
Synthesis of Sorting Kernels
Marcel Ullrich

Saarland University, Saarland Informatics Campus

Saarbrücken, Germany

Sebastian Hack

Saarland University, Saarland Informatics Campus

Saarbrücken, Germany

Abstract
Recently, AlphaDev has shown significant advances in the

synthesis of branchless sorting kernels for arrays of lengths 3

to 5. In this paper, we propose an enumerative search tech-

nique based on A* search and present novel optimality-pre-

serving heuristics and non-optimality-preserving cuts for

sorting kernel synthesis. Our algorithm outperforms Al-

phaDev in synthesis time by two orders of magnitude ran

on a standard notebook instead of a TPU cluster. Because

our algorithm can explore the solution space, we are able to

enumerate all correct sorting kernels for length 3 and simply

select the best-performing one. For larger array lengths, we

intelligently sample the solution space and find a sorting

kernel that outperforms the state-of-the-art. Furthermore,

we establish a new tight lower bound for the shortest sorting

kernel for length 4. Finally, we provide a comprehensive com-

parison against several other existing synthesis techniques

and show that none of them is able to synthesize sorting

kernels for arrays longer than 3.

CCS Concepts: • Software and its engineering→ Source
code generation.

Keywords: synthesis, sorting kernels, super optimization,

instruction-level optimizations

ACM Reference Format:
Marcel Ullrich and Sebastian Hack. 2025. Synthesis of Sorting Ker-

nels. In Proceedings of the 23rd ACM/IEEE International Sympo-
sium on Code Generation and Optimization (CGO ’25), March 01–05,
2025, Las Vegas, NV, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3696443.3708954

1 Introduction
Sorting algorithms run billions of times every day on ma-

chines around the globe. Every small improvement in their

runtime directly translates into energy savings and per-

formance gains. Therefore, many performance-critical al-

gorithms are still optimized manually by experts on the

assembly-code level. However, creating and optimizing such

algorithms for a specific hardware architecture is complex

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1275-3/25/03

https://doi.org/10.1145/3696443.3708954

and error-prone. In recent years, program synthesis tech-

niques have received increasing attention to automate this

process. Last year, AlphaDev [13] showed that reinforcement

learning (RL) can be used to synthesize assembly code for

kernels that sort a fixed amount of elements. Such kernels

typically sort arrays of lengths 3–10 and are invoked as

the base case of divide-and-conquer sorting algorithms. Al-

phaDev synthesized kernels that sort arrays of lengths 3–5

and showed that they outperform the state-of-the-art sort-

ing algorithms for these lengths. However, their technique

only discovers a single sorting kernel for a given array size

and does not provide any guarantees on the length of the

synthesized kernel. Furthermore, their technique requires

significant compute resources (several TPU cores) and runs

for hours.

In this paper we provide a comprehensive evaluation of

sorting kernel synthesis using a variety of existing syn-

thesis techniques. Among them, we investigate constraint

programming, stochastic search, mixed-integer program-

ming, counter-example guided inductive synthesis using

SMT solvers, and approaches from the planning community.

We show that classical synthesis approaches fail to scale

beyond arrays of length 3 if they are at all able to synthesize

a kernel for that length.

We propose an enumerative search approach for assembly-

level synthesis of sorting kernels. To that end, we present

several optimality-preserving heuristics and non-optimality-

preserving cuts to prune the search space that lead to a

synthesis algorithm that outperforms the synthesis time of

AlphaDev by two orders of magnitude on a standard note-

book. Additionally, in contrast to AlphaDev, our synthesis

algorithm is in principle able to enumerate all optimal sort-

ing kernels which allows us to determine the fastest sorting

kernel for a given microarchitecture by simply benchmark-

ing all possible sorting kernels at least for small input sizes.

Using our algorithm we find new sorting kernels that out-

perform the state-of-the-art in terms of runtime. For array

length 3, we are able to enumerate all optimal sorting ker-

nels and hence can chose the best performing one. For array

length 4, the solution space is too large to enumerate all

correct sorting kernels. We devise an intelligent sampling

strategy that finds a sorting kernel that outperforms the

state-of-the-art. Furthermore, we prove for array length 4

that the shortest sorting kernel has length 20 – establishing a

new bound – by exhaustively enumerating the search space

of all length 19 kernels and demonstrating that no correct

kernel exists in that space.

1

https://orcid.org/0009-0006-0127-9623
https://orcid.org/0000-0002-3387-2134
https://doi.org/10.1145/3696443.3708954
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3696443.3708954
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696443.3708954&domain=pdf&date_stamp=2025-03-01

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Marcel Ullrich and Sebastian Hack

In summary, we make the following contributions:

• We model the synthesis problem for sorting kernels

in a variety of existing program synthesis techniques

(Section 4). We show that none of the existing tech-

niques is able to synthesize sorting kernels for arrays

of length ≥ 4.

• We present a novel enumerative search approach and

synthesize sorting kernels for arrays of length 3 to 5

(Section 3). Our synthesis algorithm is two orders of

magnitude faster than the only other existing approach

that is able to scale beyond length 3.

• Our experimental evaluation (Section 5) shows that

for 𝑛 = 3, we can enumerate all correct kernels and
choose the best one simply by running them all. For

𝑛 = 4 we obtain a sorting kernel that outperforms

the state-of-the-art by cleverly sampling the solution

space. Furthermore, we establish a new tight lower-

bound for the shortest sorting kernel for 𝑛 = 4.

2 Sorting Kernels
2.1 Background
The goal of this work is to synthesize sorting kernels (small

branchless programs) that sort arrays of fixed length. Many

algorithms of standard libraries like quicksort or mergesort

resort to a highly-optimized sorting kernel for small arrays

that they invoke as a base case. Such kernels are oblivious:
The order of comparison of the individual elements of the

array does not depend on the values of the array elements.

A common way to create a sorting kernel of a given length

is by implementing a sorting network. A sorting network is

an arrangement of compare-and-swap operations, often visu-

alized by a graph in which horizontal lines represent values

and vertical lines indicate the compare-and-swap operations.

