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Abstract
Deep learning models rely on highly optimized tensor li-
braries for efficient inference on heterogeneous hardware.
Current deep compilers typically predetermine layouts of
tensors and then optimize loops of operators. However, such
unidirectional and one-off workflow strictly separates graph-
level optimization and operator-level optimization into differ-
ent system layers, missing opportunities for unified tuning.

This paper proposes ALT, a deep compiler that performs
joint graph-level layout optimization and operator-level loop
optimization.ALT provides a generic transformation module
to manipulate layouts and loops with easy-to-use primitive
functions.ALT further integrates an auto-tuningmodule that
jointly optimizes graph-level data layouts and operator-level
loops while guaranteeing efficiency. Experimental results
show that ALT significantly outperforms state-of-the-art
compilers (e.g., Ansor) in terms of both single operator per-
formance (e.g., 1.5× speedup on average) and end-to-end
inference performance (e.g., 1.4× speedup on average).

CCS Concepts: • Software and its engineering→ Source
code generation; • Computing methodologies→ Ma-
chine learning.
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1 Introduction
Deep learning is crucial for applications like machine transla-
tion and autonomous driving. To provide ubiquitous services,
developers craft high-performance programs supporting var-
ious tensor operators (e.g., 2-D convolution and matrix mul-
tiplication) on different hardware platforms (e.g., NVIDIA
GPU and ARM CPU). However, current vendor libraries (e.g.,
MKL-DNN [32] and cuDNN [11]) typically demand signifi-
cant engineering effort on manual optimization. Moreover,
the hand-tuning approach can hardly catch up with the fast
evolution of deep learning techniques that constantly in-
troduce new operators [31] and new hardware (e.g., neural
processing units). Therefore, researchers develop deep com-
pilers [6, 9, 38, 68, 80] to achieve automatic performance
optimization by auto-tuning and code generation techniques.
By representing operators as nodes and tensors as edges

to compose a computational graph during compilation, two
key optimizations are graph-level data layout optimization
and operator-level loop optimization. Layout optimization
reorganizes tensor storage to improve memory accessing
performance [4, 13, 35, 54, 59, 61, 67]. Loop optimization
transforms the nested loops in the source code of each opera-
tor to schedule the execution of instructions [7, 9, 25, 27, 53].
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Unfortunately, existing deep compilers (e.g., TVM [9], Ten-
sor Comprehension [68], Tiramisu [6], AKG [80]) and auto-
tuning techniques (e.g., AutoTVM [10], NeoCPU [43], Flex-
Tensor [88] and Ansor [82]), fail to combine data layout and
loop optimizations effectively. These systems first predeter-
mine tensor layouts either manually or via setting a hyper-
parameter from a predefined template and then perform loop
optimization based on these layouts. There are three major
limitations in this unidirectional and one-off workflow. First,
manual layout selection implies that only a limited num-
ber of layout choices can be explored, hence prone to be
suboptimal. Second, altering the tensor layout demands the
time-consuming re-implementation of operators that access
the tensor. Third, layout optimization and loop optimization
are separated into different system layers. Such strict bound-
ary seriously compromises the performance of the generated
tensor programs. For instance, we observe that optimizing
loops based on the best layout among three candidates for
2-D convolutional operators can improve performance by
55.9% on the Intel CPU. Moreover, the performance of a spe-
cific layout is sensitive to operator configurations (e.g., tensor
shapes) and hardware, making it hard to determine layouts
for each workload without feedback from loop optimization.
This paper proposes ALT, a deep compiler that jointly

performs graph-level data layout and operator-level loop op-
timizations for deep models. The design of ALT originates
from the following insight. Data layout optimization and
loop optimization could benefit from each other. The root
cause of the inability to perform cross-layer joint tuning is
the coupling between data storage and operator implementa-
tion in prior arts, such that altering the data layout requires
re-implementing operators. Such high cost for changing lay-
outs further leads to the unidirectional and one-off optimiza-
tion flow. Therefore, ALT abstracts layout manipulation as
easy-to-use primitive functions, such that the task of re-
implementing operators can be delegated to a compilation
pass without human interference. After reducing the cost,
ALT further incorporates layout and loop optimizations into
a unified auto-tuning framework, which breaks the boundary
between the two optimizations to open new opportunities.
It is not trivial to achieve our goals. We need to address

the following challenges.
Challenge 1: How to eliminate the overhead of layout transfor-
mation? Altering tensor layouts can incur two types of over-
head: layout-conversion overhead and fusion-conflict over-
head. Operators along the data stream may require different
tensor layouts to achieve optimal performance, but intro-
ducing conversion operators to transform layouts can cause
extra data movements. Additionally, changing the output ten-
sor layout of an operator will reconstruct its loop nest, which
may prevent operator fusion with its consumer operator and
thus sabotage inter-operator data locality.
Challenge 2: How to prevent inefficiency due to the search
space reconstruction during joint tuning? Changing the output

layout of an operator will induce the loop nest reconstruction,
which will further lead to the variation of the loop tuning
space. For joint tuning, such space variation prohibits a direct
iterative exploration. Otherwise, the points we have searched
in the last iteration may be invalid in the changing space.
This leads to inefficient tuning for most search methods,
including genetic and learning-based algorithms, since the
accumulated knowledge of the search space structure cannot
be further exploited in the newly reconstructed space.
Challenge 3: How to improve efficiency given the search space
explosion in joint tuning? The joint search space can be
extremely large, hence inefficient to explore directly. For
instance, a 2-D convolutional operator can contain up to
𝑂 (107) points in its seven nested loops. Further combined
with layout tuning, the joint space can scale up to 𝑂 (1019)
points considering that there are three tensors, each of which
has four dimensions.
To eliminate the overhead of layout transformation, we

propose a layout propagation mechanism. Layout propaga-
tion lets the upstream or downstream operators access the
new layout directly, rather than inserting a new conversion
operator. To promote operator fusion, we propagate a new
layout across multiple operators, which lets consumer oper-
ators trigger the same loop reconstruction, helping to align
multiple loop nests for fusion.

To address the search space reconstruction issue, we split
the co-tuning into a joint stage for searching for optimal
tensor layouts and a loop-only stage for optimizing loops
with the searched layouts unchanged. We then design a cross-
exploration architecture for the joint stage. For a candidate
layout, we reconstruct the loop space and perform multiple
rounds of loop tuning to assess the new layout. This design
achieves a bidirectional and unified tuning flow by choosing
a layout based on feedback from loop optimization. It also
avoids inefficient loop space reconstruction since the loop-
only stage keeps layouts unchanged.
To avoid the search space explosion in joint tuning, we

prune the space at two levels. First, we only create layout
transformation spaces for tensors accessed by complex op-
erators (convolutions and general matrix multiplication), as
their performance is sensitive to data layouts. For other ten-
sors, we utilize layout propagation to transfer the searched
layouts without further searching. Second, we use tuning
templates, which only expose a few tunable options, to iden-
tify a promising subspace. These templates are tailored based
on our analysis of layout optimization, considering both op-
erator and hardware characteristics.
By addressing these challenges, ALT achieves joint and

efficient graph-level data layout optimization and operator-
level loop optimization automatically.

We comprehensively evaluate ALT on Intel CPU, NVIDIA
GPU, and ARM CPU. Compared with state-of-the-art vendor
libraries (e.g., MKL-DNN [32], cuDNN [11], and XNNPACK
[26]) and auto-tuning frameworks (e.g., Ansor [82]), ALT

69



ALT: Breaking the Wall between Data Layout and Loop Optimizations for Deep Learning Compilation EuroSys ’23, May 8–12, 2023, Rome, Italy

achieves an average of 1.5× speedup in terms of single oper-
ator performance, and 1.4× speedup in terms of end-to-end
inference performance. Our evaluation also shows that ALT
can find data layouts that are not explored in prior arts. Addi-
tionally, we have deployed ALT in production environments
for four months, boosting a broad spectrum of real workloads
(e.g., speech recognition and super resolution).

In summary, we make the following contributions:

• We reveal the necessity of joint graph-level layout and
operator-level loop optimizations for deep learning com-
pilation, and that the root cause of the inefficient unidirec-
tional and one-off optimization flow in prior arts lies in
the high cost of layout manipulation.
• We design an easy-to-use generic infrastructure that cov-
ers a rich layout transformation space. It allows users
to manipulate layouts without soiling the hands for re-
implementation, and without extra overhead via the layout
propagation mechanism during end-to-end optimization.
• We devise a joint layout and loop auto-tuning framework.
Via effective space pruning and judicious exploration de-
sign, it not only achieves a bidirectional and unified opti-
mization flow but also guarantees tuning efficiency.
• Our extensive evaluation shows that, without human inter-
ference, ALT improves performance over state-of-the-art
baselines significantly, which also verifies the effectiveness
of the proposed techniques.

