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Abstract—This article proposes DisCo, an automatic deep learning compilation module for data-parallel distributed training. Unlike
most deep learning compilers that focus on training or inference on a single device, DisCo optimizes a DNN model for distributed
training over multiple GPU machines. Existing single-device compilation strategies do not work well in distributed training, due mainly to
communication inefficiency that they incur. DisCo generates optimized, joint computation operator and communication tensor fusion
strategies to enable highly efficient distributed training. A GNN-based simulator is built to effectively estimate per-iteration training time
achieved by operator/tensor fusion candidates. A backtracking search algorithm is driven by the simulator, navigating efficiently in the
large strategy space to identify good operator/tensor fusion strategies that minimize distributed training time. We compare DisCo with
existing DL fusion schemes and show that it achieves good training speed-up close to the ideal, full computation-communication

overlap case.

Index Terms—Distributed systems, machine learning

1 INTRODUCTION

DEEP learning (DL) compilers have been studied in recent
years for deep neural network (DNN) model graph opti-
mization and training (or inference) expedition, e.g., TVM [1],
MLIR [2], Relay [3] and XLA [4]. The DL compilers take as
input the model definitions in the respective DL framework
(e.g., TensorFlow [5], MXNet [6]), and generate code imple-
mentation of the models on different types of DL hardware.
The transformation from model definition to specific code
implementation is highly optimized based on the model
specification and hardware architecture, using methods
including: (i) front-end optimization such as NOP elimina-
tion, zero-dim-tensor elimination, algebraic simplification,
operator (op) fusion and layout transformation [7]; and (ii)
backend optimization, e.g., loop-oriented optimizations,
hardware intrinsic mapping and memory latency hiding [1].
Most of the existing DL compilers focus on accelerating
DL model execution on a single device. In distributed
training, communication among devices for parameter
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synchronization plays a key role in dictating the training
time and resource (computation device, network band-
width) efficiency. Compilation optimization for single-
device training (e.g., op fusion) may delay inter-device
communication, leading to poor computation-communica-
tion overlap and hence low distributed training efficiency
(Section 2.4).

Currently, only a few projects study compilation optimi-
zation in the distributed setting. GShard [8] extends the
XLA compiler for distributed training and provides an ele-
gant way to express a wide range of parallel computation
patterns. Boehm et al. [9] use enumeration tree search with
structural pruning techniques for op fusion, for learning tra-
ditional machine learning (ML) models. However, they do
not consider op fusion jointly with communication over-
head in the distributed environment.

There are also projects focusing on model parallelism
and pipeline parallelism. Megatron-LM [10] introduces an
efficient intra-layer model-parallel approach to support
training of very large transformer models. GPipe [11] and
Pipedream [12] propose pipeline parallelism to further
improve model parallelism, by pipelining forward compu-
tation and backward propagation across several micro-
batches. CoCoNet [13] enables optimization of data-, model-
and pipeline-parallel workloads in large language models
by introducing a domain-specific language that easily
expresses distributed training of models.

This paper focuses on front-end compilation optimiza-
tion to expedite synchronous data-parallel training. Op
fusion strategies have been studied as one of the most
important optimization methods to reduce computation
overhead [4], [14], [15]. Tensor fusion has been shown to
play an important role in reducing the communication over-
head [16], [17], [18]. We inspect the performance trade-off
caused by op fusion and tensor fusion in distributed
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training, and advocate joint op and tensor fusion optimiza-
tion. We propose DisCo, an automatic module to jointly
optimize computation and communication fusion over a
whole distributed DNN training graph. Existing rule-based
op fusion strategies rely heavily on expert experience, and
are often less than optimal due to limited exploration of the
solution space. DisCo adopts a search-based algorithm to
identify optimized joint fusion strategies. We summarize
main contributions of DisCo in the following;:

> We propose an automatic compilation module to
jointly optimize op and tensor fusion for distributed train-
ing of DNN models, that expedites computation and com-
munication separately while maximally overlapping their
execution.

> Op fusion and tensor fusion, two conventionally sepa-
rated optimization passes, are unified into a joint strategy
space. A backtracking search algorithm is designed to effi-
cient prune the large strategy space to identify op/tensor
fusion solutions that jointly minimize distribution DNN
training time.

> A Fused Op Estimator is built based on a graph neural
network (GNN) model to predict the execution time of
fused ops. An efficient simulator is created to estimate the
end-to-end execution time of a distributed DNN training
graph using the Fused Op Estimator, and serves as a cost
model to our search algorithm.

> We implement DisCo based on JAX [19], an XLA-based
framework for generating high-performance accelerator
code in a manner completely transparent to DNN model
developers. To use DisCo, a developer only needs to specify
two environment variables, not changing a single line of
their model code. DisCo is open-sourced at https://github.
com/TPDS-Submission/Disco

> We carry out extensive experiments training state-of-
the-art DNN models in GPU clusters, and carefully compare
DisCo with existing DL fusion schemes. DisCo achieves up-
to 26.73% training acceleration, close to the maximal speed-
up achievable with ideal, full computation-communication
overlap. Interestingly, we observe that our joint op and ten-
sor fusion optimization not only increases communication-
computation overlap, but also reduces computation time
and communication time, separately, as compared to repre-
sentative single-device fusion designs.

2 BACKGROUND AND MOTIVATION

2.1 Deep Learning Compilation

To alleviate the dependence on customized DL libraries and
the burden of manually optimizing DL models on each type
of hardware, domain specific DL compilers have been
built [1], [4], [20], [21]. DL compilers incorporate DL-oriented
optimizations such as layer and op fusion, to generate highly
efficient code for training or inference. Similar to traditional
compilers, DL compilers utilize intermediate representation
(IR) as the abstraction of a DNN model for optimization,
including high-level IR which represents the control flow
and the dependency among the operators and the data, and
low-level IR which reflects hardware characteristics such as
memory allocation. DL compilers adopt the layered design,
including the front-end optimization (transforming the
DNN model into the high-level IR and performing graph-

4695

AllReduce

Mul Mul Mul —> AllReduce
(i) Original HLO module
Fusi
-------------------- B AllReduce
Mul Mul

AllReduce

(ii) Non-duplicate Fusion

Mul AllReduce

Fusion

(iii) Duplicate Fusion

Fig. 1. Non-duplicate fusion and duplicate fusion. An arrow represents
gradient/activation passing.

level optimization such as dead code elimination and op
fusion) and the back-end optimization (transforming the
high-level IR into low-level IR and performing hardware-
specific optimization). Our study focuses on high-level IR
optimization at the DNN graph level.