The following graph shows a sorting network for an array

of length 3 and the flow of values (from left to right) when

sorting the array 𝑎 = {9, 8, 7}:

𝑎[0] = 9

𝑎[1] = 8

𝑎[2] = 7

8

9

7

8

8

9

To implement a sorting network in software, one uses a spe-

cific code pattern for a compare-and-swap and instantiates

this code pattern for each compare-and-swap in the network.

Two common techniques to implement compare-and-swaps

are 1) conditional move or 2) min/max instructions. For ex-

ample, on x86, a compare-and-swap operation between reg-

isters rax and rbx (xmm0 and xmm1) can be encoded by the

following snippets. The left one uses conditional moves and

operates on the general puropse register file and the second

one uses min/max instrutions and operates on the vector

register file.

mov rdi, rax

cmp rbx, rax

cmovl rax, rbx

cmovl rbx, rdi

movdqa xmm7, xmm0

pminsd xmm0, xmm1

pmaxsd xmm1, xmm7

rdi and xmm7 are temporary registers that are needed to com-

pensate for the fact that x86 is a two-address code machine

which means that the instructions destructively update their

first operand with the result. The move instructions in both

snippets save a register that is overwritten by the first cmovl/

pminsd instruction. On an out-of-order machine, these move

instructions do not cause computational load in a functional

unit because they only influence register renaming. Never-

theless, they consume other resources such as instruction

cache footprint and decoding bandwidth.

As it turns out, on two-address code machines like x86

there are sorting kernels that are shorter (in the number

of instructions) than the implementation of the smallest (in
terms of number of compare-and-swaps) sorting network

with the above snippets. It is the goal of previous [13] and

this work to find such kernels. As an example, consider the

above sorting network and its implementation (we assume

that the array elements have been loaded into rax, rbx, ecx)
shown in the left column:

sorting network

mov rdi, rax

cmp rbx, rax

cmovl rax, rbx

cmovl rbx, rdi

mov rdi, rax

cmp rcx, rax

cmovl rax, rcx

cmovl rcx, rdi

mov rdi, rbx

cmp rcx, rbx

cmovl rbx, rcx

cmovl rcx, rdi

synth cmov

mov rdi, rax

cmp rcx, rdi

cmovl rdi, rcx

cmovl rcx, rax

cmp rbx, rcx

mov rax, rbx

cmovg rbx, rcx

cmovg rcx, rax

cmp rax, rdi

cmovl rbx, rdi

cmovg rax, rdi

synth min/max

movdqa xmm7, xmm1

pminud xmm7, xmm2

pmaxud xmm2, xmm1

movdqa xmm1, xmm2

pminud xmm1, xmm0

pmaxud xmm2, xmm0

pmaxud xmm1, xmm7

pminud xmm0, xmm7

The kernel in the middle column has been found by our

synthesizer and is one instruction shorter than the sorting

network kernel. The first two groups of four instructions are

standard compare-and-swap snippets. The last block how-

ever is not a compare-and-swap but computes the following

functions:

rbx = ite(𝑏 > min(𝑎, 𝑐),min(𝑏,max(𝑎, 𝑐)),min(𝑎, 𝑐))
rax = min(𝑏,min(𝑎, 𝑐))

where 𝑎, 𝑏, 𝑐 are the initial values for rax, rbx, rcx and ite

means if-then-else.

2

Synthesis of Sorting Kernels CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

The rightmost code is a min/max kernel synthesized with

our approach. Similarly, the first two blocks are compare-and-

swaps but the last block is not. It implements the functions:

xmm1 = max(min(max(𝑐, 𝑏), 𝑎),min(𝑏, 𝑐))
xmm0 = min(𝑎,min(𝑏, 𝑐))

where 𝑎, 𝑏, 𝑐 are the initial values for xmm0, xmm1, xmm2. The
kernel is one movdqa instruction shorter than the sorting net

implementation.

Note that removing the final move instruction cannot

be achieved by classical compiler optimizations like copy

coalescing. It requires semantical reasoning on min/max/ite

expressions, for example showing that

min(𝑎,min(𝑏, 𝑐)) = min(min(max(𝑐, 𝑏), 𝑎),min(𝑏, 𝑐))
for the min/max kernel shown above.

2.2 Model
In this paper, we focus on the x86 architecture and condi-

tional move instructions because that is the setting of the

related work [13] against which we compare. Nevertheless,

the approach we present in this paper is also suitable for

synthesizing min/max sorting kernels and we discuss exper-

imental results of min/max kernel synthesis in Section 5.4.

We use the following model of assembly instructions for

sorting kernel synthesis: We have registers 𝑟1, . . . , 𝑟𝑛 hold-

ing the numbers to be sorted, additional scratch registers

𝑠1, . . . , 𝑠𝑚 for swapping, and flags lt and gt for comparison

results. The flag registers are written by the comparison op-

eration and read by the conditional operations. We call the

initial assignment of 𝑟1, . . . , 𝑟𝑛 the permutation of our test

case. We call the complete assignment of 𝑟1, . . . , 𝑟𝑛 , 𝑠1, . . . , 𝑠𝑚 ,

and the flags the register assignment.

Our sorting kernels consist of the following commands

and we call a list of commands a program:

• mov 𝑟𝑖 , 𝑟 𝑗 : Move the value of register 𝑟 𝑗 to register 𝑟𝑖 .

• cmp 𝑟𝑖 , 𝑟 𝑗 : Compare the values of registers 𝑟𝑖 and 𝑟 𝑗 and

set the flags accordingly (e.g. flag lt if 𝑟𝑖 < 𝑟 𝑗).

• cmovl 𝑟𝑖 , 𝑟 𝑗 : If the lt flag is set, move the value of reg-

ister 𝑟 𝑗 to register 𝑟𝑖 .

• cmovg 𝑟𝑖 , 𝑟 𝑗 : If the gt flag is set, move the value of

register 𝑟 𝑗 to register 𝑟𝑖 .

These commands are consistent with the commands used by

related work Mankowitz et al. [13]. The following example

shows the execution of a sorting algorithm for 𝑛 = 2.

