
Software Support and Evaluation of Hardware
Transactional Memory on Blue Gene/Q

Amy Wang, Matthew Gaudet, Peng Wu, Martin Ohmacht, José Nelson Amaral, Senior Member, IEEE,
Christopher Barton, Raul Silvera, and Maged M. Michael

Abstract—This paper describes an end-to-end system implementation of a transactional memory (TM) programming model on top
of the hardware transactional memory (HTM) of the Blue Gene/Q machine. The TM programming model supports most C/C++
programming constructs using a best-effort HTM and the help of a complete software stack including the compiler, the kernel, and the TM
runtime. An extensive evaluation of the STAMP and the RMS-TM benchmark suites on BG/Q is the first of its kind in understanding
characteristics of running TM workloads on real hardware TM. The study reveals several interesting insights on the overhead and the
scalability of BG/Q HTM with respect to sequential execution, coarse-grain locking, and software TM.

Index Terms—Hardware transactional memory, runtime system, TM, performance evaluation

1 INTRODUCTION

TRANSACTIONAL memory (TM) was proposed more than
twenty years ago as a hardware mechanism to enable

atomic operations on an arbitrary set of memory locations
[14], [28].

The following code snippet is an example of a typical
transactional memory programming interface.

transaction

a b i c i ;

A transaction is a synchronization construct that allows
operations inside a transaction to be executed as one (atomic)
operation with respect to operations in other concurrent
transactions. The semantics of a transaction can be implemen-
ted in severalways. The simplest implementation is to acquire
and release a global lock when entering and exiting a trans-
action. Such an implementation, however, can be overly
pessimistic in the amount of concurrency allowed. For in-
stance, if all concurrent transactions in the previous example
update different elements of array a, a global lock imple-
mentation would allow only one transaction to proceed,
while ideally all non-conflicting transactions should be
able to execute at the same time. Transactional memory is

such a mechanism to allow maximal concurrency among
non-conflicting transactions. The basic idea is to allow all
transactions to execute speculatively and concurrently.
During a speculative execution, the TM system will monitor
and detect conflicts amongmemory accesses of all concurrent
transactions. Once a conflict is detected, the TM system has
the ability to abort one of the transactions as if the transaction
was never executed and retry the transaction at a later time. In
a nutshell, the ability to speculatively execute and abort a
computation and to detect memory conflicts among transac-
tions is the building block of any TM implementation.

Therehasbeena longhistoryof research exploitationofTM
implementations. Given the high cost of implementing TM in
hardware, the researchcommunityearlyondevelopedseveral
implementations of software transactionalmemory (STM) [9],
[11], [23], [26] and conducted simulation-based studies of
hardware transactional memory (HTM) [2], [3], [21]. More
recently real HTM implementations start to emerge. An early
implementation of HTM was reported but never distributed
commercially [6]. For the HTM by Azul, there is little public
disclosureontheimplementationandnoperformancestudyof
the TM support [8]. The specification of a hardware extension
for TM in the AMD64 architecture has yet to be released in
hardware [7]. Recently IBM [4], [13], [16] and Intel [15] dis-
closed that they are releasing implementations of HTM.

This paper studies and evaluates BG/Q HTM, one of the
first commercially available HTM implementations today.
We make three important contributions. First, it provides a
detailed description of the BG/Q HTM implementation
(Section 3) and an in-depth analysis of its major sources of
overheads (Section 4). One large pain point of STM is the high
overhead associated with monitoring memory accesses and
maintaining speculative state inside a transaction [5]. While it
is widely expected that transactional execution overheads can
be significantly reduced in an HTM implementation, a sur-
prising finding of this study is that the BG/QHTMoverhead,
while much smaller than that of STM’s, is still non-trivial.
Some of the overheads are the result of hardware design

• A. Wang, M. Gaudet, C. Barton, and R. Silvera are with the IBM Canada
Software Laboratory, 8200 Warden Ave, Markham, Ontario L6G-1C7,
Canada.

• P. Wu, M. Ohmacht, and M.M. Michael are with the IBM T.J. Watson
Research Centre, Yorktown, NY.

• M. Gaudet and J.N. Amaral are with the Department of Computing Science,
the University of Alberta, Edmonton, Alberta, Canada.
E-mail: jamaral@ualberta.ca.

Manuscript received 18 Dec. 2012; revised 04 Sep. 2013; accepted 06 Sep. 2013.
Date of publication 16 Sep. 2013; date of current version 12 Dec. 2014.
Recommended for acceptance by M. Parashar.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.190

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015 233

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2023 at 14:44:24 UTC from IEEE Xplore. Restrictions apply.

choices. For instance, in order to allow transactions with a
large memory footprint, the BG/Q HTM is implemented
mainly in the L2 cache. To simplify the design of the in-core
L1 without breaking transactional memory functionality, the
L1 cache is either bypassedduringa transactional executionor
flushed when entering a transaction. The result is that a
transaction executing on BG/Q HTM may suffer a loss of
locality in the L1 cache.

Second, the paper presents a thorough evaluation of two
TM benchmark suites—STAMP [20] and RMS-TM [18]—
running on BG/Q TM (Sections 5 and 6). The performance
study aims at answering the question of how effective BG/Q
TM is to improve performance with respect to sequential
execution as well as alternative concurrent implementations
using locks and TinySTM [12]. The performance study leads
to a division of typical concurrent applications into three
categories. 1) There are applications that usemedium-to-large
transactions but that often execute successfully in the BG/Q
HTMwithoutmany aborts. These applications are suitable for
BG/Q HTM and can achieve good performance with little
additional programming efforts. 2) There are applications that
scale well with conventional locks, therefore should not use
either STM or BG/Q TM because both incur a larger single-
thread overhead than a lock-based implementation. 3) Some
applications use small transactions that usually do not result
in memory conflicts. These small transactions appear fre-
quently, for instance, by residing inside a loop, and thus
constitute the critical path of an application. Such applications
may be better suited for STM because the single-thread
overhead of an STM system may be compensated by the
concurrency that the STM enables.

Third, the paper describes how the HTM support in BG/Q
can be complemented by the software stack—which includes
the kernel, the compiler, and the runtime system—to deliver the
simplicity of aTMprogrammingmodel (Sections 2 and4). The
HTM support in BG/Q is best effort in nature because not all
computation may execute successfully in a hardware trans-
action. This limitation ismainly due to the boundedness of the
hardware implementation, such as having a limited capacity
to maintain speculative state during transactional execution.
The TM software stack provides a fall-back mechanism to
execute the transaction non-speculatively under a special
mode called the irrevocable mode.

In terms of programmability, HTM is a clear win over
STM. A TM programming model based on an STM imple-
mentation often requires the programmer to annotate codes
and/or instrument memory references that may execute
inside a transaction. The BG/Q TM programming model, on
the other hand, is much simpler and requires only a block
annotation of transactional codes. It is also worth pointing
out the performance-productivity aspect of different TM
implementations because there is a noticeable difference in
the effort required to achieve good performance using STM
versus HTM. For example, the STM version of the STAMP
benchmark is manually instrumented to minimize the read-
and write-set maintained by the STM in order to achieve a
good performance, whereas the BG/Q TM version of these
benchmarks is not.1

The rest of the paper is organized as follows. Sections 2, 3,
and 4 describe the TM programming model, BG/Q HTM
implementation, and the software stack that supports the
TM programming model, respectively. Section 5 describes
the evaluation methodology and the benchmarks. The
performance study of BG/Q TM is presented in Section 6
(comparison between the short- and long-running modes),
Section 7 (single-thread performance), and Section 8 (scalabil-
ity). A discussion of relatedwork appears in Section 9, andwe
conclude in Section 10.