2 Background and Motivation
A deep compiler typically compiles a neural network with
multi-stage lowering and optimization. The compiler takes
a model that can be generated by other frameworks (e.g.,
TensorFlow [1]) as input. It then resolves the model to a
computational graph where operators and tensors are repre-
sented as nodes and edges, respectively.
Data layout optimization [4, 13, 35, 54, 59, 61, 67] is to

rewrite the tensor storage format (i.e., the attributes of an
edge) to alleviate memory accessing overhead for operators
that access the tensor. Thus, data layout optimization is often
classified as graph-level optimization. The storage format
refers to the arrangement of tensor dimensions. Take the 2-D
convolution (C2D) operator as an example. Popular data lay-
outs for the output tensor of C2D include 𝑁𝑂𝐻𝑊 , 𝑁𝐻𝑊𝑂 ,
and 𝐻𝑊𝑂𝑁 , where 𝑁,𝑂,𝐻,𝑊 represent the batch size, the
number of output channels, the output tensor height, and
the output tensor width, respectively. 𝑁𝑂𝐻𝑊 is widely used
on GPU [51], 𝑁𝐻𝑊𝑂 is the default layout on CPU in Ten-
sorFlow [1], and 𝐻𝑊𝑂𝑁 is used in digital signal processing.
After graph-level optimization, the compiler will lower

each node in the computational graph to operator-level repre-
sentation. An operator can typically be represented as deeply
nested loops. As the major part of operator-level optimiza-
tion, loop optimization (e.g., loop tiling, vectorization, etc.)
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(a) C2D on Intel CPU.

1 3 5 7 9 11 13 15 17 19 21 23 25 27
Operator Configuration

0.1
0.5
2.0
8.0

32.0

La
te

nc
y

(m
s)

NOHW NHWO HWON

(b) C2D on NVIDIA GPU.
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(c) GMM on Intel CPU.
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(d) GMM on NVIDIA GPU.

Figure 1. C2D and GMM latency with different data layouts.

[7, 9, 25, 27, 53] is to transform the loop nest to schedule the
execution of statements of each operator.

The motivation for this work is as follows.
Observation 1: It is beneficial to jointly perform data
layout optimization and loop optimization. We illus-
trate the benefits by an experiment that optimizes loops of
C2D based on 𝑁𝑂𝐻𝑊 , 𝑁𝐻𝑊𝑂 , and𝐻𝑊𝑂𝑁 layouts, respec-
tively. Our platforms include 32-core Intel Xeon Silver 4110
CPU@2.1GHz and NVIDIA RTX 2080Ti GPU. We report the
performance in Fig. 1a and Fig. 1b, where the latency is in
log scale to accommodate the range of values, from several
microseconds to tens of milliseconds, and each hardware
involves multiple operator configurations (different num-
bers of channels, convolutional strides, etc.) to cover rich
workloads. These workloads are sampled from widely-used
settings. We observe that the best layout could improve the
performance of loop optimization by 55.9% and 87.2% on
average on the Intel CPU and NVIDIA GPU, respectively.
We also report the performance of general matrix multipli-
cations (GMM) with different layouts in Fig. 1c and Fig. 1d.
Given 𝐶 = 𝐴

⊙
𝐵, we use 𝐾𝑁 to denote the default layouts

(𝑀𝑁,𝑀𝐾,𝐾𝑁 for𝐶,𝐴, 𝐵). 𝑁𝐾 denotes an alternative layout
[1, 51] that transposes 𝐵. 𝑁𝐾𝑛 represents a custom layout by
tiling three matrices with a factor, leading to 𝑀

𝑚
𝑁
𝑛
𝑚𝑛, 𝑀

𝑚
𝐾𝑚,

and 𝑁
𝑛
𝐾𝑛 (𝑚 = 𝑛 = 16). The results show that the best layout

could improve the performance by 20.6% and 24.8% on the
Intel CPU and NVIDIA GPU respectively. However, mak-
ing a choice among different layouts is not easy without
feedback from loop optimization, due to the highly diver-
gent performance with regard to operator configurations and
platforms. For instance, although 𝑁𝐻𝑊𝑂 often outperforms
𝑁𝑂𝐻𝑊 and 𝐻𝑊𝑂𝑁 for C2D on CPUs when the number
of input channels is small, and 𝑁𝐾𝑛 often outperforms 𝐾𝑁
and 𝑁𝐾 for GMM, there is still no clear rule that can fit all
configurations and platforms.
Observation 2: Existing solutions cannot effectively
perform joint tuning due to the high cost of layout
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KH - 1

H
H / 2

WW + (KW - 1)

Output tensorInput tensor

tile overlap

H + (KH - 1)tile stride

Figure 2. Layout with overlapped tiling.

for n in range(N):
for oh, ow in range(2, 2):

for oo in range(O // o_t):
for ih, iw in range(H // 2, W // 2):

for io in range(o_t):
Conv[n][oh][ow][oo][ih][iw][io] = 0.0

for i, rh, rw in range(I, KH, KW):
for io in range(o_t):

Conv[n][oh][ow][oo][ih][iw][io] += \
Inp[n][oh][ow][i][ih+rh][iw+rw]\
* Ker[oo][i][rh][rw][io]

Figure 3. Program based on the layout in Fig. 2.

manipulation. Existing systems [6, 9, 68] typically couple
the tensor storage with the implementation of operators,
thus changing layouts requires re-implementation. Such a
high cost of layout manipulation limits the number of lay-
out choices that can be explored, and further leads to the
unidirectional optimization flow. While there are works us-
ing special layouts to improve versatility, e.g., 𝑁 𝑂

𝑜𝑡
𝐻𝑊𝑜𝑡

where 𝑜𝑡 is a tiling parameter that can be changed without
re-implementation [43], they still only cover a small layout
optimization space. Moreover, switching to another category
of layouts still requires re-implementing operators and even
rewriting loop-tuning templates.
We use a more versatile layout as a motivating example.

This layout is outside the tuning space of 𝑁 𝑂
𝑜𝑡
𝐻𝑊𝑜𝑡 and is

hard to be discoveredmanually or without joint tuning. It can
achieve performance improvement of 32.4% over 𝑁 𝑂

𝑜𝑡
𝐻𝑊𝑜𝑡 .

Besides tiling the channel dimension, this layout further
tiles the spatial dimensions (the height and the width) of the
output tensor into four blocks. Each spatial tile of the output
tensor has shape 𝐻

2 ×
𝑊
2 . For a C2D with convolutional stride

1, the height and thewidth of the input tensor are𝐻+(𝐾𝐻−1)
and𝑊 + (𝐾𝑊 − 1), where 𝐾𝐻 and 𝐾𝑊 are the height and
the width of the convolutional window. Due to the sliding-
window operation of C2D that has natural overlaps, each
output tile requires a

(
𝐻
2 + (𝐾𝐻 − 1)

)
×
(
𝑊
2 + (𝐾𝑊 − 1)

)
tile

of the input tensor for convolution. This leads to the layout in
Fig. 2, where each colored area denotes a tile, and the overlap
between tiles along the input tensor height is exactly (𝐾𝐻 −
1). After the layout transformation, the generated loop nest

computational graph

Layout Transformation

Layout Propagation
Loop Transformation

Space BuildingAuto-tuning Exploration Cost Model
decoding

optimized tensor program

instantiated primitives

Transformation

ARM CPUinference Intel CPU NVIDIA GPU 

Figure 4. Design overview of ALT.

is shown in Fig. 3, where 𝐼 is the number of input channels,
𝐶𝑜𝑛𝑣 , 𝐼𝑛𝑝 , and 𝐾𝑒𝑟 are the output tensor, input tensor, and
weight tensor, respectively. In Fig. 3, we also tile the output
channels by 𝑜𝑡 to achieve multi-dimensional layout tiling.
Besides, the corresponding loop 𝑖𝑜 is placed as the innermost
loop to improve locality, as a showcase for joint layout and
loop optimization. The shape of𝐶𝑜𝑛𝑣 in Fig. 3 is 𝑁 × 2× 2×
𝑂
𝑜𝑡
× 𝐻2 ×

𝑊
2 ×𝑜𝑡 . Such multi-dimensional tiling with overlaps

promotes data locality and cache utilization. We defer the
detailed profiling results on various layouts in Section 7.3.4.

3 System Overview
ALT is a deep compiler that achieves joint graph-level layout
optimization and operator-level loop optimization to gener-
ate high-performance tensor programs for heterogeneous
platforms automatically. The system overview of ALT is
depicted in Fig. 4, which incorporates two major modules:
auto-tuning and transformation. The transformation module
is a generic infrastructure that achieves low-cost layout and
loop manipulation by easy-to-use primitive functions. Based
on it, the auto-tuning module performs joint data layout and
loop optimization by searching in the parameter spaces of
the primitive functions. The workflow of ALT is as follows.