𝑟1 𝑟2 𝑠1 lt gt instruction

2 1 0 — — mov s1 r2

2 1 1 — — cmp r1 r2

2 1 1 — > cmovg r2 r1

2 2 1 — > cmovg r1 s1

1 2 1 — >

Note that we assume that the values to sort are present in

registers before the kernel runs and that the sorted values

are put into registers 𝑟1, . . . , 𝑟𝑛 by the kernel.

2.3 Correctness
A sorting program is correct if the resulting state 𝑜 for an

initial state 𝑟 fulfills

(∀1 ≤ 𝑖 < 𝑛 : 𝑜𝑖 ≤ 𝑜𝑖+1)︸ ︷︷ ︸
ascending

∧∀𝑥 : |{𝑖 | 𝑜𝑖 = 𝑥}| = |{𝑖 | 𝑟𝑖 = 𝑥}|︸ ︷︷ ︸
same elements

(1)

which means that the output is sorted and a permutation

of the input. For the case that the input only consists of a

permutation of the numbers 1, . . . , 𝑛, the output is the sorted

list 1, . . . , 𝑛: ∀1 ≤ 𝑖 < 𝑛 : 𝑜𝑖 = 𝑖 .

Our sorting kernels do not contain constants. Therefore,

they cannot discriminate different sets of inputs and only

compare the values of a given input array among themselves.

This is an important property as it allows us to verify the

correctness of the sorting kernel by executing it on all per-

mutations of an arbitrarily chosen input array of 𝑛 distinct

numbers. The concrete numbers do not matter. We choose

the numbers 1, . . . 𝑛 for simplicity. Hence, any algorithm that

behaves correctly on the 𝑛! permutations of 1, . . . , 𝑛 is cor-

rect for all inputs. Between equal elements, the order does

not matter. We can choose any arbitrary order, i.e. we are not

restricted to stable sorting kernels. Therefore, we restrict our

commands to cmovl and cmovg and do not consider cmovle
and cmovge.

It is known that under certain conditions, the correctness

of sorting algorithms can be verified by only checking the

correctness on a subset of the input space of size 2
𝑛
which

is less than 𝑛! for 𝑛 > 3. This principle is the case for sorting

networks where the 0–1 sorting lemma
∗
applies [5]. This

lemma only applies to programs with compare-and-swap

operations and does not apply to instruction sets like ours

in which compare and conditional move operations are not

a single instruction. We do not consider single-instruction

compare-and-swaps because common instruction sets do not

provide them. Hence, we cannot use the 0–1 sorting lemma

and have to test all 𝑛! permutations of the input space.

Complexity. The sorting kernel synthesis problem is hard

due to exponential growth in multiple dimensions. The num-

ber of possible programs grows exponentially with the pro-

gram length. The optimal program lengths according to our

tests and Mankowitz et al. [13] are 11, 20, 33, and 45 for 𝑛 = 3

to 𝑛 = 6. Simultanously, we have more inputs to check for

correctness 6, 24, 120, 720 (𝑛!) for 𝑛 = 3 to 𝑛 = 6. Especially

the number of different intputs to check grows substantially

so that checking all inputs becomes practically infeasible

quickly, in our experience for 𝑛 ≥ 6.

∗
The sorting lemma states that the correctness of sorting networks can

sufficiently be checked using all combinations of zeros and ones as input.

3

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Marcel Ullrich and Sebastian Hack

3 Enumerative Synthesis
In this section, we present a novel enumerative approach to

synthesize sorting algorithms. Our approach outperforms

existing approaches in synthesis time as well as in the per-

formance of synthesized kernels. As the search space is too

large to enumerate all programs (see Section 5.1 for more

details), we present several novel heuristics specific to sort-

ing kernel synthesis that improve the performance of our

enumerative search substantially. In contrast to related work,

we are also able to find multiple if not all solutions and are

able to verify the optimality (in terms of program length) of

the found solutions.

Our approach is based on Dijkstra/A* search and uses the

following steps to explore the search space:

1. Select an open state (representing a partial program).

2. Select and add an instruction to the partial program.

3. Check if the partial program is viable to be completed.

4. Check the correctness of the program on the permuta-

tion test suite.

5. Prune non-promising states.

6. Check the partial program for equivalence with an

already found programs.

The initial state consists of register assignments for each

possible permutation of the input 1, . . . , 𝑛. We then proceed

by executing instructions on the state resulting in a successor

state of concrete register assignments. A state is final if all

register assignments are sorted.

We optimize each of the six steps above and discuss these

optimizations in detail in the following subsections. Our mo-

tivation behind each optimization is to either rule out parts

of the search space that never lead to an optimal solution or

to combine equivalent solution classes to reduce the search

space. In each case, we preserve at least one representative

solution.

3.1 Step 1: Select an Open State
For Dijkstra, we enumerate the states by their program

length. The first solution we find is guaranteed to be of

minimal length. Furthermore, this approach is parallelizable

as we can process all programs of a certain length in parallel

to obtain the next length.

For A*, we augment the search using heuristics that guide

the search towards the correct solution:

• The number of distinct permutations in the state. Note

that a state contains a register assignment for each

permutation of 1, . . . , 𝑛. Hence, the number of distinct

register assignments in a state indicates “how much”

the array has been sorted already.

• The number of distinct register assignments remaining

in the state. This is similar to the point above, but

includes the scratch registers.

• The maximum of the instructions needed for any of

the register assignment in the state. Before starting the

search, we precompute the shortest sorting program

for each individual permutation of 1, . . . , 𝑛 individually.
The length of each such program is a lower bound for

the length of the sorting program that would sort any

permutation. Hence, if we consider the length of the

shortest program for any of the register assignments

in the state, we have a lower bound for the remainder

of the program we want to synthesize.

3.2 Step 2: Selecting an Instruction
To select an instruction we iterate over all possible instruc-

tions. However, we only permit comparisons where the index

of the second register is strictly greater than that of the first

register. With this constraint, we prevent nonsensical com-

parisons (where register numbers are equal) as well as utiliz-

ing the symmetry resulting from swapping the greater-than

and less-than flags.