2 TRANSACTIONAL MEMORY PROGRAMMING
MODEL

BG/Q provides a simple programming model based on the
abstraction of transaction. The semantics of a transaction is
similar to that of a critical section or a relaxed transaction as
defined in [29]. In a concurrent execution, transactions appear
to execute sequentially in some total orderwith respect to each
other. Specifically, operations inside a transaction appear not
to interleave with any operation from other concurrent trans-
actions. Two transactions are nested if one transaction is
entirely inside the other transaction. Nested transactions are
flattened: the entire nest commits at the end of the outermost
level of nesting. A failed nested transaction rolls back to the
beginning of the outermost nesting level.2 BG/Q TM, as a
programming model, is privatization-safe, but not obstruc-
tion free because when a transaction fails to execute as a
hardware transaction, it will be executed non-speculatively in
the irrevocable mode, which may block the progress of other
transactions (see Section 4.3).

The BG/QTMprogrammingmodel syntactically defines a
transaction as a single-entry and single-exit code block using
the annotation #pragma tm atomic. The specification of trans-
actional code region is orthogonal to the threading model,
such as the use of OpenMP or pthreads. Any standard
language construct is allowed in a transaction, and the
computation inside a transaction can be arbitrarily large
and complex. The only constraint is that the boundary of a
transaction must be statically determinable in order for the
compiler to insert proper codes to end a transaction. As a
result, certain unstructured control-flow constructs that may
exit a transactional block may result in a compile- or run-
time error. Similarly, exceptions thrown by a transaction are
unsupported.

Fig. 1 shows a critical section from a STAMP benchmark
expressed in the BG/Q TM programming interface. Note the
simplicity of this programming interface. In contrast, pro-
gramming models based on STM implementations require
more code annotations for the compiler and, to achieve good
performance, often require carefulmanual instrumentation of
memory accesses inside transactions.

3 HARDWARE TRANSACTIONAL MEMORY
IMPLEMENTATION IN BG/Q

In BG/Q each compute chip has 16 processor cores and each
core can run four hardware Simultaneous Multi-Threaded

1. Note that BG/Q TM provides no mechanism to selectively allow
non speculative memory accesses in a transactional execution.

2. The nesting support is implemented purely in software in the TM
runtime.

234 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2023 at 14:44:24 UTC from IEEE Xplore. Restrictions apply.

(SMT) threads. A core has a dedicated 16K-byte L1 cache that
is 8-way set-associativewith a cache line size of 64 bytes and a
2K-byte prefetching buffer. All 16 cores share a 32M-byte L2
cache with a cache line size of 128 bytes.

BG/Q provides the following hardware mechanisms to
support transactional execution:

Buffering of speculative state. Stores made during a
transactional execution form the speculative state. In
BG/Q, transactional speculative state is buffered in the
L2 cache and is only made visible (atomically) to other
threads after a transaction commits.
Conflict detection. During a transactional execution, the
hardware detects read-write, write-read, or write-write
conflicts among concurrent transactions and conflicts
resulted from a transactional access followed by a non-
transactional write to the same line. When a conflict is
detected, the hardware sends interrupts to threads in-
volved in the conflict that execute transactions. A special
conflict register is flagged to record various hardware
events that cause a transaction to fail.

The above hardware support is used to provide both
ordered and unordered memory transactions on BG/Q. The
former is also known as thread-level speculation (TLS) [27].
Since the BG/Q support for TLS is beyond the scope of this
paper, the rest of the paper focuses exclusively on the unor-
dered transactional-memory support of BG/Q.

3.1 Hardware Support for Transactional Execution
in L2

BG/Q’s hardware support for transactional execution is im-
plementedprimarily in the L2 cache,which serves as the point
of coherence. TheL2 cache is divided into 16 slices,where each
slice is 16-way set-associative. To buffer speculative state, the
L2 cache can store multiple versions of the same physical
memory line. Each version occupies a different L2 way.

Upon a transactional write, the L2 allocates a new way in
the corresponding set for the write. A value stored by a
transactional write is private to the thread until either it is
madevisible toother threadswhen the transaction commits or
it is discarded when the transaction is aborted.

For each access, the L2 directory records whether it is read
or written and whether it is speculative. For speculative
accesses, the L2 directory also tracks which thread has read
orwritten the line by recording aunique ID, called the spec-ID,
associated with the transaction. This tracking provides the
basic bookkeeping to detect conflicts among transactions and
between transactional and non-transactional accesses.

The commit of a transaction is done by the hardware in two
phases. First a central speculation control unit notifies all L2
slices of its intention to commit a spec-ID and waits for
responses. Slices that acknowledge the feasibility of a commit
enter a fail-prevention state that disallows any action that
may disrupt the on-going commit. After collecting all re-
sponses, the central unit notifies all slices whether the commit
is successful or not. The commit latency is defined by the
round-trip latency from the cores to the central speculation
control unit, which is about 100 cycles and can be fully
pipelined, and the duration of the two-phase commit, which
is about 18 cycles.

At the hardware level, an abort has practically no overhead
because it requires the issuingof a single store to invalidate the
spec-ID.However, the detection of a conflict, the invocation of
the software handler, and the recycling of spec-IDs do have a
cost.Moreover, conflicts detected by the L2 slices are reported
to the cores as they occur, setting a flag in a core accessible
register. This register may be polled by the software during
lazy conflict detection, which takes about 30 cycles.

BG/Q provides 128 spec-IDs to distinguish memory
accesses made by concurrent transactions. Each new transac-
tion, including retrying transactions, needs to apply for a
spec-ID when it starts. If the system runs out of available
spec-IDs, the start of the transaction is blocked until a spec-ID
becomes available. When a spec-ID is invalidated, it is still
stored in the L2 slices’ directories and it needs to be removed
before it can be re-used. Invalid spec-IDs are removed when-
ever a load or store accesses the set that contains the spec-ID.
An automatic background scrub accesses sets at a program-
mable rate—with aminimumof 12 cycles between set visits—
to reclaim invalid spec-IDs. At predetermined intervals, the
L2 cache examines all cache lines and checkswhether they are
associated with spec-IDs from transactions that are either
aborted or committed. After all lines associated with a spec-
ID are either marked as invalid or merged with the non-
speculative state (i.e., committed), the spec-ID is reclaimed
and made available again. This reclamation process is called
spec-ID scrubbing. The interval between two starts of the
scrubbing process is the scrubbing interval. The default scrub-
bing interval is 132 cycles but can be altered by the runtime via
a system call. Note that setting the scrub interval too highmay
lead to the blocking of new transactions, while setting it too
low may cause more interference to normal operations of the
L2 cache.

The buffering of speculative state in the L2 requires coop-
eration from components of the memory subsystem that are
closer to the processor pipeline than the L2, namely, the L1
cache and the L1 prefetcher (L1P).3 In BG/Q there is little
hardware modification to support transactional execution in
the L1 because it uses a pre-existing core design. As such,
BG/Q supports two transactional executionmodes for proper
interaction between the L1, the L1P, and the L2, each with a
different performance consideration. From herein L1 refers to
both L1 and L1P unless otherwise stated. Themain difference
between the two modes is in how the L1 cache keeps a
transactional write invisible to other threads that share the
same L1.

Fig. 1. The main transaction of STAMP/kmeans benchmark using the
BG/Q TM annotation.

3. Prefetched data may evict speculative state from L2 leading to
unnecessary aborts.

WANG ET AL.: SOFTWARE SUPPORT AND EVALUATION OF HARDWARE TRANSACTIONAL MEMORY ON BLUE GENE/Q 235

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2023 at 14:44:24 UTC from IEEE Xplore. Restrictions apply.