2.2 Computation Operator Fusion

Op fusion [1], [7], [9] is a graph-level optimization that com-
bines multiple computation operators into a single kernel
without storing the intermediate results in device memory
(e.g., global memory on a GPU). It enables better utilization
of computation devices, eliminates device memory alloca-
tions for intermediate results, and reduces kernel launch
and synchronization overhead, leading to substantially
reduced model execution time. Op fusion has been enabled
in a number of DL libraries such as TensorFlow XLA [4],
Intel Nervana Graph [22] and TVM [1].

To carry out op fusion, typically an op is selected,
and then one of its predecessor ops (whose output this op
consumes) is chosen to fuse with this successor op. If the
chosen predecessor op has multiple successor ops, two
main fusion approaches exist: non-duplicate fusion and
duplicate fusion [7] (exemplified in Fig. 1). With non-dupli-
cate fusion, the predecessor op is directly fused into the suc-
cessor op; the output of the predecessor (e.g., gradients) is
available for other ops only after the completion of the fused
op. With duplicate fusion, the predecessor op is not only
fused into the successor op, but also recomputed outside
the fused op (so that its output can become available ear-
lier). Op fusion can be carried in a recursive manner over
the entire DNN graph: a fused op can be further fused with
its predecessor or successor, using a duplicate or non-dupli-
cate fusion approach.

The order of ops to consider for fusion is typically deter-
mined by heuristics or learning-based methods [23], [24].
For example, in XLA, ops are chosen according to a pre-
defined post order, and any device memory and computa-
tion savings due to fusing the op with a selected predeces-
sor op are evaluated. Such op order-based fusion may not
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Fig. 2. A case in RNNLM: the order of ops to consider for fusion influen-
ces performance significantly.

be effective as earlier fusion of some ops may prevent better
fusion opportunities for ops considered later. Consider a
case of fusing two ops in RNNLM [25] in Fig. 2, where an
element-wise multiplication op (Mull) produces large acti-
vations to another multiplication op (Mul2) and Mul2 pro-
duces small activations to a Sigmoid function. If Sigmoid
ranks higher in the op ordering and is fused with Mul2, the
performance does not improve much, since the size of inter-
mediate data (activations) transferred between on-chip
memory (local memory for the execution thread) and device
memory does not change significantly. If Mull and Mul2
are fused instead, activations produced by Mull remain in
on-chip memory for Mul2, substantially reducing data
transfer to/from device memory.

Besides, majority of the existing op fusion systems focus
on single-device DNN graph optimization [1], [3], [22], [26].

2.3 Communication Tensor Fusion

In distributed training, data parallelism has been most
widely adopted in practice. The training dataset is parti-
tioned into mini-batches at each device. In each training iter-
ation, each worker (device) maintains a replica of the DNN
model and carries out Forward Propagation (FP) and Back-
ward Propagation (BP) computation on a mini-batch; gra-
dients from different devices are aggregated before being
applied to update model parameters. We focus on accelerat-
ing data-parallel training.

AllReduce is a collective instruction, popularly used for
parameter synchronization in data-parallel training. It sums
(or averages) the gradients from all devices using a ring or
tree based algorithm [27], and disperses the aggregated gra-
dients to the devices for parameter update [28]. Commonly
one AllReduce instruction is carried out for each gradient
tensor produced; the default sizes of tensors in existing DL
frameworks (e.g., TensorFlow, PyTorch) may not be ideal
for efficient bandwidth utilization. There are usually a large
number of small tensors (e.g., over 50% communication ten-
sors in ResNet50 [29] and Transformer [30] are less than
1 MB in size [16]). Such small tensors incur large communi-
cation overhead in relation to the short transmission time,
e.g., time spent on negotiation/synchronization among
workers before actual gradient transfer, which is especially
substantial in view of the strict synchronization among
workers required by AllReduce.

Tensor fusion advocates fusing multiple small gradient
tensors together before executing the AllReduce instruction
on the fused tensor. The size of the fused tensor is the sum
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Fig. 3. Delayed communication due to op fusion.

of sizes of the small tensors. Tensor fusion leads to better
bandwidth utilization (with less communication overhead
relative to actual gradient transfer); however, start time of
the fused AllReduce is delayed, leading to a trade-off effect
on the training time.

2.4 Opportunities

To accelerate data-parallel training, existing proposals
improve the computation graph on each device with single-
device compilation optimizations (e.g., op fusion) and opti-
mize inter-device communication, separately [4], [19]. Op
fusion effective on individual devices may be non-optimal
or even bring no benefit in distributed training. Op fusion
typically merges as many ops as possible to reduce device
memory usage and kernel launches; the output of those ops
may only be available after the fused op is completely exe-
cuted. For example, gradients produced by backward prop-
agation ops need to be transferred to other devices for
aggregation; fusion of BP ops may delay gradient communi-
cation, leading to less computation-communication overlap
and hence longer resource idling time.

Fig. 3 gives an example. Suppose the three Mul ops are
fused, such that AllReduce instructions of gradients pro-
duced by the 3 ops are delayed until after the fused op is
done. If the delay exceeds computation time reduction,
such op fusion increases the training time.

Only a few systems enable DL compilation in distributed
training. Based on AllReduce primitives provided by
XLA [4], JAX [19] groups the whole processing logic of a
DNN model, including the AllReduce instructions, into a
single High Level Optimizer (HLO) module (a high-level IR
defined in XLA). JAX currently only supports multi-node
training across TPU servers rather than GPU servers, and
uses rule-based heuristics for op fusion. Rule-based op
fusion highly depends on expert experience, and the
rule suitable for one model may not fit other models [7].
Further, its computation optimization is separated from
communication optimization: op fusion is first conducted,
and AllReduce combiner optimization (combining multiple
AllReduce instructions together based on a pre-defined ten-
sor size threshold) is performed after op fusion optimization
is done. It has been reported [31], [32] that directly applying
XLA in distributed training may prolong per-iteration train-
ing time (20% slower when training a transformer-based
NMT model with Adam Optimizer [31]), as compared to
not applying XLA, since communication can be seriously
delayed.