In our practical evaluation (Section 5), we also evaluated

the following non-optimality-preserving heuristic: Alterna-

tively to iterating over all possible instructions, we use our

precomputed register assignment search (see Section 3.1) as

a guide. We only consider instructions that are part of the

precomputed (see Step 1) optimal instruction sequence for

any of the register assignments we computed before:

Actions :=
⋃

assignment 𝐴

{instr | instr ∈ start of opt. solution(𝐴)}

3.3 Step 3: Check for Viability
After applying the instruction(s) to the state, we check if the

partial program is still viable for a correct solution. A pro-

gram is not viable for a correct solution if it eliminates at least

one of the numbers to be sorted in some register assignment.

For instance, mov r1 r2 in 1 2 3 0 results in 2 2 3 0 erasing

the number 1. Hence, this program cannot be completed to

a correct one anymore and is therefore not viable.

As we are only searching for solutions of minimal length,

we reject a new program if it is longer than a found solution

or an initially given length bound. Furthermore, we reject

a program if not all individual register assignments can be

completed to a sorted state within the remaining budget of

instructions. If one assignment cannot be sorted individually

in the remaining time, the program cannot be completed to

a correct one.

3.4 Step 4: Check for Correctness
We check if all register assignments are sorted.

3.5 Step 5. Cutting Non-Promising States
In this step, we prune the search space by discarding states

that are not promising. It is based on the following observa-

tion:

4

Synthesis of Sorting Kernels CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

The semantical progress of the sort algorithm is the num-

ber of distinct remaining permutations (see Step 1). For in-

stance, starting with [1,2,3], [1,3,2], [2,1,3], [2,3,1], the se-

quence cmp r2 r3; cmovg r4 r2; cmovg r2 r3; cmovg
r3 r4 swaps the content of 𝑟2 and 𝑟3 if 𝑟2 > 𝑟3. The result is

[1,2,3], [1,2,3], [2,1,3], [2,1,3], reducing the number of distinct

permutations from 4 to 2. In that, the program removes one

misalignment in the register assignments ensuring 𝑟2 ≤ 𝑟3.

The intuition is that programs that significantly reduce the

number of distinct permutations are more likely to be better.

We use the number of distinct permutations as a score to

reduce the size of the search space. For each state 𝑠 we check

how the number of distinct permutations relates to the best

state 𝑠′ that we have found for a program length that is one

smaller than the one of 𝑠 . The state 𝑠 will be discarded if its

number of distinct permutations is beyond the number of

distinct permutations of 𝑠′ times a factor 𝑘 , where 𝑘 has to

be chosen empirically. For example, consider some program

length ℓ and assume 𝑠′ is a state that represents a program
of length ℓ − 1 that has the fewest distinct permutations.

We discard each state 𝑠 of length ℓ if the number of distinct

permutations in 𝑠 is at least 𝑘 times the number of distinct

permutations in 𝑠′. This is expressed by the following in-

equality:

𝑘 ·min

𝑠′∈State𝑡−1
perm_count 𝑠′ < perm_count 𝑠

where perm_count is the number of different permutations

in the state and 𝑘 is a parameter that has to be chosen em-

pirically.

Note that this pruning criterion is not guaranteed to pre-

serve optimality. However, for larger program sizes, too

many states are enumerated to be kept in memory and it is

necessary to discard states to make the search feasible.

3.6 Step 6: Deduplication of Equivalent Programs
The most important pruning technique is the deduplication

of equivalent programs. Two programs are equivalent if they

behave the same on all permutations. For instance, cmp r1 r2;

mov r3 r2 is equivalent to mov r3 r2; cmp r1 r2 and cmp r1 r2;

cmp r2 r3 is equivalent to cmp r2 r3 as the flags are overwrit-

ten. To check for equivalence, we hash the register assign-

ments of a state. To further reduce symmetries, we sort the

register assignments of each state in lexicographic order.

Additionally, this processing allows us to deduplicate equal

assignments.

4 Solver-Based Synthesis Techniques
In this section, we discuss several existing synthesis tech-

niques based on constraint solvers (satisfiability modulo the-

ories (SMT), constraint programming (CP), integer linear

programming (ILP)) and apply them to the sorting kernel

synthesis problem. They serve as a basis for comparison in

our evaluation in Section 5. For each technique we focus

on the guarantees (minimality and correctness) about the

resulting algorithms, formulations of the synthesis problem,

and properties of the technique.

Constraint solvers are typically very sensitive to details

in the formulation of the problem. Therefore, we investi-

gate multiple goal formulations of the sorting correctness

criterion for each technique:

• All resulting permutations need to be equal and each

number from 1 to 𝑛 needs to be in the registers.

• The resulting state needs to be ascending and the reg-

isters need to be a permutation of the initial state.

• Similarly, we can specialize to 1, . . . , 𝑛 and check only

that the amount of 0s, 1s, 2s, etc. is the same in the

input and output. Even more specialized, we can assert

that the amount is exactly 1 for each number.

• We can combine both principles and assert that the

output is 1, . . . , 𝑛 in that order.

• Alternatively to the positive constraints, we can check

that each output is between 1 and𝑛 and all are different

and in ascending order.

We also devised heuristics to rule out non-sensical pro-

grams and instructions that will never be part of an optimal

solution. Additionally, we employ heuristics to utilize sym-

metries shrink down the search space:

• Do not perform two consecutive compare operations

• Do not compare a register with itself

• The arguments to a comparison need to be in lexi-

cographic order (otherwise, we could swap the argu-

ments)

• Read from registers in incremental order (allowed due

to symmetry between permutations)

• Do not read uninitialized registers

• Do not ultimately erase a value from all registers

• Provide a skeleton to complete a partly program

As we will show in Section 5, some of the heuristics improve

the synthesis time while others have negligible or even neg-

ative effects.

4.1 Satisfiability Modulo Theories
SMT solvers can be used as a verification oracle to check

the correctness of the program or provide counterexam-

ples where the program behaves incorrectly. Hence, an SMT

solver can be used in conjunction with a counter example

guided synthesis (CEGIS) [11] loop to find correct programs

with any other synthesis technique that suggests candidate

programs.

Given some input/output examples, the synthesizer gen-

erates a candidate program that behaves correctly on the

examples. If such a program is found, the SMT solver checks

the correctness of the program on all possible inputs. Ei-

ther the solver confirms the correctness of the program or

provides a counterexample for further synthesis iterations.