Short-running mode (via L1-bypass). In this mode,
when a transaction stores a speculative value, the core
evicts the line from the L1. Subsequent loads from the
same thread have to retrieve the value from that point on
from L2. As the L2 stores multiple values for the same
address, it is able to return the thread-specific data along
with aflag that instructs the core to place the data directly
into the register of the requesting thread, without storing
the line in the L1 cache. In addition, for any transactional
load served from the L1, the L2 is notified of the load via
an L1 notification. The notification fromL1 to L2 goes out
through the store queue.
Long-running mode (via TLB aliasing). In this mode,
speculative state can be kept in the L1 cache. The L1 cache
can store up to 5 versions, 4 transactional ones for the 4
SMT threads and anon-transactional one. To achieve this,
the software creates an illusion of versioned address
space via Translation Lookaside Buffer (TLB) aliasing.
The TLB translates virtual into physical memory
addresses. The illusion created allows a single virtual
address to be translated to multiple physical addresses at
the L1 level. For each memory reference issued by a
transaction, some bits of the physical address in the TLB
are used to create an aliased physical address by the
memory management unit. Therefore, the same virtual
address may be translated to four different physical
addresses for each of the four threads that share the same
L1 cache. However, when the load or store exits the core,
the bits in the physical address that are used to create the
alias illusion are masked out because the L2 maintains
the multi-version through the bookkeeping of spec-IDs.
The L1 cache is invalidated upon entering a transaction.
Such invalidation makes all first transactional accesses to
a memory location visible to the L2 as an L1 load miss.

The short- and long-runningmodes are designed to exploit
different locality patterns. The long-running mode is the
default running mode, but one can specify an environment
variable to enable the short-running mode before starting an
application. Themain drawback of the short-runningmode is
that it nullifies the benefit of the L1 cache for read-after-write
access patterns within a transaction. Thus it is best suited for
short-running transactions with few memory accesses. The
long-running mode, on the other hand, preserves the locality
within a transaction. However, by invalidating L1 at the start
of a transaction, it prevents reuse between codes that run
before entering the transaction, and codes that run within the
transaction, or after the transaction ends. Thus, this mode is
best suited for long-running transactions with plenty of intra-
transactional locality.

3.2 Causes of Transactional Execution Failures
BG/Q supports bounded and best-effort transactional execu-
tion. A hardware transaction may fail in the following
scenarios:

Transactional conflicts are detected by the hardware
at the L2 cache level as described earlier. The conflict-
detection granularity is theminimumdistance between two
memory accesses distinguishable by the conflict detec-
tion system. That is, accesses closer than the granularity
may be flagged as a conflict even when there is no actual
overlap. In the short-runningmode, conflicts are detected

at a granularity of 8 bytes if no more than two threads
access the same cache line, or 64 bytes otherwise. In the
long-running mode the granularity is 64 bytes and can
degradedependingon the amount ofprefetchingdoneby
a speculative thread.
Capacity overflow causes a transaction to fail when the
L2 cache cannot allocate a new way for a speculative
store. By default, the L2 guarantees 10 of its 16 ways to be
used for speculative storage without an eviction.4 There-
fore, up to 20M-bytes of speculative state
can be stored in the L2. A set may contain more than 10
speculative ways if speculative ways have not been
evicted by the least-recently-used replacement policy. In
practice, capacity failures may occur at a much smaller
speculative-state footprint, for instance, when the num-
ber of speculative stores mapped to the same cache set
exceeds the number of ways available in the set.
Jail mode violation (JMV) occurs when a transaction
performs irrevocable actions, that is, operations whose
side-effects cannot be reversed, such as writes to I/O-
device address space. Irrevocable actions are detected
by the kernel under a special mode called the jail mode
and lead to a JMV interrupt to the owner thread of the
event.

4 SOFTWARE SUPPORT FOR TM PROGRAMMING
MODEL

While a computation may fail in a hardware transactional
execution in various ways, a transaction, as defined by the
programming model, is guaranteed to eventually succeed.
TheTMsoftware stack is developed tobridge the gapbetween
the TM programming model and the hardware TM imple-
mentation. The software stack includes the TM run-time
system, extensions to the kernel, and the compiler.

Fig. 2 illustrates the main state transition flow of the TM
software stack. Register check-pointing is a necessary step to
restore register state during a transaction rollback. Since
BG/Q does not support hardware register check-pointing,
this functionality is implemented in software as Step ⓐ of
Fig. 2.

The task of determining which other registers require
saving and restoring is left to the compiler. The compiler uses
live-range analysis to determine the set of registers that are
modified inside a transaction and remain live after the trans-
action commits, and generates codes to check-point these
registers.

4.1 Managing Transaction Abort and Retry
The TM runtime activates a hardware transactional execution
by writing to a memory-mapped I/O location. When a trans-
action is started, the current time is recorded through a read of
the timebase register. This recorded time is then used by the
kernel as a priority value during conflict resolution.When the
execution reaches the end of the transaction, it enters the TM
runtime routine that handles transaction commit in Step ⓓ.
The TM runtime attempts to commit a transaction. If the

4. This default can be changed but it is advisable to leave a reasonable
number of ways for other threads using this shared cache in a non-
speculative way.

236 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2023 at 14:44:24 UTC from IEEE Xplore. Restrictions apply.

commit fails, the transaction is invalidated (by invalidating its
spec-ID) and retried at a later time. Specifically, if a transaction

fails to commit due to a conflict with another transaction
, the runtime invalidates the spec-ID associatedwith , by

executing a store to the status control register anda store to the
conflict register—both in the central speculation control unit5,
causing the hardware to clear the conflict register of so that

now has a chance to commit.
For transactional failures caused by memory conflicts, the

runtime can configure the hardware to trigger a conflict
interrupt for eager conflict detection as shown in Stepⓖ. Under
the eager detection scheme, once the hardware triggers an
interrupt, the interrupt handler performs conflict arbitration by
comparing the starting timeof the conflicting transactions and
favours the survival of an older transaction. Alternatively,
transactional conflicts can be detected lazily when the execu-
tion reaches the end of a transaction. Lazy detection is
achieved by suppressing interrupts caused by conflicts with
other transactions and by relying on the runtime to check the
status of the conflict register before committing a transaction.
The lazy conflict detection scheme cannot suppress interrupts
caused by conflicts with non-transactional accesses. Such
interrupts are necessary to ensure the strong-isolation guar-
antee of BG/QHTMso that a transactionwill not observe any
inconsistent state. By default, the TM runtime uses the eager
conflict detection scheme.

For transactional failures caused by capacity overflow, the
hardware immediately aborts the transaction and triggers an
interrupt. A failed transaction due to capacity overflow is
retried in the sameway as a failed transaction due to conflicts
because capacity overflow may also be a transient failure.

For transaction failures caused by JMV, the kernel imme-
diately aborts the current transaction and invokes the restart

handler. The handler restores the appropriate context, trans-
fers the execution back to the start of the failing transaction,
and executes the transaction in the irrevocable mode.

4.2 Sandboxing of Speculative Execution
Since transactional execution is speculative by nature, critical
system resourcesmust beprotected frombeing corruptedby a
transaction that is later aborted. BG/Q uses a sandbox called
the jail mode to prevent speculative transactions fromperform-
ing irrevocable actions. The jailmode is entered and exited via
system calls during the start and commit/abort of a transac-
tion. There are two forms of irrevocable actions: writes to
protected address space and systemcalls.Under the jailmode,
protected address space such as the memory-mapped I/O
space is indicated in the TLB. Any access to protected TLB
entries as well as system calls under the jail mode generate an
access-violation exception called Jail-Mode Violation (JMV).
This is shown as Step ⓕ in Fig. 2.

The kernel also provides sandboxing during interrupt
handling. The interrupt handler always checks whether the
thread triggering an interrupt is speculative or not. System-
level side effects during a transactional execution—such as
TLBmisses, divide-by-zero and signals triggered by program
fault—cause the interrupt handler to abort the transaction and
invoke the restart handler.