There is a trade-off between computation efficiency and
communication channel utilization in distributed training,
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when both op fusion and tensor fusion are adopted. We
advocate a search algorithm to jointly optimize op and ten-
sor fusion, striking a good balance between computation
and communication efficiencies and achieving overall train-
ing acceleration.

2.5 Challenges
Exploring the opportunities comes with challenges.

Large Search Space for Joint Fusion. A DNN model usually
consists of thousands of computation and communication
instructions, resulting in a huge search space with various
op/tensor fusion combinations. Naive enumeration of pos-
sible solutions without pruning is infeasible. We design an
efficient backtracking algorithm to prune the search space
effectively.

Time- and Resource-Consuming to Evaluate Search Candi-
dates in Real Environments. Unlike single-device training,
evaluating each possible solution produced by the search
algorithm by running the modified DNN model in a real
distributed environment is time- and resource-prohibitive.
We build an efficient simulator to estimate the execution
time of possible strategies produced by the search algo-
rithm, eliminating the need of heavy real-world trial runs.

Difficulty in Accurate Execution Time Prediction of Fused
Ops. Simulators have commonly been used to predict DNN
training time under different device placements [26], [33] or
with different execution scheduling strategies [34], [35],
based on profiled execution time of individual ops. In our
case, fused ops that have never been seen before may well
be produced. Execution time estimation for fused ops is not
easy: even if execution time of each original op is profiled,
the interaction among these ops is unknown, and cannot be
profiled unless we implement every unseen fused op. Fur-
ther, execution time of fused op is tightly related to the
architecture of the processor, as well as the back-end optimi-
zation applied during compilation such as loop fusion, til-
ing and loop unrolling [7]. Architectural features and
compiler code generation interact in extremely complex
ways [1], [4], [14]. It is very hard to build a white-box analyt-
ical model describing details of the processor or effects of all
compiler passes, and their interactions.

We design a GNN-based model for execution time predic-
tion of fused ops. GNNs have been adopted and achieved sat-
isfying performance for various graph-based learning
purposes, [36], [37], [38], [39], [40], [41]. It takes as input
graph-structured data and learns the structural information
based on graph connectivity and node/edge features. We
exploit a GNN to learn the execution time from the op fusion
graph. We focus on optimizations that preserve model accu-
racy (exactly the same before and after optimization), and
hence do not consider staleness options which may compute
gradients based on the last round of weights while communi-
cating the gradients of this round [12].

3 SyYSTEM DESIGN

3.1 DisCo Overview

DisCo is designed as an optimizer for TensorFlow XLA’s HLO
IR, to produce optimized fusion strategies for both computa-
tion operators and communication tensors. DisCo takes as
input the HLO module of a whole DNN model, and produces
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an optimized HLO module for further back-end compilation
optimization. Fig. 4 shows the overall architecture of DisCo.

DisCo has two phases: Search Phase and Enactment Phase.
In the Search Phase, the Strategy Maker (which runs on the
master node in the TensorFlow framework) uses a back-
tracking algorithm to jointly search for the best op/tensor
fusion strategies for distributed DNN training. In the Enact-
ment Phase, the Activator (residing on each worker) retrieves
the HLO module optimized with the best strategies to each
worker, and activates the strategies for distributed training.

To facilitate the backtracking search algorithm in Strategy
Marker, the Simulator estimates the per-iteration training
time of the DNN model using candidate strategies that the
backtracking algorithm generates. A GNN-based Fused Op
Estimator predicts the execution time of fusion ops, to serve
the Simulator. The Profiler runs the DNN model to record
execution time of individual ops and prepares the training
data for the GNN model of Fused Op Estimator.

DisCo provides a simple switch for developers to alter the
phase of the system: when setting an environment variable
ENABLE_SEARCH to 1, the search phase is activated and
backtracking search is used to identify the best fusion strate-
gies; when ENABLE_SEARCH is 0, enactment phase starts
and distributed training is activated using the best strategies
found in the search phase.

3.2 Strategy Maker

Our strategy space includes combinations of the following
set of strategies: (i) fusion strategy for each computation op:
no fusion, or fusing the op with a predecessor op p, Vp
among the op’s predecessor ops in the current HLO (which
can be original op or fused op); (ii) fusion approach for a
predecessor op which has multiple successors: duplicate
fusion or non-duplicate fusion (Fig. 1); (iii) fusion strategy
for each AllReduce instruction: no fusion, or combining the
tensor with any of the neighboring original or fused gradi-
ent tensors. A neighbor gradient tensor is produced by a BP
gradient computation op that is a successor or a predecessor
to the op producing the current gradient tensor.

The goal is to minimize per-iteration training time of the
DNN model, i.e., end-to-end execution time of the HLO
module in the distributed setting (including execution time
of computation ops and AllReduce instructions). The Strat-
eqy Maker exploits a backtracking algorithm to explore the
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joint strategy space and exploits the Simulator to guide the
search directions.

4 STRATEGY FRAMEWORK

4.1 Activator

In the Enactment Phase, the Activator on the master node
fetches the optimized HLO module generated by Strategy
Maker, and broadcasts it to each of the other workers. The
activators in other workers receive the HLO module and
then execute the optimized HLO module together, i.e., carry
out distributed training using the optimized strategies.

4.2 Simulator

In the Search Phase, the Simulator is used as a cost model to
drive the backtracking algorithm in the Strategqy Maker. It
simulates training according to the strategies produced by
the Strategy Maker, and estimates the per-iteration training
time using profiled data from the Profiler for individual ops
and the Fused Op Estimator for fused ops.

