.21783
(2024).

[12] Cong Guo, Jiaming Tang, Weiming Hu, Jingwen Leng, Chen Zhang, Fan Yang,
Yunxin Liu, Minyi Guo, and Yuhao Zhu. 2023. OliVe: Accelerating Large Language
Models via Hardware-friendly Outlier-Victim Pair Quantization. In Proceedings
of the 50th Annual International Symposium on Computer Architecture (Orlando,
FL, USA) (ISCA ’23). Association for Computing Machinery, New York, NY, USA,
Article 3, 15 pages. https://doi.org/10.1145/3579371.3589038

[13] Yatharth Gupta, Vishnu V. Jaddipal, Harish Prabhala, Sayak Paul, and Patrick von
Platen. 2024. Progressive Knowledge Distillation Of Stable Diffusion XL Using
Layer Level Loss. ArXiv abs/2401.02677 (2024). https://api.semanticscholar.org/
CorpusID:266818179

[14] Tae JunHam, Sungjun Jung, Seonghak Kim, YoungH. Oh, Yeonhong Park, Yoonho
Song, Jung-Hun Park, Sanghee Lee, Kyoung Park, Jae W. Lee, and Deog-Kyoon
Jeong. 2020. A3: Accelerating AttentionMechanisms in Neural Networks with Ap-
proximation. 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA) (2020), 328–341. https://api.semanticscholar.org/CorpusID:
211296403

[15] Tae Jun Ham, Yejin Lee, Seong Hoon Seo, Soosung Kim, Hyunji Choi, Sung Jun
Jung, and Jae W. Lee. 2021. ELSA: Hardware-Software Co-design for Efficient,

12

https://apple.github.io/coremltools/docs-guides/source/opt-palettization-overview.html
https://apple.github.io/coremltools/docs-guides/source/opt-palettization-overview.html
https://api.semanticscholar.org/CorpusID:237353080
https://api.semanticscholar.org/CorpusID:237353080
https://proceedings.neurips.cc/paper_files/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00413
https://doi.org/10.1162/tacl_a_00413
https://doi.org/10.1145/3579371.3589038
https://api.semanticscholar.org/CorpusID:266818179
https://api.semanticscholar.org/CorpusID:266818179
https://api.semanticscholar.org/CorpusID:211296403
https://api.semanticscholar.org/CorpusID:211296403

TransFusion: End-to-End Transformer Acceleration via Graph Fusion and Pipelining MICRO 2025, October 18–22, 2025, Seoul, Korea

Lightweight Self-Attention Mechanism in Neural Networks. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA). 692–705.
https://doi.org/10.1109/ISCA52012.2021.00060

[16] Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen,
Yuhan Dong, and YuWang. 2024. FlashDecoding++: Faster Large LanguageModel
Inference with Asynchronization, Flat GEMM Optimization, and Heuristics. In
Proceedings of Machine Learning and Systems, P. Gibbons, G. Pekhimenko, and
C. De Sa (Eds.), Vol. 6. 148–161. https://proceedings.mlsys.org/paper_files/paper/
2024/file/5321b1dabcd2be188d796c21b733e8c7-Paper-Conference.pdf

[17] Tao Huang, Yuan Zhang, Mingkai Zheng, Shan You, Fei Wang, Chen Qian, and
Chang Xu. 2023. Knowledge Diffusion for Distillation. In Proceedings of the 37th
International Conference on Neural Information Processing Systems (New Orleans,
LA, USA) (NIPS ’23). Curran Associates Inc., Red Hook, NY, USA, Article 2849,
18 pages.