First, the user provides the computational graph of a deep
model, which a domain-specific language (e.g., a subset of
Python) can express. It can also be constructed from a model
file generated by other frameworks (e.g., TensorFlow [1]).
Second, the auto-tuning module builds search space for

tensors and operators and explores the space jointly. To
reduce the tuning time, it uses a cost model to minimize time-
consuming on-device measurements. When the exploration
completes, it decodes the best performant point found in the
space into a sequence of layout and loop primitives. Then, it
delivers these primitives to the transformation module.

Third, the layout propagation submodule propagates lay-
out primitives. Then, the transformation module applies all
primitives to perform layout and loop transformation to gen-
erate an optimized tensor program. Finally, we deploy the
program on different hardware for inference.
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4 Transformation
We first introduce the transformation module, which is a
generic infrastructure for manipulating data layouts and
loops. It further consists of three submodules: layout trans-
formation, layout propagation, and loop transformation.

4.1 Layout Transformation

To achieve low-cost layout manipulation and easy layout
tuning, we devise various primitive functions to transform
data layouts: split, reorder, fuse, unfold, pad, and store_at.
Among them, split, reorder, and fuse are basic primitives and
the others are advanced primitives. These primitives lift the
data layout transformation from the black-box compiler level
to the source level to facilitate leaner control with domain-
specific knowledge. We will temporarily cache the operation
each time a primitive is applied on a tensor. During program
generation, as a compilation pass, we will actually trans-
form the data shapes and alter the corresponding accessing
statements in the program. Thus, no human interference is
required for re-implementing the operators.

4.1.1 Basic Layout Primitives. The basic primitives per-
form one-to-one transformations. Given an 𝑛 dimensional
tensor 𝑇 with original data layout of 𝑁1𝑁2...𝑁𝑛 and access-
ing expressions of 𝑖1, 𝑖2, ..., 𝑖𝑛 , we summarize basic primitives
in Table 1, where 1 ≤ 𝑘 ≤ 𝑛 is an index to dimensions, 𝐹𝑘
is an integer denoting the splitting factor, 𝑝 is a permuta-
tion vector with 𝑝 (𝑘) as its 𝑘-th element, and 𝐹2→𝑚 is an
abbreviation for

∏𝑚
𝑖=2 𝐹𝑖 (𝑁𝑘→𝑘+𝑚 is similar).

For instance, to get the 𝑁 𝑂
𝑜𝑡
𝐻𝑊𝑜𝑡 layout from 𝑁𝑂𝐻𝑊 ,

we can apply the following primitive sequence:
split(T, dim=2, factors=[O // o_t, o_t])
reorder(T, perm=[1, 2, 4, 5, 3])
Alternatively, to pack the layout into spatial blocks, we can
transform 𝑁𝐻𝑊𝑂 through another primitive sequence:
fuse(T, dims=[2, 3, 4])
split(T, dim=2, factors=[O // 4, 4, H * W])
reorder(T, perm=[1, 2, 4, 3])
During program generation, the first fuse primitive produces
shape 𝑁 (𝐻𝑊𝑂), the second gives 𝑁 (𝑂4 )4(𝐻𝑊 ), and the fi-
nal reorder generates 𝑁 (𝑂4 ) (𝐻𝑊 )4, based on Table 1. As-
suming the original accessing statement 𝑇 [𝑛] [ℎ] [𝑤] [𝑜] in
the code, it will be transformed as follows:

1. T[n][ℎ(𝑊𝑂) +𝑤𝑂 + 𝑜], and let 𝑒 = ℎ(𝑊𝑂) +𝑤𝑂 + 𝑜
2. T[n][ 𝑒

𝐻𝑊 4 ][
𝑒

(𝐻𝑊 ) mod 4][𝑒 mod (𝐻𝑊 )]
3. T[n][ 𝑒

𝐻𝑊 4 ][𝑒 mod (𝐻𝑊 )][ 𝑒
𝐻𝑊

mod 4] .

4.1.2 Advanced Layout Primitives. The above examples
show the versatility of basic primitives. However, there are
cases that cannot be covered, such as the overlapped tiling in
Fig. 2. To achieve such special transformations, we abstract
advanced layout primitives: unfold, pad, and store_at.

unfold: This primitive performs overlapped tiling. It ac-
cepts a tile_size parameter, and a stride parameter which is
the interval between two tiles:
unfold(tensor, dimension, tile_size, stride)

We denote 𝑡𝑖𝑙𝑒_𝑠𝑖𝑧𝑒 as 𝐵 and 𝑠𝑡𝑟𝑖𝑑𝑒 as 𝑆 . If the original
size for a dimension is 𝐷 , this primitive will generate two
new dimensions with sizes of

(
⌈𝐷−𝐵

𝑆
⌉ + 1

)
and 𝐵. For in-

stance, an array {1, 2, 3, 4, 5} can be unfolded to a 2-D array
{{1, 2, 3}, {3, 4, 5}} by setting 𝐵 = 3 and 𝑆 = 2. For the input
tensor layout in Fig. 2, we can set 𝐵 = 𝐻

2 + (𝐾𝐻 − 1), 𝑆 = 𝐻
2

for the height dimension, and the width is similar.
The unfold primitive is useful for sliding-window compu-

tational patterns, e.g., convolutional layers. They have the
memory access pattern of 𝑉𝑖 + 𝑟 , where 𝑉 is the constant
convolutional stride, 𝑖 is the window index, and 𝑟 is a reduc-
tion iterator for the offset inside a window. In the following,
we use 𝑀 to denote the window size (e.g., 𝑀 will be equal
to 𝐾𝐻 and 𝐾𝑊 for the two patterns 𝑖ℎ + 𝑟ℎ and 𝑖𝑤 + 𝑟𝑤 in
Fig. 3, respectively). Then, the original accessing statement
𝑇 [𝑉𝑖 + 𝑟 ] will be transformed to

𝑇

[⌊
𝑖

⌊ 𝐵−𝑀
𝑉
⌋+1

⌋] [
𝑉𝑖+𝑟−𝑆

⌊
𝑖

⌊ 𝐵−𝑀
𝑉
⌋+1

⌋]
. (1)

Besides unfold, we also propose pad and store_at primitives.
The pad primitive is to append zeros for a selected dimen-
sion, which helps to align data in memory and alleviate bank
conflicts on the NVIDIA GPU. The store_at primitive allows
fusing two tensors together by attaching one to another to
improve inter-tensor data locality. For example, in a fully
connected layer, it can attach each element of the bias vec-
tor to each column of the weight matrix. Subsequently, the
inner product and the bias addition in GMM may be com-
puted together by accessing the weight column and the bias
element in the same cache line. Additionally, all three prim-
itives have their inverse counterparts, namely fold, unpad,
and decouple_at, to transform layouts back and forth.
With these layout primitives, users can develop various

layout schedules without re-writing operators. This feature
also simplifies the design of our later auto-tuning module.

4.2 Layout Propagation
The layout primitives working at the local tensor level could
incur overhead when performing joint or end-to-end opti-
mization on a computational graph. Specifically, we discover
layout-conversion overhead and fusion-conflict overhead. In
this subsection, we will analyze the overhead and propose
the layout propagation mechanism to address this issue.

Given a C2D, if it requires a different layout for the weight
tensor, we can transform it offline without any runtime over-
head because the weight tensor is a constant. Unfortunately,
if the C2D requests a different input layout X′, it can only
be achieved either by (1) inserting an operator performing
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Table 1. Basic layout primitives.

Primitive Parameter Transformed Shape Transformed Accessing Expressions

split 𝑘 , 𝐹1, ..., 𝐹𝑚 ...𝑁𝑘−1𝐹1 ...𝐹𝑚𝑁𝑘+1... ..., 𝑖𝑘−1,
𝑖𝑘

𝐹2→𝑚
, ...,

𝑖𝑘
𝐹𝑚

mod 𝐹𝑚−1, 𝑖𝑘 mod 𝐹𝑚, 𝑖𝑘+1, ...

reorder permutation vector 𝑝 𝑁𝑝 (1)𝑁𝑝 (2) ...𝑁𝑝 (𝑘 ) 𝑖𝑝 (1) , 𝑖𝑝 (2) , ..., 𝑖𝑝 (𝑘 )

fuse 𝑘, 𝑘 + 1, ..., 𝑘 +𝑚 ...𝑁𝑘−1 (𝑁𝑘→𝑘+𝑚)𝑁𝑘+𝑚+1... ..., 𝑖𝑘−1, (𝑖𝑘𝑁2→𝑚 + 𝑖𝑘+1𝑁3→𝑚 + ... + 𝑖𝑘+𝑚), 𝑖𝑘+𝑚+1, ...

padding C2Dconversion
layout X layout X’

(a) Layout conversion operator.

padding C2D
layout X’

propagation

(b) Layout propagation.