Profiler. It profiles distributed training of the given DNN
model to obtain execution time of each HLO instruction and
communication time of each AllReduce instruction across
different devices. The execution time of each HLO instruc-
tion is recorded and indexed by its op_code and input
shape. We build a linear regression model for communica-
tion time prediction of AllReduce instructions according to
the tensor size: T' = Cz + D, where T is the predicted execu-
tion time of the AllReduce instruction, x is the size of the
gradient tensor, C reflects the bandwidth and D is the com-
munication overhead in AllReduce instructions. Normally,
AllReduce execution time is affected by multiple factors
including tensor size, network topology and bandwidth,
and the communication library in use. In our scenario, the
time is most relevant to the tensor size as other factors are
fixed. Taking ring AllReduce as an example, if the NICs
work at the full-duplex mode, the communication time can

be computed as T' = %EL—_]IV” [42], where N is the number of

devices and B is the smallest bandwidth between any device
pair along the ring; T is linear with x when B and N are
fixed, ensuring a simple linear regression model is accurate
enough for our prediction purpose.

Fused Op Estimator. We design a GNN model to predict
execution time of each fused op, which takes as input inter-
connectivity and features of ops to fuse (i.e., execution time of
individual ops), and predicts execution time of the fused op.

4.3 GNN-Based Fused Op Estimator

Since each fused op consists of multiple original ops, a fused
op can be regarded as a subgraph of the DNN model graph,
whose nodes are the original ops and edges are the depen-
dencies among them. A GNN is a nice fit for learning features
of the subgraphs for fused op execution time prediction: the
GNN takes the op type, input and output sizes, execution
time of each original op and the data dependency among
them as input features, and learns the execution time of the
fused op as output; our prediction problem can be regarded
as a GNN graph classification and regression job, which has
been studied in the literature [43], [44], [45]. Based on the
GNN, the Simulator can further calculate the execution time
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of the whole HLO module. We do not use a GNN to directly
predict the execution time of the whole HLO module, since
the computation time of individual ops can be profiled and
the communication time of AllReduce instructions can be
estimated using the linear regression model, and we can
have more accurate estimation accordingly. An illustration of
our GNN model is in Fig. 5.

4.3.1 Feature Encoding

The GNN layers create a flat feature vector for each fused op
by encoding its subgraph into a set of embeddings.

Original op Embeddings. The GNN takes as input the fol-
lowing subgraph information: (1) an op feature matrix,
where each row corresponds to one original op and contains
the op’s attributes, including execution time, input and out-
put sizes, op type (e.g., Conv2D, MatMal); (2) an adjacency
matrix describing data dependencies among the ops. It gen-
erates a per-node embedding vector ¢;, by encoding attrib-
utes of immediate neighbors of op ¢ using multi-head
attention layers [46]

e, = ||ff:1<r( Z yfjW’“e;). 1)

jeN;

Here K is the number of heads of the multi-head attention
layer, || denotes concatenation of the output of each head, o
is a non-linear transformation, IV; is the set of neighbors of
op i including i itself, y;; is the correlation coefficient
between feature vectors of op ¢ and op j, W is the weight
vector to be learned, and €/, is the output embedding of op j
from the previous attention layer.

Fused op Embeddings. A fused op embedding y is gener-
ated by encoding information from all original ops in the
fused op

yza(ZWei), )

ieN

where NV contains all the original ops in the fused op.

4.3.2 Regression Neural Network

The fused op embeddings are fed into a regression neural
network [47] for execution time prediction, which consists
of a number of Fully Connected (FC) layers followed by a
Relu activation function.

4.3.3 Model Training

The graph neural network and regression neural network are
trained together in a supervised manner, using a sampled set
of fused ops, G (see Section 5.2 for details of producing GNN
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training samples). For each fused op, predicted execution
time is produced by the GNN model. The objective is to mini-
mize the overall loss over the |G| fused ops

1 /
L(6) = @Z log (y, —y,)%, 3)

where 6 is the set of weights in the GNN model to learn, and
y, and y, are the predicted and profiled execution time of
fused op g, respectively. We use Adam Optimizer [48] to
minimize the loss function.

4.4 End-to-End HLO Execution Time Estimation

The simulator computes end-to-end execution time of an
HLO module, by simulating scheduling process of the HLO
on one device and taking AllReduce communication among
this device and others into account. The complete schedul-
ing process can be described as follows. A ready queue is
maintained, consisting of computation ops whose depen-
dencies have been cleared. Iteratively, a ready op is
removed from the head of the queue, and the completion
time of the op is computed according to the completion
times of its predecessors and its own execution time. Then,
this op’s successors can be appended to the tail of the queue
if the respective successor’s dependencies are all cleared.
AllReduce instructions are executed in order of production
of their respective gradient tensors (which can be original
tensor or fused tensor). An AllReduce instruction starts
after its gradient tensor is produced (in case of a fused ten-
sor, after all tensors composing the fused tensor have been
produced) and the communication channel becomes clear,
and its execution can overlap with the execution of compu-
tation ops in time. The simulator serves as a cost model
Cost(H), where H indicates the candidate HLO module, in
our strategy search algorithm.

4.5 Backtracking Search

The strategy maker exploits a backtracking search algorithm
to explore the joint strategy space. Algorithm 1 summarizes
our search algorithm. Corresponding to the three types of
strategies (Section 3.2), three optimization methods (S) are
explored in our search:

(i) Randomly choose one computation op, and fuse it
with a randomly chosen predecessor op in the current HLO
module; if the selected predecessor op p has multiple suc-
cessor ops, redirect the output of the fused op to p’s other
successors. (Fig. 1 (ii)).

(ii) Randomly choose one computation op, and fuse it
with a randomly chosen predecessor op in the current HLO
module; if the selected predecessor op p has multiple suc-
cessor ops, duplicate p and direct the output of the replica
to other successors of p (Fig. 1 (iii)).

(iii) Randomly choose one AllReduce instruction, and
combine it with a randomly chosen neighbor AllReduce
instruction. A neighbor AllReduce instruction corresponds
to a (fused) gradient tensor produced by a (fused) BP gradi-
ent computation op, neighbor to the op producing the cho-
sen tensor.