[18] Sheng-Chun Kao, Suvinay Subramanian, Gaurav Agrawal, Amir Yazdanbakhsh,
and Tushar Krishna. 2023. FLAT: An Optimized Dataflow for Mitigating At-
tention Bottlenecks. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 295–310. https://doi.org/10.1145/3575693.3575747

[19] Guillaume Lample and Alexis Conneau. 2019. Cross-lingual Language Model Pre-
training. ArXiv abs/1901.07291 (2019). https://api.semanticscholar.org/CorpusID:
58981712

[20] Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio
Caggiano, Sean Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick
Labatut, Daniel Haziza, Luca Wehrstedt, Jeremy Reizenstein, and Grigory Sizov.
2022. xFormers: A modular and hackable Transformer modelling library. https:
//github.com/facebookresearch/xformers.

[21] Jianhui Li, Zhennan Qin, Yijie Mei, Jingze Cui, Yunfei Song, Ciyong Chen, Yifei
Zhang, Longsheng Du, Xianhang Cheng, Baihui Jin, Yan Zhang, Jason Ye, Eric
Lin, and Dan Lavery. 2024. oneDNN Graph Compiler: A Hybrid Approach for
High-Performance Deep Learning Compilation. In 2024 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). 460–470. https://doi.
org/10.1109/CGO57630.2024.10444871

[22] Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, and FuruWei. 2022. DiT:
Self-supervised Pre-training for Document Image Transformer. In Proceedings
of the 30th ACM International Conference on Multimedia (Lisboa, Portugal) (MM
’22). Association for Computing Machinery, New York, NY, USA, 3530–3539.
https://doi.org/10.1145/3503161.3547911

[23] Wenjie Li, Dongxu Lyu, Gang Wang, Aokun Hu, Ningyi Xu, and Guanghui He.
2024. Hardware-oriented algorithms for softmax and layer normalization of large
language models. Science China Information Sciences 67, 10 (2024), 200404.

[24] Yanjing Li, Sheng Xu, Baochang Zhang, Xianbin Cao, Peng Gao, and Guodong
Guo. 2022. Q-ViT: Accurate and Fully Quantized Low-bit Vision Transformer. In
Proceedings of the 36th International Conference on Neural Information Processing
Systems (New Orleans, LA, USA) (NIPS ’22). Curran Associates Inc., Red Hook,
NY, USA, Article 2496, 13 pages.

[25] Zhikai Li and Qingyi Gu. 2023. I-ViT: Integer-only Quantization for Efficient
Vision Transformer Inference. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision. 17065–17075.

[26] Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and Shuchang Zhou. 2022. FQ-
ViT: Post-Training Quantization for Fully Quantized Vision Transformer. In
Proceedings of the Thirty-First International Joint Conference on Artificial Intelli-
gence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, Luc De Raedt (Ed.). ijcai.org,
1173–1179. https://doi.org/10.24963/IJCAI.2022/164

[27] Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. 2021.
Post-Training Quantization for Vision Transformer. In Proceedings of the 35th
International Conference on Neural Information Processing Systems (NIPS ’21).
Curran Associates Inc., Red Hook, NY, USA, Article 2152, 12 pages.

[28] Liqiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang, and Yun
Liang. 2021. Sanger: A Co-Design Framework for Enabling Sparse Attention using
Reconfigurable Architecture. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture (Virtual Event, Greece) (MICRO ’21). Association
for Computing Machinery, New York, NY, USA, 977–991. https://doi.org/10.
1145/3466752.3480125

[29] Jiachen Mao, Huanrui Yang, Ang Li, Hai Li, and Yiran Chen. 2021. TPrune:
Efficient Transformer Pruning for Mobile Devices. ACM Trans. Cyber-Phys. Syst.
5, 3, Article 26 (April 2021), 22 pages. https://doi.org/10.1145/3446640

[30] Nandeeka Nayak, Toluwanimi O. Odemuyiwa, Shubham Ugare, Christopher
Fletcher, Michael Pellauer, and Joel Emer. 2023. TeAAL: A Declarative Frame-
work for Modeling Sparse Tensor Accelerators. In Proceedings of the 56th An-
nual IEEE/ACM International Symposium on Microarchitecture (Toronto, ON,
Canada) (MICRO ’23). Association for Computing Machinery, New York, NY,
USA, 1255–1270. https://doi.org/10.1145/3613424.3623791