Figure 5.Ways to achieve runtime layout conversion.

for n in range(N):
for ht in range(H // 4):

for w, o in range(W, O):
for hi in range(4):

Conv[n][ht][w][o][hi] = 0.0
for ri, rh, rw in range(I, KH, KW):

Conv[n][ht][w][o][hi] += Inp[...]*Ker[...]
for n, o, h, w in range(N, O, H, W):

ReLU[n][o][h][w] = max(Conv[n][h//4][w][o][h%4],0)

Figure 6. Loop nests without propagation and fusion.

runtime layout conversion (Fig. 5a) or (2) letting the pro-
ducer operator yield each element based on the new layout
directly (Fig. 5b). Inserting layout conversion operators will
incur extra overhead due to runtime data movements. So, we
prefer the second way, which is called layout propagation.
After propagation, the padding operator actually performs
two tasks at runtime: padding zeros and converting the lay-
out. Similarly, for the output tensor of C2D, we can let its
consumer operator access the new layout directly, rather
than inserting another conversion operator next to C2D.

Besides the layout-conversion overhead, another delicate
issue emerges when incorporating operator fusion. Operator
fusion is a loop-tuning technique to promote inter-operator
data locality by letting the downstream operator consume
the intermediate data immediately before spilling out of the
cache. Consider two operators: C2D and ReLU, and the orig-
inal output layouts of them are both 𝑁𝑂𝐻𝑊 . Suppose we
transform the output layout of the C2D to 𝑁 𝐻

4𝑊𝑂4 through
split and reorder primitives. Then, the generated program is
shown in Fig. 6. The loop nest of the C2D is reconstructed
accordingly due to the output layout transformation. Differ-
ent from the original case, we cannot perform loop tiling
on the two loop nests with the same tile sizes and then fuse

for n, ht, w, o, hi in range(N, H // 4, W, O, 4):
Conv[n][ht][w][o][hi] = 0.0
for ri, rh, rw in range(I, KH, KW):

Conv[n][ht][w][o][hi] += Inp[...] * Ker[...]
ReLU[n][ht][w][o][hi] = max(Conv[...], 0)

Figure 7. Loop nests with propagation and fusion.

them. In joint tuning, reducing the chance of fusion due to
such loop reconstruction will result in performance loss.
To eliminate such fusion-conflict overhead induced by

layout transformation, we extend the layout propagation
mechanism such that the same layout can be shared among
multiple tensors. Layout propagation can be implemented
easily by duplicating the primitive sequence of the source
tensor for the target tensor. For instance, we replicate the
split and reorder primitives from tensor 𝐶𝑜𝑛𝑣 in Fig. 6 for
tensor 𝑅𝑒𝐿𝑈 . Then ReLU will trigger the same loop nest
reconstruction, hence aligned perfectly with that of C2D.
Consequently, the fusion-after-tiling in loop tuning will be
the same as the normal case, as illustrated in Fig. 7.

Algorithm 1: Layout Propagation
1 Function LayoutPropagation(𝐺 = (𝑉 , 𝐸), 𝑝):
2 P←− {𝑝𝑇 } // P is a set of primitive sequences

3 if 𝑝𝑇 = ∅ or 𝑝𝑇 contains non-trivial advanced
primitives or 𝑜2 is a complex operator then

4 insert conversion op before 𝑜2
5 return P

6 Q ←− Queue({𝑒𝑇𝑜1→𝑜2 }) // edge 𝑒𝑇𝑜1→𝑜2 ∈ 𝐸
connecting operators 𝑜1 and 𝑜2, denoting tensor T

7 while Q ≠ ∅ do
8 𝑒𝑠𝑜1→𝑜2 ←− Q.pop()

9 foreach 𝑒𝑡𝑜2→𝑜3 ∈ 𝐸 do
10 if 𝑜2 is elementwise and t.shape() =

s.shape() and 𝑜3 is not complex then
11 𝑝𝑡 ←− 𝑝𝑠.copy() && P.insert(𝑝𝑡)

12 Q.push(𝑒𝑡𝑜2→𝑜3)

13 return 𝑃

We present the layout propagation algorithm in Algo-
rithm 1. Given a computational graph 𝐺 = (𝑉 , 𝐸) and a
primitive sequence 𝑝𝑇 for tensor T, we propagate 𝑝𝑇 in a
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topological order until three constraints are unmet. The first
constraint (Line 3) checks for non-trivial advanced primi-
tives to minimize data expansion, as advanced primitives
can cause extra redundancy. The second constraint (Line 3)
eschews the overhead of propagation itself by tuning each
complex operator independently. This is because the optimal
layout for one operator may be suboptimal for another. The
algorithm inserts a conversion operator and terminates if
either constraint is unmet (Line 4). Thus, we do not consider
layout-conversion overhead in this case. For example, a con-
version operator will be inserted between two consecutive
C2Ds, rather than sharing the same layout between them.
Then we construct a queue 𝑄 for further propagation. For
each edge 𝑒𝑠𝑜1→𝑜2 in 𝑄 , the layout can be propagated across
𝑜2 onto 𝑒𝑡𝑜2→𝑜3 if 𝑜2 is an element-wise operator (with the
form 𝑌 [𝑖] = 𝐹 (𝑋 [𝑖])) and the shape of tensor 𝑡 is the same
as 𝑠 . This third constraint is introduced because the param-
eters of primitives are shape-dependent. Additionally, if 𝑜3
is complex (Line 10), the propagation terminates without
inserting a conversion operator (unlike Line 4). That is, a
simple operator between non-consecutive C2Ds will perform
the actual layout conversion like the padding in Fig. 5b.

4.3 Loop Transformation
We perform loop transformation via reusing the loop primi-
tives of TVM [9]: split, reorder (same names as layout ones,
but distinct functions), vectorize, unroll, cache_read/write,
parallel, inline, and compute_at.Most loop-tuning techniques,
including loop tiling, vectorization, and operator fusion, can
be realized by combining these primitives.

5 Auto-tuning
Even with the transformation module, optimization is still
painful because it requires numerous manual trials. In this
section, we devise a unified framework to jointly optimize
layouts and loops to generate high-performance programs
automatically.
Our joint tuning comprehends three steps: 1) we build

the layout tuning space for tensors and loop tuning space
for operators, each point in the space can be decoded as a
primitive sequence; 2) we explore the tuning space to find the
best performant point; 3) we decode this point as instantiated
primitives and deliver them to the transformation module.

5.1 Space Building
With our transformation module, we only need to find the
best parameters to apply primitives for auto-tuning. Thus,
the tuning space is equivalent to the parameter spaces for
primitives. For now, we only consider layout split, reorder,
and unfold primitives in the layout space. Also, we will omit
details on the loop space, which is similar to [82, 88], e.g.,
space of loop split factors for each operator.

Table 2. Profiled L1 data cache misses.

Tile Size #L1-mis / Pred. (1st F.) #L1-mis (2nd F.)

512 × 4 32 / 32 208

512 × 16 96 / 128 262

512 × 64 501 / 512 785

512 × 256 2037 / 2048 2952

The layout space to be built should be pruned, otherwise, it
will be infinitely large because the number of primitives that
can be applied is infinite. As in Section 1, we only perform
layout tuning for complex operators and propagate their
results to reduce the number of tuning tasks. Further, we
craft a layout tuning template for each tensor that is accessed
by complex operators. Each template only exposes a subset
of parameters of primitives as tunable options. The templates
are crafted based on the following observations on how data
layouts influence performance considering intra-operator
data dependency and hardware characteristics.

First, data layout influences data reuse strategy [15, 36, 44,
46]. For most architectures, data reuse is vital to reducing
the number of memory accesses and improving the pipeline.
Consider C2D as an example, each output element requires
(𝐾𝐻 ) · (𝐾𝑊 ) · 𝐼 input elements for reduction. Without data
reuse, we need totally 𝑁 ·𝐻 ·𝑊 ·𝑂 · (𝐾𝐻 ) · (𝐾𝑊 ) · 𝐼 load in-
structions for the input tensor. Fortunately, an input element
is required by at most (𝐾𝐻 ) · (𝐾𝑊 ) ·𝑂 output elements. Thus,
we can reuse an input element to accumulate on 𝐾𝐻 × 𝐾𝑊
spatial positions or 𝑂 channels before spilling it out of the
cache. Besides, sequential data accesses can be bundled by
SIMD instructions. With these two aspects, we can also ex-
plain why𝑁𝐻𝑊𝑂 layout often performs better than𝑁𝑂𝐻𝑊
layout [82]: 1) an input element can be reused to accumulate
on many (at most𝑂) output channels and𝑂 is typically large,
hence a high reuse rate; 2) output channels can be loaded
with SIMD instructions easily since 𝑂 is the last dimension.