5

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Marcel Ullrich and Sebastian Hack

Our first formulation SMT-Perm directly gives all neces-

sary input/output samples (all permutations). The CEGIS

formulation with interactive counterexample generation is

called SMT-CEGIS. The technique is similar to the one pre-

sented by Gulwani et al. [7].

The advantage of SMT-Perm over SMT-CEGIS is that only

a single query is necessary for synthesis. The resulting candi-

date program is guaranteed to be correct. On the other hand,

SMT-CEGIS can be more efficient as the initial queries are

much smaller and can find a correct program even without

the complete set of input/output examples.

For the SMT approaches, we encode the state as a tuple

of an int array with length 𝑛 +𝑚 for the registers and swap

registers and two boolean values for the flags. We also tested

formulations with enumeration types instead of ints and

encoding the flags along in the array.

For each input sample, we have a separate state tuple that

is transformed in each step of the program. This transforma-

tion resulting from execution of the program instructions

is encoded as a relation of a state with its successor state.

The program consists of free variables for instruction and

its argument for each step that are synthesized. All our in-

structions have exactly two register arguments in the range

1, . . . , 𝑛 +𝑚.

In addition to the direct SMT encoding akin to CEGIS, we

also investigate syntax-guided synthesis (SyGuS) [2] formu-

lations for the synthesis of sorting algorithms in SMT-SyGuS

and SMT-Metalift using MetaLift [3]. We encode a single

abstract state with arbitrary initial register states and assert

the correctness as synthesis constraint.

4.2 Constraint Programming
Similarly to SMT, we test CP for synthesis. Analogously to

the SMT approaches, create variables for each permutation

and timestep as well as for the instructions.

We first investigate ILP. In general CP, we have no concept

of arrays and indexing. Therefore, we encode each register

using a separate variable.

We use binary variables for every possible command to

indicate whether it is selected in the current time stamp. To

only select one command, the sum of all binary variables for

a time stamp has to be one. Depending on which command

is selected, we restrict which variables in the successor state

are equal to the current state.

The most complex transition is the conditional move like

cmovl a b: The register 𝑎 in timestep 𝑡 + 1 is set to the value

of register 𝑏 in timestep 𝑡 if the flag 𝑓< is set.

𝑎𝑡+1 = 𝑏𝑡 · instr𝑡,cmovl,𝑎,𝑏 · 𝑓<︸ ︷︷ ︸
change

+𝑎𝑡 · instr𝑡,cmovl,𝑎,𝑏 · (1 − 𝑓<)︸ ︷︷ ︸
flag not set

+

𝑎𝑡 · (1 − instr𝑡,cmovl,𝑎,𝑏)︸ ︷︷ ︸
no instruction

Conceptually, we use multiplications as logical conjunctions

and additions as logical disjunctions. By multiplying, we can

set the correct value in the appropriate cases. If the flag 𝑓< is

set, the second term is zero and the first term is the value of

𝑏. If the flag is not set, the first term is zero and the second

term is the value of 𝑎 which remains unchanged. If another

instruction is selected, the third term is the value of 𝑎 and

the other terms are zero.

In our formula above, we have cubic constraints as wemul-

tiply three variables. For conditional moves, we introduce

activated commands as binary variables that are true if the

flag is set and the command is selected: active_cmovl𝑡,𝑎,𝑏 =

instr𝑡,cmovl,𝑎,𝑏 · 𝑓< . Using this indirection, we only have qua-

dratic constraints where at least one variable is binary. We

identify this approach using Gurobi [8] as CP-Gurobi.

In ILP solvers that do not support these special quadratic

constraints, we introduce additional variables for the result

of such a multiplication and couple the result via a big-M
†

constraint. We identify this approach as CP-ILP.

In addition to dedicated ILP solvers, we also test general

CP solvers in the CP-Minizinc approach. We use the MiniZ-

inc [16] language to formulate the problem. In that, we can

use the same constraints as in the SMT formulation.

We test the use of a partial test suite as input to the synthe-

sis process. However, prohibitively many wrong programs

are generated. We test generating all programs and filtering

them using the full permutation test suite in CP-Minizinc-

Filter.

5 Evaluation
In this section, we experimentally evaluate our enumerative

approach presented in Section 3. First, we investigate the

structure of the search space to the solver-based techniques

presented in Section 4, and two more techniques from the

related work: AlphaDev [13] and Stoke [19] with respect to

synthesis time and the performance of the generated sorting

algorithms.

5.1 Search Space Structure
In the following paragraphs, we discuss the structure of

the search and solution space of our enumerative approach.

When sorting 𝑛 elements and using𝑚 scratch registers, there

are (
4︸︷︷︸

cmds

· (𝑛 +𝑚)2︸ ︷︷ ︸
regs

) ℓ
possible programs of length ℓ that have to be considered in

the search. The following table shows that the search space

is prohibitively large for exhaustive enumeration.

†
See https://en.wikipedia.org/wiki/Big_M_method.

6

https://en.wikipedia.org/wiki/Big_M_method

Synthesis of Sorting Kernels CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

0 5000 10000 15000 20000

time in s

0

1

2

3

4

5

6

7

o
p
e
n
n
o
d
e
s

1e7
Search over time

Open

0

25000

50000

75000

100000

125000

150000

175000

s
o
l
u
t
i
o
n
s

Solution

Figure 1. Solutions and open states for 𝑛 = 4 over time with

a cut of ·1. The first 10% of the search is shown.

n 𝑛! Optimal Size Program Space

3 6 11 ≈ 10
19.9

4 24 20 ≈ 10
40.0

5 120 ≈ 33 ≈ 10
71.2

6
‡

720 ≈ 45 ≈ 10
108.4

In practice, we enumerate a much smaller portion of 7 ·103,
7 · 104, and 6 · 106 states for 𝑛 = 3, 4, and 5 respectively

using our enumerative approach. For comparison, AlphaDev

enumerates 4 · 105, 1 · 106, and 6 · 106 states.
Figure 1 shows how our enumerative algorithm explores

the search space for 𝑛 = 4. We set 𝑘 = 1 for the cut heuristic

presented in Section 3.5 which is the most aggressive setting

in that it also might prune optimal solutions. Note that 𝑘 = 1

means that we do not allow for a program of length ℓ + 1

that has more distinct permutations than then program of

length ℓ that has the least number of distinct permutations.