4.3 Ensuring Forward Progress via IrrevocableMode
The TM software stack ensures that a transaction eventually
succeeds. Such guarantee is provided by judiciously retrying
failed transactions in a special mode called the irrevocable
mode. Under the irrevocable mode, a transaction executes
non-speculatively and can no longer be rolled back. To exe-
cute in the irrevocable mode, a thread must acquire a single
lock called the irrevocable token that is associated with all
tm atomic blocks in the program. Token acquisition, as
shown in Stepⓔ, is implemented using BG/Q’s fast L2 atomic
operations. Transactions executing under the irrevocable
mode are essentially serialized by a single lock and behave
like unnamed critical sections. Interference between the ir-
revocable token and user-level locking may cause deadlock.
In some cases, however, certain degree of concurrency can
be allowed between a speculative transaction and an irrevo-
cable transaction. Such concurrency is possible because spec-
ulative transactions acquire the irrevocable token at the end
of the transaction, whereas irrevocable transactions acquire
the irrevocable token at the beginning of the transaction. For
instance, if a speculative transaction reads the token after a
concurrent irrevocable transaction releases the token, both

and can commit successfully while overlapping much
of their execution.

4.4 Runtime Adaptation
How to retry a transaction can have a significant impact on
BG/Q TM performance. Unlike STM systems that have al-
most unlimited resources, too many immediate retries can
lead to serious resource contention for BG/Q TM such as the
depletion of the number of available spec-IDs.

To address this issue, the runtime employs a simple adap-
tion scheme: it retries a failed transaction a fixed number of
times before switching to the irrevocable mode. After the
completion of a transaction in the irrevocable mode, the

Fig. 2. Transactional memory execution overview.

5. These two stores are fully pipelined and the core does not need to
wait for their completion.

WANG ET AL.: SOFTWARE SUPPORT AND EVALUATION OF HARDWARE TRANSACTIONAL MEMORY ON BLUE GENE/Q 237

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2023 at 14:44:24 UTC from IEEE Xplore. Restrictions apply.

runtime computes a metric called the serialization ratio, which
is the percentage of total transactions executed in the irrevo-
cable mode, for the executing thread. If the serialization ratio
is above a threshold, the runtime records this transaction into
a hash table that tracks problematic transactions. Once a
transaction is entered into the hash table, the next time the
transaction fails, it will be retried immediately in the irrevo-
cable mode. This scheme allows a problematic transaction to
have a single rollback. The amount of time that a transaction
remains in the hash table is controlled via a runtime
parameter.

5 EXPERIMENTAL SETUP AND BENCHMARKS

This evaluation of the BG/Q TM performance uses two
benchmark suites. The STAMP benchmark suite [20] is the
most widely used TM benchmark and has largely coarse-
grain transactions. The RMS-TM benchmark suite consists of
7 real-world applications from the Recognition, Mining, and
Synthesis (RMS) domain [18]. Each benchmark provides the
original sequential code and the parallel codes using different
critical-section implementations including pthread lock,
OpenMP critical section, and HTM. For the HTM implemen-
tation, the TM BEGIN and TM END macros were replaced by
BG/Q TM pragmas. For the OpenMP critical-section imple-
mentation, the macros were replaced by omp critical

pragma. The STM version of the STAMP benchmarks uses
TinySTM1.0.3 [11] and ismanually instrumented tominimize
the amount of tracked state. Table 1 summarizes the bench-
marks and the runningoptions.All runsuse the large input set
for the STAMP benchmarks.

All experiments run on a single 16-core, 1.6 GHz, compute
node of a production BG/Q machine. The binaries are com-
piled by a prototype version of the IBM XL C/C++ compiler.
The study reports the mean of five runs with an error bar. In
the absence of more information, the measurements are as-
sumed tobenormallydistributed. Thus, the length of the error
bar is four standard deviations, two above and two below the
mean, to approximate 95% confidence. When reporting the
speedups, the baseline is always a sequential, non-threaded
version of the benchmark running with the one thread input.

To build amodel of expected speedups for various critical-
section implementations, we evaluate two critical section
characteristics of the parallel benchmarks running in a single-
thread execution.

Relative critical section size. This metric measures the ratio
between the time spent in critical sections and the time
spent in parallel regions during a single-thread execution
of the code. Relative critical section size is an indicator of
howmuch the serialization of critical sectionswould limit
the concurrency in the parallel execution.
Absolute critical section size. This metric measures the
average time spent (in cycles) per dynamic instance of
critical sections during a single-thread execution of the
code. The absolute critical section size is an indicator of
the size of a dynamic transaction.

Fig. 3 shows the absolute critical section sizes of both
benchmark suites in a log scale. This metric helps to reason
about the transactional footprint of a benchmark. In general,
benchmarkswith a larger absolute critical section size, such as
labyrinth, tend to have a larger transactional footprint.

As shown in Table 1, the relative critical section sizes of the
two benchmark suites differ significantly. While many
STAMP benchmarks spend more than 50% of the parallel
region in critical sections, all RMS-TM benchmarks, except
utilitymine, spend a tiny fraction of the parallel region in
critical sections.

To better understand characteristics of applications run-
ning onBG/QTM,we instrumented theTMruntime to collect
the following statistics:

Transaction serialization ratio is the percentage of total com-
mitted transactions that are executed in the irrevocablemode.
This metric is an indicator of the degree of concurrency in a
TM execution.

Transaction abort ratio is the percentage of total executed
transactions that are aborted. Thismetric is an indicator of the
amount of wasted computation in a TM execution.

6 LONG- VERSUS SHORT-RUNNING TM MODE

This section focuses on understanding the performance im-
plications of the short-running (SR) and the long-running (LR)
modes of BG/Q TM. It turns out that choosing the right
running mode is an important aspect of performance tuning
for BG/Q TM. Altering the running mode of a BG/Q node
involves a system call that requires the node to be in a certain
state. Therefore, the running mode is only specified via an
environment variable at the start of the program andmay not
be changed during the execution of the program.

Fig. 4 shows the speedup of BG/Q TM running under the
SR and LR modes over the sequential baseline.

The relative performance between the SR and LR modes
corresponds nicely with the absolute critical section sizes of
the benchmarks. For example, the SR mode performs better
than the LR mode for benchmarks ssca2, fluidanimate,
kmeans, and utilitymine. All of those benchmarks use
short-running transactions that are reflected as relatively
small absolute critical section sizes in Fig. 3. Likewise, the
LR mode outperforms the SR mode for the rest of the bench-
marks that use relatively long transactions. In fact, executing a
long-running transaction in the SRmodemay result in serious
performance degradation from the LR mode as shown in the
case of vacation and genome.

The rest of the section examines three factors that contrib-
ute to the performance difference between the LR and the SR

Fig. 3. Average time spent (in cycles) per dynamic instance of critical
sections in the STAMP and RMS-TM benchmark suites.

238 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2023 at 14:44:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Speedup of different critical section implementations of the STAMP and RMS-TM benchmark suites over the original sequential version of the
benchmarks (vacation low results were similar to vacation high and hmmcalibrate were similar to hmmsearch—both are omitted).

TABLE 1
Benchmark Descriptions

WANG ET AL.: SOFTWARE SUPPORT AND EVALUATION OF HARDWARE TRANSACTIONAL MEMORY ON BLUE GENE/Q 239

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2023 at 14:44:24 UTC from IEEE Xplore. Restrictions apply.

modes: loss of L1 cache locality, capacity overflow, and
conflict-detection granularity.