[31] Nandeeka Nayak, XinruiWu, Toluwanimi O. Odemuyiwa, Michael Pellauer, Joel S.
Emer, and ChristopherW. Fletcher. 2024. FuseMax: Leveraging Extended Einsums
to Optimize Attention Accelerator Design. In 2024 57th IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1458–1473. https://doi.org/10.1109/

MICRO61859.2024.00107
[32] Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James

Laudon, Cliff Young, Norman Jouppi, and David Patterson. 2021. The Design
Process for Google’s Training Chips: TPUv2 and TPUv3. IEEE Micro 41, 2 (2021),
56–63. https://doi.org/10.1109/MM.2021.3058217

[33] Nvidia. 2024. TensorRT. https://docs.nvidia.com/deeplearning/tensorrt/archives/
tensorrt-803/best-practices/index.html.

[34] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A Systematic Approach to
DNN Accelerator Evaluation. In 2019 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). 304–315. https://doi.org/10.
1109/ISPASS.2019.00042

[35] Hongwu Peng, Shaoyi Huang, Tong Geng, Ang Li, Weiwen Jiang, Hang Liu,
Shusen Wang, and Caiwen Ding. 2021. Accelerating Transformer-based Deep
Learning Models on FPGAs using Column Balanced Block Pruning. In 2021
22nd International Symposium on Quality Electronic Design (ISQED). 142–148.
https://doi.org/10.1109/ISQED51717.2021.9424344

[36] Tairen Piao, Ikhyun Cho, and U. Kang. 2022. SensiMix: Sensitivity-Aware 8-bit
index 1-bit value mixed precision quantization for BERT compression. PLOS
ONE 17, 4 (04 2022), 1–22. https://doi.org/10.1371/journal.pone.0265621

[37] Zheng Qu, Liu Liu, Fengbin Tu, Zhaodong Chen, Yufei Ding, and Yuan Xie. 2022.
DOTA: Detect and Omit Weak Attentions for Scalable Transformer Acceleration.
In Proceedings of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Lausanne, Switzerland) (AS-
PLOS ’22). Association for Computing Machinery, New York, NY, USA, 14–26.
https://doi.org/10.1145/3503222.3507738

[38] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving Language Understanding by Generative Pre-Training. (2018).

[39] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21, 140 (2020), 1–67. http://jmlr.org/papers/v21/20-074.html

[40] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ra-
mani, and Tri Dao. 2024. FlashAttention-3: Fast and Accurate Atten-
tion with Asynchrony and Low-precision. In Advances in Neural Infor-
mation Processing Systems, A. Globerson, L. Mackey, D. Belgrave, A. Fan,
U. Paquet, J. Tomczak, and C. Zhang (Eds.), Vol. 37. Curran Associates,
Inc., 68658–68685. https://proceedings.neurips.cc/paper_files/paper/2024/file/
7ede97c3e082c6df10a8d6103a2eebd2-Paper-Conference.pdf

[41] Mohammadali Shakerdargah, Shan Lu, Chao Gao, and Di Niu. 2024. MAS-
Attention: Memory-Aware Stream Processing for Attention Acceleration on
Resource-Constrained Edge Devices. arXiv preprint arXiv:2411.17720 (2024).