The x-axis shows time and the blue line shows the number

of open states in our search and the orange line the number

of found optimal solutions over time. This figure shows that

our heuristics are able to guide the search quickly towards

optimal solutions. Once a given direction is taken in the

search, the algorithm quickly finds all optimal solutions in

that region, closes non-optimal states, and then explores a

new region.

We further investigate different choices of 𝑘 in the cut

heuristic of Section 3.5 and visualize the solutions for𝑛 = 3 in

Figure 2 using t-distributed stochastic neighbor embedding

(tSNE). tSNE is a technique to reduce the dimensionality of

the data while preserving the structure and is frequently

used for visualizing high-dimensional data.

Cuts with 𝑘 = 2 (marked in orange) preserve all 5602

solutions while speeding up the synthesis significantly as

discussed in Section 5.2. Lower values of 𝑘 = 1.5 (green) and

𝑘 = 1 (red), cut down the search space further (potentially

−100 −50 0 50 100 150

−100

−50

0

50

100

150 nocut
cut_2
cut_1.5
cut_1

Figure 2. tSNE visualization of the solutions for 𝑛 = 3. Blue

are all solution without applying any cut (5602 solutions;

hidden by orange because 𝑘 = 2 preserves all optimal solu-

tions). Orange are the solution applying our cut heuristic

with a constant of 2 (5602 solutions). Green are the solutions

applying our cut heuristic with a constant of 1.5 (838 solu-

tions). Red are the solutions applying our cut heuristic with

a constant of 1 (222 solutions). For better visual impression,

nodes are slightly perturbed to avoid overlap.

pruning optimal solutions) resulting in 838 and 222 solutions

respectively.

Despite the amount of solutions, we observe little variety

between different solutions. For 𝑛 = 3, out of 5602 solutions

only 23 distinct command combinations are used, i.e. many

programs are actually equivalent modulo the order of the

instructions and renaming of registers.

For 𝑛 = 4, we explore the entire solution space with 𝑘 = 1

which took more than a week on a standard notebook. We

enumerated 4.9 · 109 programs out of which 2233360 are

optimal solutions, we skip 16.8 · 109 semantically identical

programs. Out of these solutions, only 63 are distinct re-

garding their command combination. We verified that the

solutions are indeed optimal (their length is 20) by validating

that there is no solution of length 19 by exhaustive search

(𝑘 = ∞) which took two weeks.

5.2 Synthesis Time
In this section, we compare our enumerative approach to

the solver-based techniques presented in Section 4, and two

more techniques from the related work: AlphaDev [13] and

Stoke [19] with respect to synthesis time.

If not otherwise stated, all our experiments ran on a stan-

dard notebook with 16 AMD Ryzen 7 5800X 8-core proces-

sors with 4850MHz and 32GB of RAM. We conduct our GPU

experiments using a NVIDIA GeForce RTX 3070 Ti (8192MB

VRAM). For each test, we set the time out to 5 hours (600min

or 18000s). For tests under 15 minutes, we took the average

7

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Marcel Ullrich and Sebastian Hack

over 5 runs, for longer tests, we only sampled one execution

time.

Because the code of AlphaDev is not publicly available, we

can not benchmark reproduce their benchmarks and have

to refer to the results they report [13]. They used a tensor

processing unit (TPU) v.3 with 16 TPU cores with a batch

size of 1024 per core for training. For the actor, they used a

TPU v.4 with 512 actors.

For discovering the branchless synthesis algorithms, they

use two techniques: AlphaDev-RL uses Monte Carlo tree

search (MCTS) with an RL agent to find the best program.

AlphaDev-S is a stochastic superoptimization approach sim-

ilar to Stoke [19] run in a warm start mode meaning that the

search starts with a given program and tries to optimize it.

In the best configuration (see below for a more in-depth

discussion), our enumerative approach is able to synthe-

size the 𝑛 = 5 case in a reasonable time and outperforms

AlphaDev-RL by approximately two orders of magnitude:

Time 𝑛 = 3 𝑛 = 4 𝑛 = 5

Enum, best 97ms 2443ms 11min

AlphaDev-RL 6min 30min ≈1050min

AlphaDev-S 0.4 s 0.6 s ≈345min

In the remainder of this section, we state the times for

𝑛 = 3. We tried each approach that found a solution for

𝑛 = 3 (for instance CP) again for 𝑛 = 4. For 𝑛 = 4 we set the

time out to a week (10080min or 604800s) and moved to a

larger cluster with 1 TB of RAM. However, none of the other

contenders was able to synthesize a program for 𝑛 = 4.

SMT-based Techniques. The best-performing approach

is the CEGIS formulation in which we restrict the counterex-

amples to be permutations of 1, . . . , 𝑛. The second best is the

approach without counterexample loop in which we synthe-

size based on all permutations. We also tested the different

goal formulations and heuristics mentioned in the beginning

of Section 4 but none of them had a significant influence.

Neither SyGuS nor Metalift are able to synthesize a program

for 𝑛 = 3. We provide the runtime for 𝑛 = 3:

Approach Time Note

SMT-Perm 44min z3

SMT-CEGIS 97min z3, arbitrary inputs

SMT-CEGIS 25min z3, inputs in range 1, . . . , 𝑛

SMT-SyGuS — cvc5

SMT-Metalift —

Contraint Programming. None of the linear program-

ming formulations was able to synthesize a program for

𝑛 = 3. Only MiniZinc with the Chuffed solver [4] was able

to solve the 𝑛 = 3 case.

Approach Time Note

CP-Gurobi — with quadratic constraints

CP-ILP mip — gurobi

CP-ILP mip — cbc

CP-Minizinc — gurobi/cplex/couenne/

coin-bc/gecode/or tools

CP-Minizinc 874ms chuffed solver

CP-Minizinc-Filter —
§

partial input test suite

For the successful MiniZinc/Chuffed combination, we in-

vestigate the impact of different heuristics and goal formu-

lations that we describe in Section 4 below. = 123 means

that the goal requires numbers in that order in the output. ≤
means a goal that enforces an ascending order of the output.