The reasons of potentially duplicating a predecessor op (as
in (ii) above) are as follows: on one hand, the time needed for
re-computing the op could be smaller than data transferring
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time between on-chip memory and device memory when not
using fusion, if the size of activations produced by the op is
large; on the other hand, the output of the duplicated op can
be transferred immediately to other successor ops, without
waiting for completion of the fused op.

Algorithm 1. Backtracking Search

1: Input: input HLO module H;,,, optimization method set S,
cost model Cost(A~), parameters « and B.
2: Output: optimized HLO module.
3: Q:= {H,;, } # Q is a priority queue sorted by Cost(-).
4: unchanged_counter := 0 # a counter to record the number of
steps in which Ho, has not been changed.
5: while Q # {} and unchanged_counter < 1000 do
6:  H:= Q.dequeue()
7. for optimization method s € S do
8: # Generate a random value ranging from 0 to g.
9: n := Random/(0, B)
10: # randomly apply s on H for n times.
11: ‘H' := Random Apply(H, s,n)
12: if H' is valid then

13: if Cost(H') < Cost(Hop) then
14: Hopt := H

15: unchanged_counter = 0

16: else

17: unchanged_counter+ =1

18: end if

19: if Cost(H') < o x Cost(Hop) then
20: Q.enqueue(H’)

21: end if

22: end if

23:  end for

24: end while
25: returnH o,

To explore the strategy space for producing an optimized
HLO module, a priority queue Q is maintained for back-
tracking: some candidate HLO modules, produced during
the search process, are buffered in order of their Cost() (i.e.,
end-to-end execution time) for further optimization; the
optimization methods are recursively applied to these can-
didate HLO modules. Initially, the original HLO module is
enqueued into Q. In each search step, the algorithm
dequeues the HLO module H from the head of Q. Each of
the three optimization methods is applied on H for n times
(noted as RandomApply in Algorithm 1), where n is a ran-
dom number within the range of 0 and g (8 is a positive
integer). If the obtained new HLO module H' is valid (G.e.,
not including op fusion which should not be done, e.g., the
op is a parameter type or control-flow op such as switch
and while), we compare the execution time of H' with that
of the best HLO module, Ho,, identified so far, and record
H' as the best HLO module if its cost is smaller. On the other
hand, if H"’s execution time is no larger than o (o« > 1) times
that of Ho,'s, it will be enqueued into Q for backtracking
and optimization again in further steps. The search process
continues until Q is empty or Ho,, remains unchanged for a
number of steps (1,000), and returns the best HLO module
Hopt identified.

o and B are two key hyper-parameters in our backtrack-
ing search algorithm. g determines the probability to fuse
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more ops in one step. As described in Algorithm 1, we eval-
uate the modified HLO module (using the simulator) once
every n times rather than each time after applying an opti-
mization method, where n is randomly generated for apply-
ing each optimization in each step with the upper bound B.
This is because the change of the HLO module is subtle after
only applying an optimization method once, as well as to
reduce the evaluation time for expedited search. By this
design, all three optimizations are randomly mixed to pro-
duce candidate HLO modules. When g is large, there is a
higher probability to fuse more ops in one step. Parameter o
determines pruning of the search space, since candidate
HLO modules whose costs are larger than o times the cost
of the best HLO module are eliminated from further explo-
ration. Value of o decides a trade-off between the search
time and performance of the best HLO module identified: a
smaller o allows the search to end sooner with less recursive
optimizations, while a larger value enables exploring the
search space more to potentially identify better HLO mod-
ules. We will evaluate the effects of @ and f in Section 6.7.

5 IMPLEMENTATION

DisCo is implemented based on JAX 0.2.3 [19]. JAX is
an XLA-based programming framework for generating
high-performance accelerator code from pure Python and
Numpy ML programs. DisCo is implemented as a Python
module that developers can readily import into their code.
Core design of DisCo is generally applicable and can be
implemented in other ML frameworks as well, as a plugin
module in their graph-level optimization pass.

By default, TensorFlow XLA groups the ops in a DNN
model into several clusters; it generates an individual HLO
module for each cluster for further optimization passes
(e.g., op fusion, common sub-expression elimination and
dead code elimination), separately. This may lose the
opportunity for global optimization. In single-device train-
ing, it might be still acceptable; in distributed training, joint
computation and communication optimization plays an
important role and has to be considered in a global view.
Therefore, we build DisCo on JAX rather than directly based
on XLA, since JAX is able to group all the core processing
logic into a single HLO module for further optimization.

5.1 Activator

The activator is implemented as a module inside XLA. The
activator on the master node reads the optimized HLO
module from a configuration file (written by the strategy
maker), and sends the HLO module to all other workers
using MPIBroadcast.

Multi-GPU Training With JAX. Although JAX supports
multi-TPU-server training, it does not support multi-
machine training using GPU servers currently. To enable
multi-GPU-server training with JAX, we manually modify
the logic of creating the communication channels from All-
Reduce among GPUs on a single machine to among GPUs
across multiple machines, based on NVIDIA Collective
Communications Library (NCCL) [27]. In single-machine
training, a unique identifer, unique_nccl_id, is created
and used to create an AllReduce communication channel
among multiple GPUs on the machine. In a multi-machine
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scenario, when the master node creates unique_nccl_id,
we use MPIBroadcast to broadcast it to all other workers.
The workers then create the inter-machine communication
channel based on the global unique_nccl_id. One com-
munication channel is established for AllReduce instruc-
tions among the same set of workers, using the same
aggregation/reduce topology.

5.2 Strategy Maker

Profiler is implemented based on XLA’s built-in profiler by
adding flag —xla_hlo_profile to the environment vari-
able XLA_FLAGS. An op may consist of multiple GPU ker-
nels; the profiler aggregates the execution time of related
kernels to obtain an accurate estimation of execution time
for each op.