6.1 Loss of Cache Locality
There are significant differences in L1 cache behaviors under
the LR and the SR modes. When a transaction is executed in
the LR mode, the L1 cache is flushed before starting the
transaction. The L1 cache flush destroys any locality between
codes executed before and after entering a transaction. For
short-running transactions, the performance penalty of flush-
ing the L1 cache can be severe, therefore the SRmode is better
suited for such transactions. On the other hand, when a
transaction is executed in the SR mode, the L1 cache is
bypassed, which prevents locality of access within a transac-
tion from benefiting from the L1. For long-running transac-
tions, the performance penalty of bypassing the L1 cache
during transactional execution can be severe, therefore the
LR mode is better suited for such transactions.

Hardware performance counter statistics collected for all
the performance runs validate this explanation. Table 2
shows the number of L1 misses per 100 instructions and the
instruction-path-length statistics6 of the benchmarks running
under different configurations. As shown in Table 2, the LR
mode suffers frommuch fewerL1misses than the SRmode for
all but ssca2, kmeans, and utilitymine. These three bench-
marks all use small transactions according to the measured
absolute critical section sizes.Kmeanshas a significant increase
in L1 misses for both the SR and the LR modes over the
sequential baseline. This increase is because kmeans has local-
ity of access both within and across transactions.

6.2 Capacity Overflow
Due to hardware implementation differences of the two
running modes, the SR mode triggers significantly more
capacity overflows than the LR mode. Figs. 6 and 5 show
the percentage of total transactional executions that are
aborted due to capacity overflow for the SR and LR modes,

respectively. Benchmarks without any capacity overflow are
omitted from the figures.

As shown in Fig. 5, under the LR mode, only two bench-
marks, labyrinth and bayes, experience significant capacity
overflow. The capacity overflow in labyrinth is persistently
triggered in one of its twomain transactions that involves the
copying of a global grid of 14M bytes. As a result, 50% of the
transactions in labyrinth experience capacity overflow. For
bayes only 3% of committed transactions trigger capacity
overflow. However, each of the aborted transaction with
capacity overflow is retried up to 10 times, resulting in close
to 25% of the transactions in bayes with capacity overflow.
The percentage of executed transactions with capacity over-
flow in bayes and labyrinth decreases as the thread count
increases. This is because transactional conflicts become the
leading cause for a transaction to abort. An insignificant
amount of capacity overflow occurs in genome, intruder and
yada running with more than 16 threads. This is due to the
limited number of ways in L2 for speculative writes by
concurrent threads.

As shown in Fig. 6, the SRmode exhibits significantlymore
capacity overflow than the LR mode because of hardware
implementation issues. Under the SR mode, the hardware
state used to indicate capacity overflow is also used to indicate
another hardware event: a race at the L2 between hit notifica-
tions from the L1 of multiple cores. In such a situation, an

TABLE 2
Hardware Performance Monitor Stats

Fig. 5. LR mode: ratio of total transactions aborted due to capacity
overflow.

6. Instruction path length ismeasured as the total number of dynamic
instructions executed in the parallel region.

240 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2023 at 14:44:24 UTC from IEEE Xplore. Restrictions apply.

abort is triggered because the hardware cannot determine the
precedence between the hits. This abort occurs because the
hardware must establish the ordering amongst committing
transactions. Even though such ordering is not required for
TM, it is implemented as such because the same hardware is
also used to support TLS where such ordering is necessary.

6.3 Conflict Detection Granularity
The SR and the LR modes use different conflict detection
granularity that could result in different number of transac-
tional aborts. For instance, the SRmode detects conflicts at an
8- or 64-byte granularity depending on the number of con-
current accesses to the same cache line. The LR mode detects
conflicts at a 64-byte granularity at best.

One would expect that the SR mode with a finer conflict
detection granularity would trigger fewer transaction aborts
than the LR mode. This is the case for vacation and genome

where the abort ratio (measured as the percentage of total
executed transactions that are later aborted) of the two bench-
marks under the LRmode is several times higher than that of
the SRmode. This alsomeans in this case, it ismore prudent to
preserve intra-transactional locality offered by the LR mode,
despite of its coarser granularity. Fig. 7 shows the abort ratio
of vacation and genome.

However, for the rest of the benchmarks, the abort ratio of
the SR mode is in fact higher than that of the LR mode,
especially on benchmarks using small transactions such as
kmeans and hmmcalibrate. The abort ratio of the latter two
benchmarks is shown in Fig. 8. This may seem counter
intuitive becausewe expect that,with afiner conflict detection
granularity, the SR mode should reduce the number of false
conflicts and consequently the number of aborts. There are
three other factors that may affect the abort ratio. First, the SR
mode may trigger more capacity overflow (as described in

Section 6.2), as is the case for kmeans, hmmcalibrate, hmmpfam,
and scalparc. Second, the SR mode may run slower because
of the longer latency to satisfy read-after-write dependences,
resulting in a longer overlapping window among transac-
tions, thus causing more aborts. Third, runtime adaptation
may affect howmany times a transaction is retried, especially
for those aborted due to capacity overflow.

7 SINGLE-THREAD TM OVERHEAD

When parallelizing a program, one needs to bemindful of the
overhead introduced by parallelization and synchronization.
While this is true for parallel execution, such overhead may
alsomanifest in the single-thread execution of a parallel code,
especially when TM is used for synchronization. The slow-
down caused by a single-thread execution of a parallel code
over the execution of the sequential code is the single-thread
overhead. This section studies the single-thread overhead of
BG/Q TM in comparison to those of STM and locks.

Fig. 9 shows the single-thread overhead of the RMS-TM
benchmarks. The single-thread overhead of both BG/Q TM
and locks is insignificant except for pfam runningunder the SR
mode and utilitymine. This is because the critical sections of
theRMS-TMbenchmarks are relatively small compared to the
overall parallel regions (as shown in Fig. 3). There is an
anomaly in utilitymine where the lock implementation
increases the instruction path length by more than 70% in a
single-thread execution (as shown in Table 2).

Fig. 10 shows the single-thread overhead of parallel im-
plementations of the STAMP benchmarks. The single-thread
overhead of TinySTM is significantly higher than that of other

Fig. 7. The abort ratio of genome and vacation.

Fig. 6. SR mode: ratio of total transactions aborted due to capacity
overflow.

Fig. 9. Single-thread slowdown of the RMS-TM benchmarks.

Fig. 8. The abort ratio of kmeans and calibrate.

WANG ET AL.: SOFTWARE SUPPORT AND EVALUATION OF HARDWARE TRANSACTIONAL MEMORY ON BLUE GENE/Q 241

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2023 at 14:44:24 UTC from IEEE Xplore. Restrictions apply.

implementations. This is because STM overhead is usually
proportional to the number of memory accesses in transac-
tions and many STAMP benchmarks use large transactions.
Interestingly, yada and bayes, under the lock implementa-
tion, experience an improvement in the single-thread perfor-
mance because the compiler outlines OpenMP regions into
functions. Function outlining sometimes can result in reduced
register pressure and better code generation. The single-
thread speedup of yada running under the LR mode is the
result of a similar code outlining effect.

The rest of this section examines the single-thread over-
head of BG/Q TM in detail. There are three causes to the
single-thread overhead in BG/Q TM due to increase either of
L1 cache misses or of instruction path lengths.

7.1 Cache Performance Penalty
The loss of L1 cache locality due to L1 cache flush or bypass is
one of the most dominant source of the BG/Q TM overhead.
Table 2 shows the number of L1 cache misses per 100 instruc-
tions in both running modes of BG/Q TM relative to that of
the sequential baseline.

When running a large transaction in the SR mode, the
locality loss is especially severe because there is significant
locality within a large transaction. When the L1 is bypassed
this locality of access does not benefit fromL1’s lower latency.
For instance, yada, under the SR mode, suffers from 20 times
as many L1 misses as the sequential version does (Table 2),
which in turn causes a three-fold single-thread slowdown
(Fig. 10). The L2 cache andL1P buffer load latencies are 13 and
5 times higher than the L1 load latency, respectively.