Second, data layout influences cache utilization. Both lay-
out and loop tiling can be exploited to let a data block fit
in cache [62]. Besides, we also observe that layout tiling
can further prevent cache misses by facilitating hardware
prefetching [12, 16, 47]. To verify, we conduct an experiment
on a Cortex-A76 CPU, the L1 data cache line size of which
is float32x16 (i.e., 64 bytes). We profile two functions and
both of which only load a 2-D data block from memory with
NEON instructions. The data elements for the first function
are stored contiguously in memory, i.e., layout tiling case.
By contrast, the elements for the second function are stored
row by row, i.e., loop tiling case without changing data place-
ments. The profiled L1 cache misses are reported in Table 2,
where we also present our predictions based on hardware
prefetching in the second column. We observe that the CPU
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is very likely to fetch four contiguous cache lines on a miss
event. The prediction for 512 × 4 is calculated as 512×4

16×4 = 32.
From Table 2, layout tiling is preferable to loop tiling to
improve cache utilization via hardware prefetching.
The second observation indicates that layout tiling im-

proves cache utilization even though loop tiling has been
exploited. Thus, our layout tuning template is a tiling tem-
plate, with tiling sizes as basic tunable options. For most
dimensions, the tiling can be achieved with split primitives.
For height and width dimensions of convolutions, it can be
achieved with the unfold primitives to enable the overlapped
tiling. After splits and unfolds, based on the first observation,
we let the tiled channel dimension be the last dimension to
promote data reuse and SIMD. Consequently, our data layout
tuning template for C2D has the following form:

• output tensor𝐶𝑜𝑛𝑣 : 𝑁 𝐻
ℎ𝑡

𝑊
𝑤𝑡

𝑂
𝑜𝑡
ℎ𝑡𝑤𝑡𝑜𝑡 , where ℎ𝑡 ,𝑤𝑡 , and 𝑜𝑡

are three tunable split parameters for tiling 𝐻 ,𝑊 , and 𝑂 .
• input tensor 𝐼𝑛𝑝 :𝑁 𝐻

ℎ𝑡

𝑊
𝑤𝑡

𝐼
𝑖𝑡
(ℎ𝑡 + 𝐾𝐻 − 1) (𝑤𝑡 + 𝐾𝑊 − 1) 𝑖𝑡 ,

where (ℎ𝑡 + 𝐾𝐻 − 1) and (𝑤𝑡 + 𝐾𝑊 − 1) are the unfolded
dimensions, and 𝑖𝑡 is the only tunable split parameter for
tiling 𝐼 .
• weight tensor 𝐾𝑒𝑟 : 𝑂

𝑜 ′𝑡
𝐼
𝑖′𝑡
(𝐾𝐻 ) (𝐾𝑊 )𝑖′𝑡𝑜 ′𝑡 , where 𝑖′𝑡 and 𝑜 ′𝑡

are two tunable split parameters for tiling 𝐼 and 𝑂 .

In the above templates, uppercase letters represent the
original dimensions, while lowercase letters with a subscript
𝑡 denote the tiled parameters correspondingly. We do not
need to tune the unfolded dimensions for the input tensor,
because they are directly related to the tiling of the output
tensor. Suppose the tuner splits the 𝐻 dimension of the out-
put tensor as 𝐻

ℎ𝑡
× ℎ𝑡 . It then applies the following unfold

primitive on the input tensor directly:

unfold(Inp, Inp height, h_t + (KH - 1), h_t)

This is the same as the case in Fig. 2 where ℎ𝑡 = 𝐻
2 .

In summary, the pruned layout space for C2D consists of
six tunable parameters (i.e., at a scale of 𝑂 (106)): ℎ𝑡 ,𝑤𝑡 , 𝑜𝑡
for tiling 𝐻,𝑊 ,𝑂 of the output tensor, 𝑖𝑡 for tiling 𝐼 of the
input tensor, 𝑖′𝑡 , 𝑜 ′𝑡 for tiling 𝐼 ,𝑂 of the weight tensor. For
other convolutions (e.g., 3-D case), the template is similar.

For a GMM𝐶 = 𝐴
⊙

𝐵, where𝑀𝑁,𝑀𝐾,𝐾𝑁 are the orig-
inal layouts of the three matrices, the search space is much
smaller due to fewer dimensions. Thus our template consists
of split parameters for all dimensions. Then, based on the
first observation, the reorder after splits is determined with-
out tuning: 𝑀

𝑚𝑡

𝑁
𝑛𝑡
𝑚𝑡𝑛𝑡 for 𝐶 , 𝑀𝑚𝑡

𝐾
𝑘𝑡
𝑚𝑡𝑘𝑡 for 𝐴, and 𝐾

𝑘𝑡

𝑁
𝑛𝑡
𝑘𝑡𝑛𝑡

for 𝐵. Finally, there are three tunable parameters (i.e., up to
𝑂 (103) points):𝑚𝑡 , 𝑘𝑡 , 𝑛𝑡 , in the layout space for GMM.

The above templates only perform one-level multi-dimen-
sional layout tiling. We can expand them to multi-level cases
easily, which can be configured in ALT for scalability. For
example, the two-level layout tiling template for the output
tensor of C2D is 𝑁 𝐻

ℎ′𝑡ℎ𝑡
𝑊
𝑤′𝑡𝑤𝑡

𝑂
𝑜 ′𝑡𝑜𝑡

ℎ′𝑡𝑤
′
𝑡𝑜
′
𝑡ℎ𝑡𝑤𝑡𝑜𝑡 .

Actors

Loop Agents

Actor

Layout Agent

padding C2D ReLU

initial layout state loop state 

layout 

complex operator to optimize layouts 

feedback 

action sequence 

random walk 

update state 
final layout state 

Figure 8. Cross exploration architecture.

Without our template-based pruning, the search space,
especially the parameter space for the reorder primitive,
will be too large to explore. The only concern after pruning
is whether the subspace contains good points. We verify
the effectiveness of pruning through experiments. Besides,
our templates are general enough such that users rarely
require creating new ones. If the need arises, it is typically
straightforward for most hardware architectures. We intend
to explore a template-free approach in the future.

5.2 Exploration & Cost Model
To explore the search space, we need to: (1) visit points
efficiently; (2) evaluate visited points rapidly. We resort to
the PPO algorithm [58] from reinforcement learning (RL)
to explore the space. Compared with heuristic algorithms
(e.g., genetic algorithm) and other RL algorithms, PPO is
learning-based and more stable [30], which is introduced
in [2] to speed up the tuning space exploration. To speed
up the evaluation, we develop a cost model to predict the
performance to reduce the number of time-consuming on-
device measurements.
In RL, an agent will respond (referred to as action) to

environments based on its observation, which is composed
of the state of the current environment and feedback given
by the environment called reward. PPO employs two neural
networks: actor and critic. The actor gives actions while the
critic judges each action, i.e., fitting the real rewards.
Even with PPO, exploring layout and loop spaces simul-

taneously is challenging. Consider the C2D as an example,
we need to rebuild its loop space every time given a new
layout, because the loop nest relies on the output layout, like
𝑛, 𝑜, ℎ,𝑤 in Fig. 6. The reconstructed loop space further leads
to that the points searched previously will be invalid in the
new space, hence inefficient exploration.
As in Section 1, our solution to this issue involves two

aspects. We first divide the performance tuning into two
stages: the joint stage and the loop-only stage. We then pro-
pose a cross-exploration architecture, as shown in Fig. 8, for
the joint stage. The cross-exploration repeats the following
process: determining a layout through the layout PPO actor,
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performing multiple rounds of loop tuning via loop PPO ac-
tors, and feeding the best performance back as the reward for
the current layout. Consequently, we achieve a bidirectional
and unified optimization flow in the joint stage to find better
layouts. We also prevent inefficient loop tuning, since the
loop reconstruction will not occur in the loop-only stage.
In the following, we will only elaborate on the design of

RL action, state, and reward for the joint stage based on the
cross-exploration architecture. The loop-only stage can be
achieved by removing layout-related searches.