#𝑎1𝑎2 . . . means that the goal enforces that the value 𝑎𝑖 oc-

curs as often in the input as in the output. Note that ≤ and

#123 are equivalent to = 123.

Goal formulation Heuristic Time

= 123 — 247 s

≤, #0123 — 232 s

≤, #0123 (I) := no consecutive compares 10 s

≤, #0123 (II) := symmetry for compares 68 s

≤, #0123 (I) + (II) 874ms

= 123 (I) + (II) 70 s

≤, #0123, = 123 (I) + (II) 11 9s

≤, #123 (I) + (II) 30 s

≤, #0123 (I) + (II), cmd[1]=Cmp 64 s

≤, #0123 (I) + (II), #123 ≥ 1
¶

52 s

≤, #0123 (I) + (II), only read initialized 54 s

The goal formulation ≤, #0123 gives the fastest synthesis
time by far. Surprisingly, adding 0 to the goal constraint is

more efficient than #123 even though 0 does never appear as

an input (note that the constraint forces the same amount of

occurrences in input and output). We found that providing

“too much” information slows down the synthesis process

as can be seen in the ≤, #0123,= 123 case.

Using heuristics that eliminate consecutive compare in-

structions and removing symmetries for compare instruc-

tions speeds up the synthesis process but surprisingly, addi-

tional heuristics do not improve the synthesis time. Even a

partially given program (e.g., fixing the first instruction as a

comparison) does not improve the synthesis time.

While finding one solution with our CP-Minizinc ap-

proach takes roughly a second, we are able to enumerate all

possible solutions (33612) in 154 minutes. Using symmetries

and only enumerating programs producing the sorted out-

put in ascending order, we reduce the solution space to 5602

programs and the synthesis time to 13 minutes.

We note that the solver makes a significant difference.

While the underlying techniques are similar between solvers,

only the Chuffed solver is able to synthesize the program

for 𝑛 = 3. All other solvers do not terminate even if given

ample time (a week) for the computation. As with the SMT

approaches, none of the CP approaches produces a solution

for 𝑛 = 4.

8

Synthesis of Sorting Kernels CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

When we relax the goal formulation to only a subset of all

permutations we are able to synthesize a program for 𝑛 = 4

in 23 minutes. However, this algorithm is not guaranteed to

be correct for all inputs and all solutions that were provided

until the timeout were incorrect. Hence, synthesizing with a

relaxed goal formulation is not practical.

Stochastic Search. Weuse Stoke [19] for stochastic search.

Stoke has two modes, cold and warm start. Cold start syn-

thesizes a program from scratch where as warm start takes

an existing program and tries to optimize it. Stoke uses test

cases as correctness oracle. We tested all permutations and

1000 randomly drawn subsets of all permutations. For warm

start, we tried different initial programs implementing sort-

ing networks and different hand-written implementations

of a sorting algorithm that sorts three elements.

Stoke is unable to synthesize a correct program for 𝑛 =

3. Also the warm-start optimization mode fails to find a

program of optimal length for the 𝑛 = 3 case.

Approach Time Note

Stoke-Cold — permutation test suite

Stoke-Cold — random test suite

Stoke-Warm — manual sorting network start

Stoke-Warm — indexed sorting start

Stoke-Warm — branching sorting start

Planning. To widen the scope of investigated synthesis

techniques, we also formulate our synthesis problem as a

planning problem in the planning domain definition lan-

guage (PDDL). In this setting, a plan is a sequence of instruc-

tions that sorts the input. As with the SMT and CP formula-

tions, we encode each possible permutation and transform

them in tandem with the program execution.

Each instruction is an action in the planning domain. We

use a formulation Plan-Parallel with conditional effects as

well a linearized formulation Plan-Seq that handles each pos-

sible permutation one after another.We test the planners fast-

downward [9], Scorpion [21], Lama [18], and CPDDL [6].

fast-downward allows us to test multiple variations of

standard heuristics from the planning community including

pattern databases, landmarks, landmark cuts, and the use

of the FF heuristic. However, we are unable to synthesize a

program for 𝑛 = 3 with fast-downward.

As with the other approaches, we are unable to extend the

approach to 𝑛 = 4.

Approach Time Note

Plan-Parallel —

Plan-Seq 679 s Scorpion

Plan-Seq 398 s CPDDL (symbolic search)

Plan-Seq 3.54 s Lama

Plan-Seq 3.86 s Lama, no negative precond.

Plan-Seq 216 s Lama, grounded actions

Enumerative Approach. Finally, we evaluate our enu-
merative approach in a variety of settings. We present the

effects of individual optimizations presented in Section 3

in isolation and then look at the combination of the best

optimizations.

Approach Time Note

Enum 56 s dijkstra, single core

Enum 17 s dijkstra, parallel

Enum 46 s dijkstra, gpu

Enum 219 s (I) := A*, deduplication, no heuristic

Enum 1713ms (I) + permutation count

Enum 2582ms (I) + register assignment count

Enum 7176ms (I) + assignment instructions needed

Enum 37 s (I) + cut with 2

Enum 3221ms (I) + cut with 1.5

Enum 325ms (I) + cut with 1

Enum 16 s (I) + cut with +2
Enum 90 s (I) + assignment optimal instructions

Enum 8646ms (I) + assignment viability check

Enum 690ms (II) := (I) + permutation count,

optimal instructions,

assignment viability check

Enum 97ms (III) := (II) + cut 1

Using combinations of optimizations, we observe that each

optimization is mostly independent of the others, which

means that adding an optimization to another one has a

positive impact on the synthesis time.