Fused Op Estimator is implemented in Python with 2812
LoC based on Deep Graph Library (DGL) [49]. We use 6
graph convolution layers to generate original and fused op
embeddings and 3 dense layers for regression. For super-
vised learning of the GNN model, we randomly generate
different fused ops in a number of DNN models (VGG19,
ResNet50, Transformer, RNNLM, BERT and Reformer). We
generate 30,000 samples for each DNN model. To generate
a sample, we randomly select an op and fuse it with one of
its predecessors, and then repeatedly fuse this fused op
with one predecessor for N times, where N is randomly
selected from 1,000 to 50,000. We train the GNN model
using one Tesla V100 GPU, and it takes around 14 hours till
convergence. Note that this is the time to train the base
GNN model from scratch. The 6 types of DNN models con-
tain most representative types of original ops. When pre-
dicting the execution time of a fused op that contains ops
not covered in these models, we fine-tune the GNN with
the new op’s information, which takes much less time.

6 EVALUATION

6.1 Methodology
Testbed. We evaluate DisCo in 2 clusters. Cluster A consists of
6 physical machines (12 GPUs): each machine is equipped
with two 11 GB NVIDIA GTX 1080 Ti GPUs, one 8-core Intel
Xeon E5-1660 v4 CPU and one 100 GbE Mellanox RDMA
card; all machines are connected through a 100 GbE switch.
Cluster B consists of 8 physical machines (64 GPUs): each
machine is equipped with 8 16 GB NVIDIA TESLA T4
GPUs, one 96-core Intel Xeon CPU and one 100 GbE NIC.
Benchmark Models. We evaluate DisCo by training 2 types
of CNN models (VGG19 [50], ResNet [29]) and 4 types of
NLP models (Transformer [46], RNNLM [25], Bert [51] and
Reformer [52]). Each model is trained using data parallelism
with all GPUs in each cluster, based on produced strategies.
Baselines. We compare DisCo with the following baselines.
(1) JAX_no_fusion: JAX with neither op nor AllReduce fusion;
(2) JAX_op_fusion: JAX with XLA default heuristic op fusion,
which extensively fuses ops according to a post order of ops
in the DNN graph, when the ops are fusible, (this baseline
represents the cases of single-device op fusion optimization
combined with distributed training using AllReduce). (3)
JAX_AllReduce_fusion: JAX with XLA default heuristic AllRe-
duce fusion, which fuses neighboring AllReduce instructions
based on a pre-defined tensor size threshold; (4) JAX_default:
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Fig. 6. Per-iteration training time comparison in Clusters A and B.

JAX with XLA default heuristic op and AllReduce fusion
strategies. (5) Pytorch DDP: PyTorch DPP [53] overlaps AllRe-
duce with the backward and forward passes. It does not con-
sider op fusion.

We further compare DisCo’s op fusion with those in repre-
sentative single-device DL compilers, TVM [1], nGraph [22]
and TASO [26].

We compare with JAX instead of XLA-enabled Tensor-
flow [5], because JAX outperforms original XLA-enabled
Tensorflow by grouping almost all ops into one cluster for
global jit compilation optimization [19].

Default Setting. Unless stated otherwise, we use o = 1.05
and g = 10 in DisCo’s search algorithm. To train each DNN
model in a cluster, we use a batch size that can maximally
exploit capacities of the respective GPU. The rationale is
that if a single GPU is not fully utilized, there is no need to
scale the training to many GPUs; we may just reduce the
number of GPUs in use while fully utilizing each GPU.

6.2 Training Speed-Up

In Fig. 6, we compare the average per-iteration training time
of different models trained on our two clusters, using strate-
gies produced by DisCo and the five baselines. We observe
that DisCo always performs the best. The fully overlapping
(FO) execution time is given as a performance upper bound
(i.e., lower bound of per-iteration training time), computed
by maximally overlapping computation and communica-
tion without considering their inter-dependencies. Table 1
summarizes the speed-ups of DisCo, computed by (T, —
Tpisco)/Tpiscor Where T, is the minimum per-iteration

TABLE 1
Speed-Ups of DisCo and the FO Case Compared to the Best
Performance Among the Baselines

Models Cluster A Cluster B
DisCo FO DisCo FO
VGG19 8.6% 18.9% 10.1% 12.5%
ResNet50 12.5% 28.5% 9.6% 16.8%
Transformer 26.7% 34.7% 20.6% 25.9%
RNNLM 5.1% 10.9% 8.6% 12.3%
BERT 18.5% 27.6% 13.7% 19.5%
Reformer 13.4% 25.4% 14.5% 21.8%

Reformer

RNNLM

training time achieved among the baselines and T, is the
per-iteration time of DisCo. It also lists the speed-ups
achieved in the FO cases, computed by dividing the differ-
ence of FO’s per-iteration training time and the minimum
time achieved among the baselines by FO’s per-iteration
training time. We do not include the search time when com-
puting the training speed-up because the search is done off-
line and identified strategies can be used during the entire
training process. Further, the search time is much smaller
than the entire training time (e.g., within a few hours
versus several days).

6.3 Time Breakdown

Fig. 7 shows the average per-iteration training time, compu-
tation time and communication time of training 4 models in
cluster A using baselines and DisCo. Due to computation-
communication overlap, per-iteration training time is usu-
ally smaller than the sum of computation time and commu-
nication time. With DisCo, computation time is smaller than
that of the baselines, due to DisCo’s selection of ops to fuse
without a pre-defined order nor deterministic heuristics,
that identifies better strategies within enlarged search space
(JAX_default adopts heuristic fusion strategies); communi-
cation time is also reduced due to our search for good
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20 == AllReduce time
: wa Iteration time
3 1.5
g
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0.5
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Fig. 7. Per-iteration computation/communication time.
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Fig. 8. Comparison of single-device inference time with representative
DL compilers.

AllReduce fusion strategies (JAX_default adopts a fixed ten-
sor size threshold to fuse AllReduce instructions).
Regarding communication-computation overlap, for the
example of Transformer, the ratio of the sum of computa-
tion and communication time over per-iteration training
time is 1.12 with JAX_no_fusion, 1.08 with JAX_default, and
1.27 with DisCo. These show that although JAX default
achieves better performance than JAX no_fusion in terms
of computation time and communication time separately,
the overlap ratio drops, because its greedy op fusion delays
a large amount of communication till the completion of
fused ops. DisCo not only reduces computation time and
communication time separately, but also increases the over-
lap ratio by jointly choosing appropriate ops and tensors to
fuse. DisCo achieves better performance with both computa-
tion-bound models (ResNet50 and RNNLM) and communi-
cation-bound models (VGG19 and Transformer). We also
notice that DisCo usually achieves better improvement for
communication-bound models than computation-bound
models. It is becuase that for computation-bound models,
the main benefits come from the better fusion strategy. For
communication-bound models such as Transformer, the
main benefits arise from the better fusion strategy, the better
AllReduce fusion strategy and the better overlapping of the
communication and computation. Therefore the improve-
ment is usually more with communication-bound models.