5.2.1 Layout Space Exploration. Since the pruned layout
space only involves tunable split parameters, we here develop
a generic actor to explore the parameter space of the layout
split primitive. Then, the final layout will be determined by
a sequence of actions. Take the C2D in Fig. 6 as an example,
the action sequence for resolving the output layout of 𝐶𝑜𝑛𝑣
consists of: split 𝐻 , split𝑊 , split 𝑂 , and reorder them to
𝑁 𝐻
ℎ𝑡

𝑊
𝑤𝑡

𝑂
𝑜𝑡
ℎ𝑡𝑤𝑡𝑜𝑡 . The split actor only provides the factors to

split𝐻,𝑊 ,𝑂 , while the reorder is determined in the template
in Section 5.1. Similarly, replacing the first two splits with
unfolds forms the action sequence for the input layout.
Consider the dimension with a size of 𝐷 in a tensor. To

obtain a generic split actor, we map its output action 𝑎𝑠 to
a contiguous interval (0, 1). Then, the splitting factor 𝐹 is
calculated as follows:

𝐹 = 𝑅(𝐷 · 𝑎𝑠 ) . (2)

Assume the tensor𝐶𝑜𝑛𝑣 in Fig. 6 has𝑂 = 32. The actor gives
one action 𝑎𝑠 = 0.5. Then we derive two split dimensions :
𝑜𝑡 = 𝑅(32 ∗ 0.5) = 16, 𝑂

𝑜𝑡
= 𝑅(32/16) = 2.

The state for the actor is given by the concatenation of the
current states of all primitives for all tensors of the complex
operator (e.g., 𝐼𝑛𝑝 , 𝐾𝑒𝑟 , 𝐶𝑜𝑛𝑣 in a C2D). For instance, when
unfolding the height of 𝐼𝑛𝑝 in Fig. 2 into two parts, the
current state of the unfold primitive is changed to [2, 𝐻2 +
(𝐾𝐻−1)], while the initial state was [1, 𝐻+𝐾𝐻−1]. Similarly,
the current state for the split primitive is composed of factors,
e.g., [2, 16] for 𝑜 = 32 (initial state was [1, 32]). Then the final
state is the concatenation of all such sub-states.

5.2.2 Loop Space Exploration. The exploration for loop
space follows a similar random-walk design as [88]. We first
sample a batch of points in the loop space and choose the best
one as the starting point, then each actor gives a direction
for some parameter space. After that, we arrive at the next
point by walking along that direction, as shown in Fig. 8.
Including the layout split actor, we have a lot of actors

now. To model the interference among subspaces/primitives,
we deploy a global shared critic network for all actors (not
shown in Fig. 8 for simplicity).

The reward 𝑟 for all RL agents is the same:

𝑟 = 𝑈 − 𝑙 , (3)

where 𝑈 is a constant and 𝑙 is the latency of a point. For
layout RL agents, 𝑙 is chosen as the best latency after several
rounds of loop exploration given the current layout.

5.2.3 Cost Model. To evaluate points rapidly, we estimate
the performance by a cost model for each hardware. The
cost model is a XGBoost tree ensemble [8], similar to that of
Ansor [82]. For a point, we decode it as primitives and apply
them to generate the optimized program. Then we feed the
features of the program (e.g., loop structures and accessing
expressions) to the cost model to estimate the throughput.
During exploration, we only measure the top-𝑘 points of a
batch or an episode of RL trajectories, which are predicted
by the cost model, on the target hardware.

6 Implementation
We implemented ALT based on TVM (v0.8dev1) [9] with 19K
LoC of Python and 2K LoC of C++.

To implement the layout transformation, we insert a pass
before lowering the tensor expression (TE) of TVM to TVMIR.
This pass will rewrite the indices of all tensor accesses in TE
when layouts change. With regard to an operator 𝑌 = 𝐹 (𝑋 )
where the output tensor 𝑌 is of shape 𝑁1𝑁2..𝑁𝑚 , in TE this
operator has𝑚 nested spatial loops, each corresponding to
a dimension of 𝑌 (one-to-one mapping). We denote the loop
variables as 𝐿 = {𝑙1, 𝑙2, ..., 𝑙𝑚}. Assume ALT caches a set of
primitive sequences S. We denote the primitive sequence
for 𝑌 as 𝑆𝑌 . Our pass first deducts the final layout of 𝑌 by
applying each primitive function in 𝑆𝑌 . Assuming the new
layout has 𝑛 dimensions, the loop structure will then be re-
constructed by TE as 𝐿′ = {𝑙 ′1, 𝑙 ′2, ..., 𝑙 ′𝑛}. Given the one-to-one
mapping between a dimension of the output tensor and a
loop variable, we will also have 𝐿′ = 𝑆𝑌 (𝐿). With this, we
can transform accesses for tensor 𝑋 while ensuring valid-
ity. Specifically, the accesses of 𝑋 must first be remapped
with the newly reconstructed loop variables. The remapping
is done in two steps: 1) calculating the inverse primitive
sequence of 𝑆𝑌 , denoted as 𝑆−1𝑌 ; 2) replacing all old loop vari-
ables 𝐿 by 𝑆−1

𝑌
(𝐿′) in all access indices of 𝑋 . Then the tensor

accesses of 𝑋 can be safely transformed to 𝑆𝑋 (𝑆−1𝑌 (𝐿′)).
The joint stage of ALT sequentially tunes each complex

operator following the topological order and propagates the
resulting layouts. A special case is an operator with multiple
producers. Consider 𝑌 [𝑖] = 𝐹 (𝑋0 [𝑖], 𝑋1 [𝑖], 𝑋2 [ 𝑗]), where
there are element-wise mappings between 𝑋0 and 𝑌 , and
between 𝑋1 and 𝑌 . When the layouts of 𝑋0 and 𝑋1 are both
tuned, ALTwill heuristically choose𝑋0 for propagation onto
𝑌 . Conversely, if the layout of 𝑌 is tuned first (i.e., there is no
prior complex operator that can propagate layouts to 𝑋0 or
𝑋1), ALT will propagate the layout of 𝑌 to both 𝑋0 and 𝑋1.

For the RL-based tuning, to improve efficiency, we pre-
trained our PPO agent by optimizing several workloads (C2D
and GMM)with the recommended hyperparameters outlined
in [76]. Half a day is sufficient on an NVIDIA V100 GPU.
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(a) Single Operator on Intel CPU.
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(b) Single Operator on NVIDIA GPU.
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(c) Single Operator on ARM CPU.

Figure 9. Single operator performance.

7 Evaluation
We evaluate ALT on various platforms, including 40-core In-
tel Xeon Gold 6248 CPU@2.5GHz (443GB memory), NVIDIA
Tesla V100 (CUDA v11.6), and Kirin 990 SoC (Android v10).
For the single-operator benchmark, we compare ALT with
vendor libraries: MKL-DNN [32] for the Intel CPU, cuDNN
(v8.2.4) [11] for the NVIDIA GPU, and Torch [51] with XN-
NPACK [26] for the ARM SoC, and widely used auto-tuning
frameworks: AutoTVM (v0.8dev1) [10], FlexTensor [88], and
Ansor [82]. For the end-to-end benchmark, we further com-
pare ALT to hardware-specific compilers: OpenVINO [33]
for the Intel CPU and TensorRT [50] for the NVIDIA GPU.
For ALT, if not specified, we use one-level layout tiling

templates for layout space building. For loop space explo-
ration, we set the sampling batch size and the episode length
to 128, and measure the top-8 points predicted by the cost
model on the target hardware. In addition, we take the total
number of such on-device measurements as a metric of the
search budget for all auto-tuning methods. Thus, a batch or
an episode of points in ALT will cost a budget of 8.

7.1 Single Operator Benchmark
We first present the results on single operators. We consider
nine complex operators that are layout sensitive, includ-
ing C2D, Group-wise C2D (GRP), Depth-wise C2D (DEP),
Dilated C2D (DIL), 3-D convolution (C3D), 1-D convolu-
tion (C1D), GMM, Transposed C2D (T2D), Transposed C3D
(T3D). Each operator is evaluated using 10 random config-
urations with different batch sizes, kernel sizes, etc. For in-
stance, the value of batch size is selected from [1, 16], and
the number of input channels is uniformly sampled from
[3, 16, 32, 64, 512, 960, 1280]. We generate 90 test cases for
each device. The result is normalized based on the geo-
metric mean of speedups over the worst latency of each
test case. For C1D, C2D/T2D, and C3D/T3D and their vari-
ants, we test 𝑁𝑂𝑊 /𝑁𝑊𝑂 for C1D, 𝑁𝑂𝐻𝑊 /𝑁𝐻𝑊𝑂 for
C2D/T2D, and 𝑁𝑂𝐷𝐻𝑊 /𝑁𝐷𝐻𝑊𝑂 (𝐷 is the depth dimen-
sion) for C3D/T3D and report the best for baselines except
Torch (it only supports 𝑁𝑂𝑊 , 𝑁𝑂𝐻𝑊 , 𝑁𝑂𝐷𝐻𝑊 ). We set
the search budget to 1000 for all auto-tuning methods, which
is suggested by Ansor. ForALT, the budget for the joint stage
and the loop-only stage is 300 and 700 respectively.