For not-so-small transactions, the LRmode preservesmore
locality than the SRmode. However, there are still non-trivial
increases in L1 misses due to the flush of the L1 cache at the
start of a transaction.

7.2 Capacity Overflow
It is possible to have capacity overflow during a single-thread
execution. Among all the benchmarks evaluated, only bayes

and labyrinth experience capacity overflow in a single-
thread execution (Figs. 6 and 5).

Of the two, labyrinth incurs little single-thread overhead.
This is because capacity overflow happens in consecutive
transactions, in which case, the TM runtime detects a high
serialization ratio and is able to retry transactions in the
irrevocable mode immediately with few retries.

On the other hand, bayes suffers a significant single-thread
overhead because capacity overflow is sporadically triggered
on 3%of transactions, leading to a low serialization ratio. As a
result, each aborted transaction is retried 10 timesbefore being
executed in the irrevocable mode. These retries cause more
than 2-fold increases in the instruction path length (Table 2).

There is one more benchmark, hmmpfam, that has non-zero
serialization ratio at a single-thread. But that is caused by JMV
rather than by capacity overflow.

7.3 Transaction Entry and Exit Overhead
When starting or committing a transaction, the TM runtime
performs the following tasks: 1) register check pointing,
2) applying for a spec-ID, 3) writing to the memory-mapped
I/O to start or commit a transaction, 4) toggling kernel
sandboxing via system calls, and 5) other runtime bookkeep-
ing. These operations also contribute to the single-thread TM
overhead.

To quantify this overhead, we measure the time spent in a
transaction that implements a single atomic update operation.
The overhead is in the order of hundreds of cycles for both
BG/Q TM and TinySTM, but less in BG/Q TM. Specifically,
the overhead for BG/Q TM is 44% of that of TinySTM for the
SR mode, and 76% of that of TinySTM for the LR mode. The
LRmode incurs a higher overhead than the SRmode because
accesses to internal TM run-time data structures before and
after transactional execution also suffer fromL1misses due to
the L1 cache invalidation.

The overhead of entering and exiting transactions is most
pronounced in programs with small and frequent transac-
tions.As shown inTable 2, the instructionpath length increase
in utilitymine, ssca2, and kmeans is the result of this
overhead.

8 SCALABILITY

This section examines the scalability of different parallel
implementations of the benchmarks using BG/Q TM, locks,
and TinySTM. The speedups of these parallel implementa-
tions over the sequential baseline are shown in Fig. 4.

The relative critical section size is a good predictor of the
scalability of certain parallel implementations. Therefore,
the rest of the section uses the following classification of
the benchmarks:

Loosely synchronized. Applications whose relative critical
section sizes are less than 1/64. This category includes
all the RMS-TM benchmarks except for hmmpfam and
utilitymine. fluidanimate performs no synchroniza-
tion at 1-thread and hence its critical section size is shown
as NA.
Moderately synchronized.Applicationswhose relative crit-
ical section sizes are less than 1/3. This category includes
kmeans, ssca2, and hmmpfam.
Heavily synchronized. Applications whose relative critical
section sizes aremore than 1/3. This category includes all
the STAMP benchmarks except for ssca2 and kmeans.

8.1 Locks
The relative critical section size is a good indicator of the
scalability of the lock implementation of a parallel code.
For instance, loosely synchronized applications are expected

Fig. 10. Single-thread slowdown of the STAMP benchmarks.

242 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2023 at 14:44:24 UTC from IEEE Xplore. Restrictions apply.

to scalewell using locks. As shown in Fig. 4, all applications in
the loosely synchronized category scale to 64 threads except
for scalparc that scales up to 32 threads.

On the other hand, heavily synchronized applications
exhibit no scalability using locks except for intruder because
all but intruder have a relative critical section size of close to
100%. In contrast, intruder has a relative critical section size
of 66% and is able to scale beyond eight threads but only
reaches a speedup of 2.5 times.

Moderately synchronized applications start with good
scalability until reaching a plateau. The thread count at the
pointwhere the plateau is reached corresponds roughly to the
inverse of the relative critical section size of the application.
One exception is utilitymine, which scales up to 8 threads
despite having a relative critical section size of 35%.

8.2 BG/Q TM
The classification according to the amount of synchronized
execution provides a model to predict where BG/Q TM is
likely to show benefits over conventional locking. For in-
stance, BG/Q TM is unlikely to outperform locks for loosely
synchronized benchmarks, but may improve over locks for
moderately or heavily synchronized benchmarks, provided
that BG/Q TM does not suffer from other serialization
bottlenecks.

To quantify the amount of serialization in a TM execution,
Table 3 shows the serialization ratio and the abort ratio
(defined in Section 5) computed from statistics collected by
the TMruntime. These ratios are determinedby the amount of
optimistic concurrency inherent in the program, hardware
conflict detection granularity, and the retry adaptation of the
TM runtime. Sometimes the abort ratio decreases with higher
number of threads—as shown in Table 3 for labyrinth and
vacation—because aborts caused by conflicts are highly
dependent on the start and commit timing for the various
transactions. Therefore, changing the number of threads may
change this ratio in unexpectedways.Our runtime adaptation
scheme usually limits the number of retries for failed transac-
tions. Thus, its effects are generally to lower the abort ratio at
the expense of increasing the serialization ratio. There are two
groups of applications that scale well under BGQ TM:

Good scaling due to loose synchronization: apriori,
hmmcalibrate, and hmmsearch scale fine under lock and
TM implementations. All three are loosely synchronized,
serialization of critical sections is not a scalability bottle-
neck and transaction retries incur negligible overheads.

Having a certain amount of transaction aborts, or
irrevocable execution, does not necessarily limit scalabil-
ity. For instance, hmmcalibrate and hmmsearch exhibit
significant serialization ratio (up to 23%) and abort ratio
(up to 67%) at high thread counts.
Good scaling via effective HTM: genome, vacation,
scalparc, and utilitymine exhibit a good scalability
and a low serialization ratio.7 Both genome and vacation

are heavily synchronized leading the lock implementa-
tion to completely serialize and the TM implementation
scalesmuch better. Performance boosts beyond 16 threads
come from SMT threads multiplexing on the processor
pipeline and from hiding in-order processor stalls.

The rest of the applications all exhibit various scaling
bottlenecks that prevent them from scaling to high thread
counts under BG/Q TM:

Spec-ID bottleneck.Despite zero abort and serialization
ratios, ssca2 and fluidanimate scale only up to 4 and 16
threads, respectively. Both benchmarks use short and
frequent transactions leading the system to quickly ex-
haust spec-IDs. In this case, the start of a new transaction
is blocked until after a spec-ID is recycled. BG/Q TM has

TABLE 3
Percentage of Irrevocable and Aborted Transactions in BG/Q TM Execution

Fig. 11. Effect of varying scrub intervals for ssca2 and fluidanimate.

7. utilitymine and aprioridonot have inputs for 16-64 threads and
hence NA’s are shown in Table 3.

WANG ET AL.: SOFTWARE SUPPORT AND EVALUATION OF HARDWARE TRANSACTIONAL MEMORY ON BLUE GENE/Q 243

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2023 at 14:44:24 UTC from IEEE Xplore. Restrictions apply.

only 128 spec-IDs and they are recycled periodically
based on a pre-determined interval called the scrub
interval. Fig. 11 shows a sensitivity study on the impact
of the scrub interval on the performance of ssca2 and
fluidanimate. With the default scrub interval of 132
cycles, ssca2 and fluidanimate run out of spec-IDs
beyond2and16 threads respectively.As shown inFig. 11,
the scalability of both benchmarks improves significantly
with a much lower scrub interval.
Contention bottleneck. For yada, bayes, intruder,
kmeans, and hmmpfam, high serialization ratios at higher
thread counts are the main bottleneck for scalability.
Since all 5 benchmarks are moderately or heavily syn-
chronized, the serialization of critical sections limits the
scalability of the applications. The high variability in the
execution time of bayes is because the termination con-
dition of bayes is sensitive to the commit order of the
transactions.
Capacity bottleneck. The main transactions of
labyrinth are always executed in the irrevocable mode
due to capacity overflow (see Section 7.2). As a result, the
performance of BG/Q TM is similar to that of locks and
exhibits no scalability.