6.4 Single-Device Performance Comparison

Since most of the existing DL compilers focus on single-
device training/inference acceleration, we also run DisCo on
a single device (a GTX 1080 Ti GPU) to compare the model
inference time achieved with DisCo and with representative
DL compilers. JAX_default, nGraph [22] and TVM [1] use
rule-based heuristics for op fusion. TASO [26] uses a search-
based algorithm for graph substitution, which generates sub-
graph candidates and then searches for the best graph substi-
tution. Fig. 8 shows that DisCo outperforms all rule-based
compilers, due to identifying better op fusion strategies
using the backtracking algorithm in a larger search space,
while rule-based heuristics rely on the limited number of
pre-defined rules. It achieves similar performance as TASO
(slightly better with Transformer and VGG19, and slightly
worse with RNNLM and ResNet50). DisCo and TASO focus
on different search spaces: TASO is mainly for subgraph sub-
stitution and DisCo is on op fusion. The results show that in
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Fig. 9. Probability density function and cumulative distribution function of
prediction errors of fused op estimator.

RNNLM and ResNet50, there might be more opportunities
for subgraph substitution than op fusion for TASO to achieve
better performance.

6.5 Simulator Accuracy

We evaluate the accuracy of our GNN-based Fused Op Esti-
mator by randomly generating 2,000 unseen fused ops,
which do not appear in our GNN training sample set. In
this experiment, both the GNN training set and the above
test samples are profiled on a GTX 1080 Ti GPU. The execu-
tion time of these fused ops ranges from 20 microseconds to
30 milliseconds. We compare the predicted execution time of
fused ops in the test set and their profiled execution time, and
compute a prediction error by dividing the absolute differ-
ence of these two values by the profiled execution time. Fig. 9
shows the PDF and CDF of the prediction errors. We see that
more than 90% predictions are within 14% error of the respec-
tive real execution time. It shows that the GNN-based estima-
tor can effectively learn the structural information of fused
ops, by considering data and control dependencies among
the original ops in the fused op subgraphs.

We then test the accuracy of the simulator for estimating
the end-to-end execution time of HLO modules. Table 2 gives
the estimated time by the simulator (simulation time) to exe-
cute the best HLO module found by DisCo on each DNN
model and the respective real execution time in cluster A. The
error is calculated by dividing the absolute difference of simu-
lation time and real execution time by the real execution time.
The simulator achieves a 11.1% error ratio for RNNLM and at
most 17.5% for Reformer, which is good enough to guide the
search algorithm. It also implies that the linear regression
model for estimating the execution time of AllReduce instruc-
tions is accurate enough in spite of its simple form.

6.6 Effects of Optimization Methods
We further evaluate the design of three optimization methods
in DisCo (Section 4.5), duplicate op fusion, non-duplicate op

TABLE 2

Estimation Error of the Simulator
Models Real Execution Simulation Error

Time (s) Time (s)
VGG19 1.85 2.08 12.4%
ResNet50 0.16 0.18 11.1%
Transformer 1.01 1.15 13.9%
RNNLM 0.58 0.66 13.8%
BERT 1.13 1.3 15.9%
Reformer 1.26 1.48 17.5%
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Fig. 10. DisCo with/without certain optimizations.

fusion and AllReduce fusion, by increasingly adding each one
of them in the search algorithm, respectively, when training
DNNs in cluster A. Fig. 10 shows that each optimization posi-
tively contributes to training time reduction, and the joint
application of all three achieves the best performance. We fur-
ther observe that non-duplicate fusion plays the most impor-
tant role in reducing the training time, since per-iteration time
decreases most when it is added, as compared to adding
either of the other two methods. This is because compared
with non-duplicate fusion, duplicate fusion leads to extra
computation, and is usually suitable when the output of the
predecessor op needs to be sent to other successors earlier
(especially when the successor is an AllReduce instruction);
in most cases, the output of a predecessor op is activation that
does not need to be transferred to other devices. We also
notice that in case of VGG19, DisCo’s performance is similar
with and without AllReduce fusion. This is because most of
the large gradient tensors in VGG19 are from the fully con-
nected layers and are transferred at the beginning of back
propagation; after transferring these large tensors, communi-
cation of other small tensors can overlap well with computa-
tion (with op fusion that our search algorithm identifies) even
without tensor fusion.

6.7 Parameters in Backtracking Algorithm

We tune parameters o and g in our search algorithm (Algo-
rithm 1), and train DNNs in cluster A with the respective
best strategies. Tables 3 and 4 show the result per-iteration
training time, along with the search time to find the respec-
tive best strategy on each DNN model.

Setting B to 10 and varying «, Table 3 shows that with a
larger «, training time decreases (because the search space
is larger with more candidate HLO modules enqueued and
repeatedly optimized), while the search time increases
accordingly. « =1.05 leads to a good trade-off between
strategy quality and search time.

Setting « to 1.05 and varying g, Table 4 shows that when
B increases, the search time decreases (because there is a
higher probability to fuse more ops within one algorithm
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TABLE 3
Per-Iteration Time and Strategy Search Time With Different Val-
ues of o
Models Execution Time(s)/Search Time(min)
a=1 o =1.05 a=1.1
VGG19 2.01/11 1.85/17 1.83/36
ResNet50 0.18/15 0.16/22 0.16/48
Transformer 1.18/54 1.01/74 1.02/143
RNNLM 0.74/6 0.58/9 0.57/16
BERT 1.26/69 1.13/89 1.10/158
Reformer 1.44/53 1.26/78 1.21/161

step, reducing the search space), while the training time
increases in general. We observed that when g is relatively
smaller (i.e.,, ranging from 1 to 10), the training time
increases slowly but the search time drops significantly
with the increase of 8. When B is small, the modification of
the HLO module is subtle in each step, leading to slow
search progress in a huge search space. Training time
increases with larger  because in each step, there is a higher
probability for DisCo to carry out op fusion for multiple
times before execution time of the produced HLO module is
evaluated, which may miss part of the search space to find a
better strategy. We identify g = 10 to be a good choice for
the trade-off between training performance and search time.