[42] S. Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. Patient Knowledge Distillation
for BERT Model Compression. In Conference on Empirical Methods in Natural
Language Processing. https://api.semanticscholar.org/CorpusID:201670719

[43] Hamid Tabani, Ajay Balasubramaniam, Shabbir Marzban, Elahe Arani, and
Bahram Zonooz. 2021. Improving the Efficiency of Transformers for Resource-
Constrained Devices . In 2021 24th Euromicro Conference on Digital System De-
sign (DSD). IEEE Computer Society, Los Alamitos, CA, USA, 449–456. https:
//doi.org/10.1109/DSD53832.2021.00074

[44] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 [cs.CL] https://arxiv.org/abs/2302.13971

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[46] Hanrui Wang, Zhekai Zhang, and Song Han. 2021. SpAtten: Efficient Sparse
Attention Architecture with Cascade Token and Head Pruning. In 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
97–110. https://doi.org/10.1109/HPCA51647.2021.00018

[47] Naigang Wang, Chi-Chun Liu, Swagath Venkataramani, Sanchari Sen, Chia-Yu
Chen, Kaoutar El Maghraoui, Vijayalakshmi Srinivasan, and Leland Chang. 2022.
Deep Compression of Pre-trained Transformer Models. In Proceedings of the 36th
International Conference on Neural Information Processing Systems (New Orleans,
LA, USA) (NIPS ’22). Curran Associates Inc., Red Hook, NY, USA, Article 1028,
15 pages.

[48] Shuohang Wang, Luowei Zhou, Zhe Gan, Yen-Chun Chen, Yuwei Fang, Siqi
Sun, Yu Cheng, and Jingjing Liu. 2020. Cluster-Former: Clustering-based Sparse
Transformer for Long-Range Dependency Encoding. ArXiv abs/2009.06097 (2020).
https://api.semanticscholar.org/CorpusID:260424300

[49] Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong, and Furu Wei. 2021.
MiniLMv2: Multi-Head Self-Attention Relation Distillation for Compressing

13

https://doi.org/10.1109/ISCA52012.2021.00060
https://proceedings.mlsys.org/paper_files/paper/2024/file/5321b1dabcd2be188d796c21b733e8c7-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/5321b1dabcd2be188d796c21b733e8c7-Paper-Conference.pdf
https://doi.org/10.1145/3575693.3575747
https://api.semanticscholar.org/CorpusID:58981712
https://api.semanticscholar.org/CorpusID:58981712
https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers
https://doi.org/10.1109/CGO57630.2024.10444871
https://doi.org/10.1109/CGO57630.2024.10444871
https://doi.org/10.1145/3503161.3547911
https://doi.org/10.24963/IJCAI.2022/164
https://doi.org/10.1145/3466752.3480125
https://doi.org/10.1145/3466752.3480125
https://doi.org/10.1145/3446640
https://doi.org/10.1145/3613424.3623791
https://doi.org/10.1109/MICRO61859.2024.00107
https://doi.org/10.1109/MICRO61859.2024.00107
https://doi.org/10.1109/MM.2021.3058217
https://docs.nvidia.com/deeplearning/tensorrt/ archives/tensorrt-803/best-practices/index.html
https://docs.nvidia.com/deeplearning/tensorrt/ archives/tensorrt-803/best-practices/index.html
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISQED51717.2021.9424344
https://doi.org/10.1371/journal.pone.0265621
https://doi.org/10.1145/3503222.3507738
http://jmlr.org/papers/v21/20-074.html
https://proceedings.neurips.cc/paper_files/paper/2024/file/7ede97c3e082c6df10a8d6103a2eebd2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/7ede97c3e082c6df10a8d6103a2eebd2-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:201670719
https://doi.org/10.1109/DSD53832.2021.00074
https://doi.org/10.1109/DSD53832.2021.00074
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/HPCA51647.2021.00018
https://api.semanticscholar.org/CorpusID:260424300

MICRO 2025, October 18–22, 2025, Seoul, Korea Linxuan Zhang, José Nelson Amaral, and Di Niu

Pretrained Transformers. In Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (Eds.). Association for Computational Linguistics, Online, 2140–2151.
https://doi.org/10.18653/v1/2021.findings-acl.188

[50] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou.
2020. MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression
of Pre-Trained Transformers. In Proceedings of the 34th International Conference
on Neural Information Processing Systems (Vancouver, BC, Canada) (NIPS ’20).
Curran Associates Inc., Red Hook, NY, USA, Article 485, 13 pages.