8.3 TinySTM
This section compares the scalability of TinySTM and BG/Q
TM on the STAMP benchmarks. The strength of BG/Q TM is
best demonstrated on genome, vacation, and kmeans where
BG/Q TM has both a steeper and a longer ascending curve
than TinySTM does. For these benchmarks, BG/Q TM does
not suffer from any HTM-specific scaling bottlenecks and
benefits from a much lower single-thread overhead. In addi-
tion, the lower overhead of BG/Q TM likely reduces the
window of overlap among concurrent transactions which in
turn may reduce transactional conflicts.

For the rest of benchmarks, BG/QTM incurs amuch lower
single-threadoverhead, but TinySTMexhibits a better relative
scalability, that is, scalability with respect to a single-thread
TM execution. The better relative scalability of TinySTM is
due to its finer conflict detection granularity (word-level) and
the fact that it rarely suffers from capacity overflow and does
not have spec-ID issues.

The good scaling of labyrinth and bayes on TinySTM is
the result of a STM programming style that relies heavily on
manual instrumentation. Table 5 shows the average read- and
write-set size per transaction using TinySTM.On the only two
benchmarks with capacity overflow during a single-thread
BG/Q TM execution, the STM executions incur no single-
thread overhead because instrumented state is aggressively
reduced to a tiny fraction of the actual footprint of the
transactions.

9 RELATED WORK

Despite many HTM proposals in the literature for hardware
support for transactionalmemory [3], [14], [19], [22], [25], only
recently real HTM implementations became available. Be-
sides the earlier Rockprocessor [10] andVegaAzul system [8],
now we have Intel Haswell [17], the IBM zEC12 enterprise
server [16], and IBM TM support for the POWER architecture
[4]. While all are best-effort HTMs, their design points differ
drastically. Table 4 compares the key characteristics of these
systems in detail.

Both Rock HTM and Vega from Azul have small specula-
tive buffers, compared to BG/Q’s 20Mbytes of speculative
state. Rock imposesmany restrictions onwhat operations can
happen in a transaction excluding function calls, divide, and
exceptions. Rock also restricts the set of registers that func-
tions may save/restore to enable the use of save/restore
instructions that use register windows [10]. In contrast, in
BG/Q TM, the entire instruction set architecture is supported
within a transaction and the compiler saves/restores
registers.

The method used to build a software system to offer
guarantee of forward progress on top of a best-effort HTM
could be an elegant solution to the requirement that TM
programmers provide an alternative code sequence for
transaction rollbacks in Intel’s Transactional Synchronization
Extensions (TSX) [15], and could thus unburden the TM
programmer from the need to reason about hardware limita-
tions [17].

The TM system in Azul deals with more expensive trans-
action entry/exit operations by restricting speculation to
contended locks that successfully speculate most of the time.
A closely related study of HTM on BG/Q corroborates our
findings [24].

The implementation of HTM in the IBM zEC12 enterprise
server uses theL1 and amodifiedMESI cacheprotocol to store
speculative state [16]. In this machine both L1 and L2 use a
write-through policy, thus the complexity of tracking dirty

TABLE 5
Average Read- and Write-Set Size (in Words) of STAMP Using

TinySTM (1 Thread)

TABLE 4
Basic Features of Real HTM Implementations

244 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2023 at 14:44:24 UTC from IEEE Xplore. Restrictions apply.

lines does not exist in this machine. Contrary to the BG/Q
design, the System z HTM support includes the implementa-
tion of transaction-specific instructions. That system also
implements more extensive support for the testing of HTM
support and for the debugging of TM code.

10 CONCLUSION

This detailed performance study of one of the first commer-
cially available HTM systems has some surprising findings.
The reduced single-thread overhead in comparisonwith STM
implementations is still significant. The use of L2 to support
TMs is essential to enable a sufficiently large speculative state.
However, for many TM applications recovering the lower
latency of L1 for reuse inside a transaction, through the use of
the long-running mode in BG/Q, is critical to achieve perfor-
mance. The end-to-end solution presented here is a program-
mingmodel that supports the entire ISA and thus delivers the
simplicity promised by TMs.

TRADEMARKS

IBM, AIX, and Blue Gene are trademarks or registered trade-
marks of International BusinessMachinesCorporation. UNIX
is a registered trademark of The Open Group. Intel is a
registered trademark of Intel Corporation. Linux is a trade-
mark of Linus Torvalds Other company, product, and service
names may be trademarks or service marks of others.

ACKNOWLEDGMENTS

The BG/Q project has been supported and partially funded
by Argonne National Laboratory and the Lawrence Liver-
moreNational Laboratory onbehalf of theU.S.Department of
Energy, under Lawrence Livermore National Laboratory
Subcontract B554331. This is also supported by the Natural
Sciences and Engineering Research Council of Canada
(NSERC) and by the IBM Toronto Centre for Advanced
Studies (CAS).

REFERENCES

[1] D. A. Bader and K. Madduri, “Design and implementation of the
HPCSgraph analysis benchmark on symmetricmultiprocessors,” in
Proc. Int. Conf. High Perform. Comput. (HiPC), Dec. 2005,
pp. 465–476.

[2] J. Bobba, K. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift, and D.
A. Wood, “Performance pathologies in hardware transactional
memory,” in Proc. Int. Conf. Comput. Architecture, 2007, pp. 81–91.

[3] C. C. S. Ananian, K. Asanovic, B. Kuszmaul, C. Leiserson, and S. Lie,
“Unbounded transactionalmemory,” inProc.High-Perform. Comput.
Architecture, Feb. 2005, pp. 316–327.

[4] H. W. Cain, B. Frey, D. Williams, M. M. Michael, C. May, and
H. Le, “Robust architectural support for transactional memory
in the power architecture,” in Proc. Int. Conf. Comput. Architecture,
2013, pp. 225–236.

[5] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,
and S. Chatterjee, “Software transactional memory: Why Is It
only a research toy? ”Commun. ACM, vol. 51, no. 11, pp. 40–46,
Nov. 2008.

[6] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip,
H.Zeffer, andM.Tremblay,“Simultaneous speculative threading:A
novel pipeline architecture implemented in sun’s rock processor,” in
Proc. Int. Conf. Comput. Architecture, 2009, pp 484–495.

[7] J. Chung, L. Yen, S. Diestelhorst, M. Pohlack, M. Hohmuth, D.
Christie, and D. Grossman, “ASF: AMD64 extension for lock-free
data structures and transactional memory,” in Proc. Int. Symp.
Microarchitecture (MICRO), Dec. 2010, pp. 39–50.

[8] C. Click, “Azul’s experiences with hardware transactional memo-
ry,” in Proc. HP Labs’ Bay Area Workshop Trans. Memory, 2009.

[9] L. Dalessandro, M. F. Spear, and M. L. Scott, “Norec: Streamlining
STM by abolishing ownership records,” in Proc. Principles Practice
Parallel Program., Jan. 2010, pp. 67–78.

[10] D.Dice, Y. Lev,M.Moir, andD.Nussbaum “Early experiencewith a
commercial hardware transactional memory implementation,” in
Proc. Architectural Support Program. Languages Oper. Syst. (ASPLOS),
Mar. 2009, pp. 157–168.