As shown in Fig. 9a, on Intel CPUALT achieves 2.1×, 9.9×,
9.8×, and 1.6× speedups in comparison with MKL-DNN, Au-
toTVM, FlexTensor, and Ansor respectively. Among all opera-
tors, DIL and DEP have lower operational intensity, and thus
they are more likely to be memory-bound. For DIL and DEP,
ALT outperforms other baselines with a large margin be-
cause layout tuning can effectively reduce memory accessing
overheads. Even for operators typically compute-bound, e.g.,
C2D and C3D, ALT still achieves notable speedups. This is
because the operational intensity depends on tensor shapes.
ALT can tailor the tensor layouts toward each specific shape
and hardware platform.

Comparedwith cuDNNon theNVIDIAGPU,ALT achieves
averaging 1.4× speedup. Generally, ALT is comparable to
cuDNN in typical workloads (e.g., GMM of 2048 × 2048)
and better in most non-typical ones which are often less
optimized in vendor libraries. Further, AutoTVM suffers
from small tuning space and FlexTensor has no cost model,
thus both demonstrate inferior performance than Ansor
and ALT. Compared with Ansor, ALT achieves significant
speedups owing to joint layout and loop tuning: 1.5× and
1.4× speedups on NVIDIA GPU and ARM CPU respectively.

7.2 End-to-End Benchmark
We then evaluate the end-to-end performance of ALT with
five neural networks, including 1) image processing: ResNet-
18 (R18) [29], MobileNet-V2 (MV2) [57], 2) natural language
processing: BERT-base (BB) [18], BERT-tiny (BT) [19] (RNNs
are not included due to the lack of space.), and 3) video pro-
cessing: ResNet3D-18 (R3D) [28]. For Intel CPU and NVIDIA
GPU, the benchmarks use batch sizes of 1 and 16. For ARM
CPU, we set the batch size to 1 due to the limited resource.
For convolutional networks, the input tensor is of shape

𝑁 ×3×224×224 (image processing) and 𝑁 ×3×16×112×112
(video processing), respectively. For BERT, the shape of the
input tensor is 𝑁 × 128. For auto-tuning baselines, we set the
search budget as 20,000 (which is suggested by Ansor [82]).
We set the budget for the joint stage to 8,000 and the budget
for the loop-only stage to 12,000 in ALT. Additionally, Torch
uses 𝑁𝑂𝐻𝑊 /𝑁𝑂𝐷𝐻𝑊 layouts while AutoTVM and Ansor
use 𝑁 𝑂

𝑜𝑡
𝐻𝑊𝑜𝑡/𝑁 𝑂

𝑜𝑡
𝐷𝐻𝑊𝑜𝑡 after integrating NeoCPU [43].
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(a) Network on Intel CPU.
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(b) Network on NVIDIA GPU.
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(c) Network on ARM CPU.

Figure 10. End-to-end inference performance.

We illustrate the normalized performance in Fig. 10, where
𝑏1 denotes batch size 1 and 𝑏16 denotes batch size 16. The
number on top of each bar demonstrates the latency in mil-
liseconds. To verify the effectiveness of the joint tuning
and layout propagation, we define two variants of ALT: (1)
ALT-OL, which only involves loop optimization without the
joint stage based on 𝑁𝐻𝑊𝑂/𝑁𝐷𝐻𝑊𝑂 layouts; (2) ALT-WP,
which only eliminates conversion operators between adja-
cent operators, as that shown in Fig. 5b. Compared with
OpenVINO, TensorRT, and Torch, ALT achieves averaging
1.67× speedup (1.16× in median), 1.24× speedup (1.13× in
median), and 3.6× speedup (2.8× in median) on the three
platforms respectively. The vendor libraries (MKL-DNN and
cuDNN) under OpenVINO and TensorRT put tremendous
engineering efforts into optimizing typical workloads (e.g.,
R18), where ALT can achieve comparable performance. By
contrast, for lightweight networks with lower operational in-
tensity (e.g., MV2), ALT achieves significant speedups. Com-
pared with the state-of-the-art auto-tuning system, Ansor,
ALT achieves averaging 1.47×, 1.39×, and 1.46× speedups
on Intel CPU, NVIDIA GPU, and ARM CPU, respectively.
ALT-OL and Ansor achieve similar performance as both

involve loop tuning. With layout tuning and basic layout
propagation, ALT-WP shows 1.1× speedup over ALT-OL
and no improvement in a few cases. Further, ALT achieves
1.3× speedup over ALT-WP, owing to operator fusion while
ALT-WP cannot combine layout and loop tuning effectively.
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Figure 11. The efficiency of different layout tuning methods.

7.3 Micro Benchmark
We further dive into the details of the system design.

7.3.1 Searching Method: We verify the effectiveness of
the pretrained PPO by tuning layouts of a C2D (𝑁 = 1, 𝐼 =
3, 𝐻 = 𝑊 = 230,𝑂 = 64, 𝐾𝐻 = 𝐾𝑊 = 7, and the stride
is 2), which is also the first C2D in R18, on the Intel CPU
used in Fig. 10a. We compare three searching methods: 1)
random sampling (Random), 2) PPO without pretraining
(PPO-woPret), and 3) PPO with pretraining (PPO-Pret). The
results are reported in Fig. 11. PPO-Pret achieves the best
performance (1.2× speedup) with 2× less tuning budget com-
pared with the randommethod. Compared with PPO-woPret,
the pretraining can transfer the knowledge from optimizing
other operators to improve the online data efficiency.

7.3.2 Layout Propagation Overhead: We here study the
overhead of layout propagation to show the necessity of the
introduced constraints in Section 4.2. We evaluate two sub-
graphs on 48-core Intel(R) Xeon(R) Gold 5117 CPU@2.0GHz
and NVIDIA RTX 3070 GPU. Each subgraph consists of three
operators: padding (padding size is 1), C2D (𝐾𝐻 = 𝐾𝑊 =

3, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1), C2D (𝐾𝐻 = 𝐾𝑊 = 1, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1). The input
height/width of subgraph#1 is 7, while it is 14 for subgraph#2.
Besides, all the numbers of input/output channels are 512,
except that the number of output channels of the latter C2D
(𝐾𝐻 = 𝐾𝑊 = 1) in subgraph#2 is 2048. We conduct two
variants of ALT: ALT-FP and ALT-BP. ALT-FP will first tune
C2D (𝐾𝐻 = 𝐾𝑊 = 3) and propagate its output layout to
the input tensor of the latter C2D (𝐾𝐻 = 𝐾𝑊 = 1). While
ALT-BP will first tune C2D (𝐾𝐻 = 𝐾𝑊 = 1) and propa-
gate its input layout to the output tensor of the former C2D
(𝐾𝐻 = 𝐾𝑊 = 3). Instead, ALT will tune the two C2Ds sepa-
rately and insert a layout conversion operator between them
according to the second constraint in Section 4.2.

The profiling results are reported in Fig. 12, where we use
Ansor as a reference point.We observe thatALT outperforms
ALT-FP and ALT-WP. In other words, the best output layout
of the C2D (𝐾𝐻 = 𝐾𝑊 = 3) is sub-optimal for the second
C2D (𝐾𝐻 = 𝐾𝑊 = 1), and vice versa. Independent layout
tuning for each complex operator brings more benefits while
the layout conversion only incurs low overhead (2 microsec-
onds for GPU and 8 microseconds for CPU). Combined with
the results of ALT-WP in Fig. 10, the fusion conflicts incur
more overhead than layout conversions when performing
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Figure 13. End-to-end performance of different settings.

layout transformation. We alleviate such two kinds of over-
heads by layout propagation and eschew the overhead of
propagation itself by introducing necessary constraints.

7.3.3 Parameter Sensitivity: We study the parameter
sensitivity by comparing different budget settings and search
space sizes. We include three variants here: 1) two-level tiling
templates with 20,000 budget; 2) two-level tiling templates
but with 30,000 budget; 3) one-level layout tiling templates
with 20,000 budget as the baseline.

The end-to-end performance in different settings is shown
in Fig. 13. The first variant expands the search space size
while keeping the budget unchanged. Compared with it, the
baseline illustrates 15% performance improvement on av-
erage. By contrast, after setting the budget to 30,000, the
second variant improves about 6% performance over the
baseline. Also, more improvements can be obtained if given
a larger budget, since one-level tiling templates constitute
a subset of the two-level variant. For the budget of 20,000
in Section 7.2, one-level layout tiling templates yield a more
effective trade-off between the final performance and the
search space size. The budget of 20,000 to optimize a network
typically costs 12-16 hours. But, it is affordable for practi-
tioners as they only need to execute ALT once. Additionally,
these results demonstrate the scalability of the tuning space,
which is hard to achieve in prior auto-tuning works.