[51] Yannan N. Wu, Joel S. Emer, and Vivienne Sze. 2019. Accelergy: An Architecture-
Level Energy Estimation Methodology for Accelerator Designs. In IEEE/ACM
International Conference On Computer Aided Design (ICCAD).

[52] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong
Li, and Yuxiong He. 2022. ZeroQuant: Efficient and Affordable Post-Training
Quantization for Large-Scale Transformers. In Proceedings of the 36th International
Conference on Neural Information Processing Systems (New Orleans, LA, USA)
(NIPS ’22). Curran Associates Inc., Red Hook, NY, USA, Article 1970, 16 pages.

[53] Chong Yu, Tao Chen, Zhongxue Gan, and Jiayuan Fan. 2023. Boost Vision
Transformer with GPU-Friendly Sparsity and Quantization. In 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 22658–22668.
https://doi.org/10.1109/CVPR52729.2023.02170

[54] Fang Yu, Kun Huang, MengWang, Yuan Cheng, Wei Chu, and Li Cui. 2022. Width
& Depth Pruning for Vision Transformers. Proceedings of the AAAI Conference
on Artificial Intelligence 36, 3 (Jun. 2022), 3143–3151. https://doi.org/10.1609/aaai.
v36i3.20222

[55] Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao Tan, Sen Yang, Ji
Liu, and Zhangyang Wang. 2022. Unified Visual Transformer Compression. In
ICLR.

[56] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Fran-
cis E.H. Tay, Jiashi Feng, and Shuicheng Yan. 2021. Tokens-to-Token ViT: Training
Vision Transformers From Scratch on ImageNet. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). 558–567.

[57] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. 2020.
GOBO: Quantizing Attention-Based NLP Models for Low Latency and Energy
Efficient Inference . In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE Computer Society, Los Alamitos, CA, USA,
811–824. https://doi.org/10.1109/MICRO50266.2020.00071

[58] Size Zheng, Siyuan Chen, Siyuan Gao, Liancheng Jia, Guangyu Sun, Runsheng
Wang, and Yun Liang. 2023. TileFlow: A Framework forModeling FusionDataflow
via Tree-based Analysis. In Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture (Toronto, ON, Canada) (MICRO ’23). Association
for Computing Machinery, New York, NY, USA, 1271–1288. https://doi.org/10.
1145/3613424.3623792

14

https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.1109/CVPR52729.2023.02170
https://doi.org/10.1609/aaai.v36i3.20222
https://doi.org/10.1609/aaai.v36i3.20222
https://doi.org/10.1109/MICRO50266.2020.00071
https://doi.org/10.1145/3613424.3623792
https://doi.org/10.1145/3613424.3623792

	Abstract
	1 Introduction
	2 Background
	2.1 Architecture
	2.2 Transformer
	2.3 Transformer Acceleration
	2.4 Einsum

	3 TransFusion
	3.1 Transformer as Einsum Cascades
	3.2 Inter-layer Fusion: On-chip Intermediate Propagation
	3.3 Intra-layer Fusion: On-chip Tile Execution within Layers

	4 DPipe: an Einsum Pipelining Scheduler via DAG Traversal and Dynamic Programming
	4.1 DAG Partitioning and Pipelining Execution Strategy
	4.2 Latency Estimation for Einsum Operations
	4.3 Latency-Aware Scheduling via DP

	5 TileSeek: an Outer Tiling Search Algorithm
	5.1 MCTS-based Exploration Framework
	5.2 On-chip Buffer Requirements

	6 Performance Impact of TransFusion
	6.1 Architectures, Modeling Tools, and Workloads
	6.2 Evaluating TransFusion

	7 Related Work
	8 Conclusion
	References