[11] P. Felber, C. Fetzer, P. Marlier, and T. Riegel, “Time-Based software
transactionalmemory,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no.
12, pp. 1793–1807, Dec. 2010.

[12] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning of
word-based software transactional memory,” in Proc. Principles
Practice Parallel Program., Feb. 2008, pp. 237–246.

[13] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K.
Sugavanam, et al. “The IBMblue gene/Qcompute chip,” IEEEMicro,
vol. 32, no. 2, pp. 48–60, Mar./Apr. 2012.

[14] M. Herlihy and J. E. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Proc. Int. Conf. Comput.
Architecture, May 1993, pp. 289–300.

[15] Intel Corporation, Intel Architecture Instruction Set Extensions
Programming Reference, 319433-012 edition, Feb. 2012.

[16] C. Jacobi, T. Slegel, and D. Greiner, “Transactional memory archi-
tecture and implementation for IBM system z,” in Proc. Int. Symp.
Microarchitecture (MICRO), Dec. 2012, pp. 25–36.

[17] D. Kanter, (2012, Sep.). “Analysis of Haswell’s Transactional
Memory” [Online]. Available: http://www.realworldtech.
com/page.cfm?ArticleID=RWT021512050738&p=1, Real World
Technologies.

[18] G. Kestor, V. Karakostas, O. Unsal, A. Cristal, I. Hur, andM. Valero,
“RMS-TM: A comprehensive benchmark suite for transactional
memory systems,” in Proc. Int. Conf. Perform. Eng. (ICPE), Mar.
2011, pp. 335–346.

[19] A. McDonald, J. Chung, B. D. Carlstrom, C. C. Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun, “Architectural semantics for practi-
cal transactional memory,” in Proc. Int. Conf. Comput. Architecture,
Jun. 2006, pp. 53–65.

[20] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford transactional applications for multi-processing,” in
Proc. Int. Symp. Workload Characterization (IISWC), Sep. 2008,
pp. 35–46.

[21] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson,
J. Casper, C. Kozyrakis, and K. Olukotun, “An effective hybrid
transactional memory system with strong isolation guarantees,” in
Proc. Int. Conf. Comput. Architecture, 2007, pp. 69–80.

[22] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,
“Logtm: Log-Based transactional memory,” in Proc. High-Perform.
Comput. Architecture, Feb. 2006, pp. 258–269.

[23] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg, “McRT-STM: A high performance software transac-
tional memory system for a multi-core runtime,” in Proc. Principles
Practice Parallel Program., Jan. 2006, pp. 187–197.

[24] M. Schindewolf, B. Bihari, J. Gyllenhaal, M. Schulz, A. Wang, and
W. Karl, “What scientific applications can benefit from hardware
transactional memory?” in Proc. High Perform. Comput. Network.
Storage Anal. (HPCNSA), Nov. 2012, pp. 1–11.

[25] A. Shriraman, S. Dwarkadas, and M. L. Scott, “Flexible decoupled
transactional memory support,” in Proc. Int. Conf. Comput. Architec-
ture, Jun. 2008, pp. 139–150.

[26] M. F. Spear, M. M. Michael, and C. von Praun, “RingSTM: Scalable
transactions with a single atomic instruction,” in Proc. ACM
Symp. Parallelism Algorithms Architectures (SPAA), Jun. 2008,
pp. 275–284.

[27] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “A scalable
approach to thread-level speculation.” in Proc. Int. Conf. Comput.
Architecture, Jun. 2000, pp. 1–12.

[28] J. M. Stone, H. S. Stone, P. Heidelberger, and J. Turek, “Multiple
reservations and the Oklahoma update,” IEEE Parallel Distrib. Tech-
nol. (PDT), vol. 1, no. 4, pp. 58–71, Nov. 1993.

[29] Transactional Memory Specification Drafting Group, Draft specifi-
cation of transactional language constructs for C++ (version 1.1),
2012.

WANG ET AL.: SOFTWARE SUPPORT AND EVALUATION OF HARDWARE TRANSACTIONAL MEMORY ON BLUE GENE/Q 245

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2023 at 14:44:24 UTC from IEEE Xplore. Restrictions apply.

Amy Wang received the bachelor degree in
applied science from the Engineering Science
Program in 1999 and themaster degree in applied
science in computer engineering in 2001, both
from the University of Toronto, Ontario, Canada.
She is currently a member of the Hardware
Acceleration Lab and formerly a member of the
XL compiler back-end team at the IBM Canada
Lab, Toronto. In 2002, she joined the IBM Toronto
Lab, contributing her skills to the development of
various compiler back-end optimizations, such as

auto-SIMD-ization for the Blue Gene/L, Blue Gene/P, and Blue Gene/
Q, cell broadband engine architecture, and VMX/VSX hardware. She
developed the XLs SMP runtime support for utilizing the transactional
memory and speculative execution hardware features on Blue Gene/Q.

Matthew Gaudet received the bachelors’ degree
in computing science from the University of
Alberta, Edmonton, Canada, in 2012, where he
has continued on to pursue the master’s degree.
He has industrial experience from working with
IBM on a number of projects, and has published
research in the area of data mining. His research
interests include optimizing compilers, runtime
systems, and transactional memory.

Peng Wu received the PhD degree in computer
science from the University of Illinois, Urbana-
Champaign. She joined IBM T.J. Watson
Research Center as a research staff member in
2001. Her work has expanded across all layers of
the system stack. Her current research interests
include compilation and runtime systems for
emerging workloads and software exploitation of
new hardware features. She held more than 20
patents, and has co-authored more than 30
papers including a best paper award in PACT

2012. She is an adjunct assistant professor in the Department of
Computer Science University of Illinois since 2012.

Martin Ohmacht received the PhD degree in
electrical engineering from the University of
Hannover, Germany, in 2001. He is currently a
research staff member at the IBM T.J. Watson
Research Center, Yorktown Heights. He has
worked on memory subsystem architecture and
implementation for all generations of the Blue
Gene super computer project. His research inter-
ests include computer architecture, design and
verification of multiprocessor systems, and com-
piler optimizations.

José Nelson Amaral received the PhD degree
from the University of Texas at Austin, the
MSc degree from the Instituto Tecnológico de
Aeronáutica, Brazil. He is a computing science
professor at the University of Alberta, Edmonton,
Canada. His research focuses on compiler
design and implementation, programming
languages, high-performance computing, and
related areas. He is a former associate editor of
the IEEE Transactions on Computers, He has
also served inmany program committees. He is a

senior member of the ACM.

Christopher Barton received the MSc and PhD
degrees in computing science from the University
of Alberta, Edmonton, Canada. He has worked
with the XL Compiler team at IBM’s Toronto Lab
since 2008. He is currently the technical lead for
the XL C/C++, and XL Fortran Compilers on AIX
and Linux on Power systems.

RaulSilvera received theMScdegree theSchool
of Computer Science of McGill University,
Montréal, Canada. He is a senior technical staff
member (STSM) at the IBMCanada Lab, Toronto.
He joined IBM in 1997 and has been focused on
development of compilation technology for the
IBM Power and System Z platforms, including
code analysis, optimization, parallelization, and
code generation for C, C++, Fortran, and other
static languages.

Maged M. Michael received the PhD degree
in computer science from the University of
Rochester, NewYork, in 1997. Since then, he has
been a research staff member at the IBM Thomas
J. Watson Research Center,Yorktown Heights,
New York. His research interests include concur-
rent algorithms, nonblocking synchronization,
transactional memory, multicore systems, and
concurrent memory management. He is an ACM
distinguished scientist and a member of the Con-
necticut Academy of Science and Engineering.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

246 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2023 at 14:44:24 UTC from IEEE Xplore. Restrictions apply.