7.3.4 Case Study: To understand how the joint tuning im-
proves performance, we perform loop optimization based on
𝑁𝐻𝑊𝑂 , 𝑁𝑂𝐻𝑊 , 𝑁 𝑂

𝑜𝑡
𝐻𝑊𝑜𝑡 , and 𝑁 𝐻

ℎ𝑡

𝑊
𝑤𝑡

𝑂
𝑜𝑡
ℎ𝑡𝑤𝑡𝑜𝑡 on Intel

CPU (same as Section 7.3.2). We profiled a small computa-
tional graph: padding (the padded tensor has 𝑁 = 1, 𝐼 =

Table 3. Profiling results based on several layouts.

Layout (Conv & Ker) #Inst. #L1-lds #L1-mis #L1-sts Lat.

𝑁𝐻𝑊𝑂 & 𝑟𝑠𝐼𝑂 509.4 166.4 9.7 103.6 0.34

𝑁𝑂𝐻𝑊 & 𝑂𝐼𝑟𝑠 626.9 206.6 4.5 121.3 0.49

𝑁 𝑂
𝑜𝑡
𝐻𝑊𝑜𝑡 & 𝑂

𝑜𝑡
𝐼
𝑖𝑡
𝑟𝑠𝑖𝑜 567.6 193.6 9.9 112.9 0.37

𝑁 𝐻
ℎ𝑡

𝑊
𝑤𝑡

𝑂
𝑜𝑡
ℎ𝑡𝑤𝑡𝑜𝑡 & ... 550.5 174.3 3.9 106.2 0.25

3, 𝐻 =𝑊 = 230), C2D (𝑂 = 64, 𝐾𝐻 = 𝐾𝑊 = 7, stride is 2),
bias addition, and ReLU, which is also the first layer of R18-
b1. We set 𝑜𝑡 = 16 for 𝑁 𝑂

𝑜𝑡
𝐻𝑊𝑜𝑡 (𝑖𝑡 = 3 for the input tensor),

while the searched layout has ℎ𝑡 = 4,𝑤𝑡 = 16, 𝑜𝑡 = 16 for
𝑁 𝐻
ℎ𝑡

𝑊
𝑤𝑡

𝑂
𝑜𝑡
ℎ𝑡𝑤𝑡𝑜𝑡 (𝑖𝑡 = 1 for the input tensor).

The results are summarized in Table 3, where we abbrevi-
ate (𝐾𝐻 ) (𝐾𝑊 ) to 𝑟𝑠 for the weight tensor 𝐾𝑒𝑟 . The latency
(Lat.) is recorded in milliseconds and others are on a scale
of 106. We observe that for all layouts, except 𝑁𝑂𝐻𝑊 , their
optimized loop nests prefer reusing input values by com-
puting multiple output channels once with SIMD, thus re-
porting fewer instructions and fewer cache loads/stores than
𝑁𝑂𝐻𝑊 . Compared with 𝑁 𝑂

𝑜𝑡
𝐻𝑊𝑜𝑡 , 𝑁𝐻𝑊𝑂 shows better

data locality due to the larger tile size for the output chan-
nel. Specifically, 𝑂 = 64 in 𝑁𝐻𝑊𝑂 yields a higher reuse
rate than 𝑜𝑡 = 16 in 𝑁 𝑂

𝑜𝑡
𝐻𝑊𝑜𝑡 , as analyzed in Section 5.1.

Further, 𝑁 𝐻
ℎ𝑡

𝑊
𝑤𝑡

𝑂
𝑜𝑡
ℎ𝑡𝑤𝑡𝑜𝑡 achieves more efficient cache uti-

lization (only 2%misses) than 𝑁𝐻𝑊𝑂 , due to the contiguous
storage of intra-tile data elements after layout tiling.

7.3.5 Other Observations: Besides the profiled results,
we observe that 𝑜𝑡 in C2D in the templates is often tuned as
twice as the number of vector lanes that the platform sup-
ports when the spatial dimensions are not tiled. Specifically,
we observe that 𝑜𝑡 = 32 on Intel CPU, 𝑜𝑡 = 8 on NVIDIA
GPU, and 𝑜𝑡 = 8 on ARM CPU frequently arise. Although
the number of vector lanes with float32 data types is 16 for
AVX-512, 4 for CUDA, and 4 for NEON. This is different from
many hand-tuned libraries. Although not applicable to all
configurations or platforms, the methodology in our micro-
benchmarks could help understand the optimized layout,
and similar analysis can be conducted for other cases.

8 Related Work
Deep learning compiler. A variety of deep compilers have
been developed. Halide [53] and TVM [9] decouple the oper-
ator description and schedule to simplify loop optimization.
XLA [38], Glow [56], nGraph [17], and Relay [55] develop
graph-level representations to support layout selection, con-
stant folding, etc. Rammer [45] supports fine-grained op-
erator fusion. CODE [65] speeds up the ensemble of deep
models. Cortex [22], Nimble [60], DietCode [81], and CoRa
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[23] focus on optimizing recursive/dynamic networks. TASO
[34], Tensat [74], PET [69], Unity [66], and Ollie [85] perform
subgraph substitutions to obtain a more efficient computa-
tional graph. Tensor Comprehension (TC) [68], Tiramisu [6],
MLIR [37], and AKG [80] integrate polyhedral techniques.
Bolt [73] provides support for tensor core by integrating
CUTLASS [49]. SoyBean [70] and Alpa [83] provide auto-
tuning support for inter- and intra-operator parallelism in
distributed scenarios. UNIT[72], AMOS [87], and TensorIR
[24] provide support for tensorization on tensor accelerators.
SparTA [86] and SparseTIR [75] introduce representation for
sparse tensors. Compared with ALT, the layout auto-tuning,
together with the joint data layout and loop optimization, is
limited in these works. For instance, TC and Tiramisu require
developers to transform data buffers manually. Although
Relay and TVM can insert layout conversion operators be-
tween C2Ds with different predefined layouts (e.g., 𝑁𝑂𝐻𝑊 ,
𝑁𝐻𝑊𝑂 , etc.), each layout combination requires a manual
re-implementation of operators. By contrast, ALT supports
generic graph-level layout auto-tuning with feedback from
operator-level optimization.

Layout and loop tuning.Many systems try to improve
the performance with layout transformation [10, 14, 21, 40,
42, 43, 52, 78, 82]. For instance, [21, 78] optimize data lay-
outs for FPGA design. [40, 52] suggests to choose layouts
among 𝑁𝐻𝑊𝑂 , 𝑁𝑂𝐻𝑊 , etc. [14, 42] tightly couples it with
the sparse computation. Compared with ALT, they lack ver-
satility and are limited to a few tuning options.
By contrast, the systems in [10, 82] can typically set the

𝑜𝑡 parameter in 𝑁 𝑂
𝑜𝑡
𝐻𝑊𝑜𝑡 layout after integrating NeoCPU

[43]. However, 𝑜𝑡 is typically predetermined, and hence no
joint tuning is involved. Moreover, the operator implemen-
tation and data layouts are tightly coupled in NeoCPU and
Ansor, such that changing layouts requires inefficient re-
implementation. The root cause of such limitations resides
in the lack of a versatile infrastructure for layout transfor-
mation, which cannot be addressed by incrementally adding
more layout candidates for selection. Although Ansor fur-
ther integrates the auto-packing mechanism, it is only per-
formed on constant tensors after loop tuning by heuristics
instead of joint tuning, and the resulting performance is not
necessarily better. ALT addresses the limitations via 1) the
generic layout transformation submodule, which requires
no re-implementation, and is also independent of the loop
transformation to achieve the decoupling; 2) an auto-tuning
module at a higher level to orchestrate the cross-layer joint
tuning while guaranteeing efficiency. As for recent loop op-
timization techniques [2, 3, 5, 20, 41, 63, 64, 71, 77, 79, 84, 88–
90], such as delicate cost models [3, 5, 41, 71], aggressive
operator fusion [20, 39, 45, 48, 79, 89], and micro-kernel con-
struction [90], they are complementary to ALT.

9 Conclusion
In this paper, we propose ALT, a compiler that jointly per-
forms graph-level data layout optimization and operator-
level loop optimization for deep models. ALT provides a
generic transformation module for low-cost layout and loop
manipulation. It further integrates an auto-tuning module
for bidirectional and unified layout and loop tuning. Experi-
ments show that ALT outperforms state-of-the-art vendor
libraries and auto-tuning frameworks.
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