7 RELATED WORK

7.1 Deep Learning Compiler

MLIR [2] is a reusable and extensible compiler infrastruc-
ture that standardizes the Static Single Assignment-based
IR data structures and provides a declarative system to
define IR dialects. Relay [3] presents a compiler framework
to unify and generalize IR in existing frameworks. Intel
nGraph [22] simplifies the realization of optimized DL per-
formance across software frameworks and hardware plat-
forms with carefully designed IR and bridge to connect
different frameworks. It carries out op fusion extensively
similar to XLA’s approach. TVM [1] is a compiler that
exposes graph-level and operator-level optimizations to
provide performance portability for DL workloads across
diverse hardware backends. It defines four types of ops
(injective, reduction, complex-out-fusible, and opaque), and
provides generic rules to fuse these ops: multiple injective
ops can be fused into another injective op; a reduction op
can be fused with input injective ops; ops such as conv2d
are complex-out-fusible, and their outputs can be fused

TABLE 4
Per-lteration Training Time and Strategy Search Time With Dif-
ferent Values of 8

Models Execution Time(s)/Search Time(min)
=1 B=5 B =10 B =30
VGG19 1.83/66 1.87/29 1.85/17  2.09/14
ResNet50 0.12/84 0.15/41 0.16/22  0.21/15
Transformer 1.00/195 1.02/98 1.01/74 1.14/54
RNNLM 0.53/64 0.54/17 0.58/9 0.76/7
BERT 1.12/258 1.14/114 1.13/89 1.26/71
Reformer 1.19/239 1.24/101 1.26/78 1.38/59
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with element-wise ops. All these compilers focus on DNN
training/inference on a single device.

For distributed DNN compilation, XLA integrates collec-
tive AllReduce into its HLO module; the AllReduce optimi-
zation pass and op fusion optimization pass adopt simple
heuristics and are done separately. Gshard [8] is an exten-
sion of XLA which provides convenient APIs for sharding
large models; no extra op fusion and AllReduce fusion strat-
egies are provided. Boehm et al. [9] provide distributed op
primitives in their customized compiler, but focus on tradi-
tional ML jobs, e.g., training KMeans [54] or L25VM [55].
They divide a model graph into several parts and use tree
search to decide the fusion strategy separately for each part;
this may lose the opportunity for global optimization.

7.2 Learning-Based Prediction Model

Several learning-based cost models have been developed for
automatic code optimization. MILEPOST GCC (GNU Com-
piler Collection) [56] uses a 1-nearest-neighbor model which
takes as input manually selected features and predicts the
best combinations of compiler flags for GCC. Ithemal [57]
uses an LSTM model to predict the throughput of assembly-
level code. Baghdadi et al. [58] integrate a DL-based cost
model into an auto-scheduler, that enables the Tiramisu
compiler to select the best code transformation for a given
program.

In the area of DNN optimization, Kaufman et al. [47]
introduce a GNN-based method for a number of optimiza-
tion decisions (e.g., tile-size selection, operator fusion),
based on tensor computation graphs for TPU-based train-
ing. DynaTune [59] designs a Bayesian belief model to pre-
dict the potential performance gain of each operator with
uncertainty quantification, to guide the optimization pro-
cess of finding better fusion strategies. We are the first in
integrating a GNN-based fused op cost model for joint op
and tenor fusion optimization.

7.3 Distributed Neural Network Training

Horovod [18] decouples communication from specific train-
ing frameworks and optimizes it using tensor fusion. A ten-
sor fusion threshold HOROVOD_FUSION_THRESHOLD is
pre-defined, and small AllReduce tensors are combined
within this size threshold for transmission, which is similar
to XLA’s tensor fusion approach. ByteScheduler [17] advo-
cates a priority-based tensor scheduling strategy for better
communication-computation overlapping; no interaction
with computation op fusion is considered. GShard [8] cre-
ates shards of weights and model states that can be split
among ranks. CoCoNet [13] introduces a domain-specific
language to easily express communication and computation
in distributed training. Megatron-LM [10] introduces an
efficient intra-layer model-parallel approach to support
training of very large transformer models. GPipe [11] uses
pipelining to address memory bottlenecks for training large
NNs. PipeDream [12] introduces a pipelining design to
overlap communication and computation for asynchronous
training with convergence guarantee. These projects are
focusing on model or pipeline parallelism which is orthogo-
nal to DisCo.
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8 CONCLUDING DISCUSSIONS

We present DisCo, a deep learning compiler based on JAX
for distributed DNN training acceleration. DisCo jointly
optimizes computation operator fusion and AllReduce ten-
sor fusion using a backtracking search algorithm, maximiz-
ing the overlap of computation and communication and
minimizing overall training time. A GNN-based simulator
is built to effectively facilitate the search in large joint op/
tensor fusion strategy space. DisCo achieves good training
speed-up as compared with existing fusion schemes and
the full communication-computation overlap case, in typical
distributed environments.

As a future direction, we plan to extend DisCo from
data-parallel training to supporting model parallelism and
pipeline parallelism. To accelerate DNN model training
using model or pipeline parallelism with joint op and ten-
sor fusion, we first need to improve our simulator: we
shall profile model training on all devices and measure
activation transfer time across devices as well. The optimi-
zation methods in the search algorithm should also be
expanded to include fusion of activations. The HLO mod-
ule will include send and recv communication instructions
for activations, besides AllReduce instructions for gradient
tensors. Further, the design of DisCo can be readily
extended to handle the parameter server architecture for
tensor communication, by replacing AllReduce instruc-
tions with push and pull communication instructions,
while the dependencies between push and pull are readily
included in the HLO module.
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