We observe that the permutation count is the best search

heuristic of the ones described in Section 3.1. The best result

is using this search heuristic in combination with checking

for viable assignments (Section 3.3) and the non-optimality-

preserving cut described in Section 3.2. The largest improve-

ment comes from the cut heuristic (Section 3.5). Therefore,

we investigate the cut heuristic for different values of 𝑘 in the

context of the set of best optimizations we have identified

above. To estimate how much of the solution space is cut,

we give the count of solutions remaining for 𝑛 = 3:

𝑘 Time for 𝑛 = 3 Time for 𝑛 = 4 Sol. rem. 𝑛 = 3

1 97ms 2443ms 222

1.5 215ms 82 s 838

2 629ms 763 s 5602

3 631ms — 5602

4 623ms — 5602

For 𝑘 ≥ 2we see that all solutions are preserved. However,

we want to choose 𝑘 as small as possible to cut down the

search space maximally.

We apply our best enumerative approach (III) to the 𝑛 = 4

and 𝑛 = 5 case:

Time 𝑛 = 3 𝑛 = 4 𝑛 = 5

Enum, best 97ms 2443ms 11min

Given our results, we conclude that with domain knowl-

edge, even the complicated 𝑛 = 5 case becomes feasible to

synthesize on a standard laptop in a reasonable time. Al-

though the search space possesses a structure that allows for

heuristics and cuts, classical techniques are unable to utilize

this structure efficiently and are not able to find solutions

for 𝑛 > 3.

9

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Marcel Ullrich and Sebastian Hack

5.3 Evaluation of Sorting Algorithms
Using our enumerative approach, we are able to synthesize

multiple, given sufficient time, all optimal sorting algorithms.

We compare our results to the algorithms byMankowitz et al.

[13], Neri [15], Mimicry [14], and additional ones, that we

wrote ourselves in Assembly, C, C++, and Rust. We embed

the assembly algorithms using inline assembly and link the

other algorithms via C’s application binary interface (ABI).

As mentioned, we do not synthesize the load and store in-

structions from the memory to the registers and back. These

instructions are always necessary and only their placement

in the algorithm is up to preference. Therefore, our assem-

bly algorithms are correspondingly shorter than the ones

discussed by Mankowitz et al. [13].

To evaluate the performance of the sorting algorithms, we

use random test cases with length 𝑛 as well embedding the

algorithms into quicksort and mergesort. We use the Google

benchmark library
∥
for the benchmarking. In the following

tests, we use clang version 17.0.6 in the release configuration

and compare sorting algorithms for 𝑛 = 3. For each contes-

tant (cassioneri, alphadev, mimicry, enumeration), we take

the best algorithm.

Additionally, we benchmark handwritten C++ and Rust

implementations. The default algorithm uses three condi-

tionals and a temporary variable to swap contents of the

memory buffer. The branchless algorithm uses index arith-

metic with comparisons to write the smallest, middle, and

largest value to the memory buffer. The swap algorithm op-

erates the same as default but uses local variables and

std::swap to swap the values. The std algorithm uses the

standard library’s std::sort function. For each algorithm, we

give the time taken by the benchmark and its rank among

all tested algorithms.

We first compare the sorting algorithms in a standalone

setting. Each algorithm is tested with random test cases of

length 3 with values between −10000 and 10000. We bench-

mark over multiple iterations over the full test suite and

average the resulting times. We count how often each in-

struction is used for each program. This count includes the

move instructions between the memory and registers.

Algorithm Time Rank Cmp Mov CMov Other

enum 5.8ms 1 3 8 6 -

enumworst 10.9ms 5614 3 6 8 -

cassioneri 7.1ms 4483 3 9 6 -

mimicry 8.0ms 5569 3 6 - 8

alphadev 6.7ms 1494 3 8 6 -

branchless 7.1ms 3861 3 7 - 12

default 27.7ms 5618 4 13 - 6

swap 6.6ms 928 3 9 6 -

std 29.0ms 5621

∥https://github.com/google/benchmark

The swap approach is one of the best approaches only

beaten by the enum approach. Additionally, most handwrit-

ten approaches are slower than the slowest enum approach.

To compare the algorithm in a natural way, we embed

them into a quicksort and mergesort algorithm indicated

by subscript 𝑄 and𝑀 respectively. The input is recursively

sorted until three elements remain onto which the sorting

algorithm is applied. We use lists of random length up to

20000 elements. The instruction counts differ between the

standalone run and the embedded run as we always select

the best algorithm for each category.

Algorithm Time𝑄 Rank𝑄 Cmp Mov CMov Other

enum 759ms 1 3 8 6 -

enumworst 982ms 5623 3 7 7 -

cassioneri 776ms 546 3 6 - 6

mimicry 782ms 845 - - - 9

alphadev 787ms 1129 3 8 6 -

branchless 786ms 1090 3 7 - 12

default 829ms 4833 4 13 - 6

swap 778ms 633 3 9 6 -

std 810ms 3810

Algorithm Time𝑀 Rank𝑀 Cmp Mov CMov Other

enum 1223ms 2 3 8 6 -

enumworst 1595ms 5623 3 7 7 -

cassioneri 1220ms 1 3 6 - 6

mimicry 1327ms 4202 3 6 - 8

alphadev 1297ms 2113 3 8 6 -

branchless 1301ms 2394 3 7 - 12

default 1362ms 5212 4 13 - 6

swap 1318ms 3667 5 14 - 6

std 1359ms 5160

In the quicksort test, other approaches like cassioneri and

mimicry perform significantly better than in the standalone

test. Many of our manual sorting approaches are competitive

with the synthesized approaches.

For our mergesort benchmark, the cassioneri approach is

slightly faster than our best enumerative approach. However,

the difference is not significant. Most other manual and syn-

thesized approaches are measurably slower than the enum
approach.

Our enumerative approach is competitive with the best

synthesized and handwritten algorithms and in most bench-

marks beats state-of-the-art approaches.

The alphadev approach is competitive and is only slightly

slower than our enumerative approach. Our handwritten swap

approach is also well-optimized by the compiler resulting in

competitive performance.

For 𝑛 = 4, even our cut solution set is too large to measure

the runtime of all 2233362 solutions. Therefore, we sample a

subset of 4000 solutions and evaluate them. To make sure we

get good candidates, we assign a score to each program in the

solution space in the following way: We compute the critical

path length, and a score based on the used instructions. We

weigh mov with 1, cmp with 2, and conditional moves with

10

https://github.com/google/benchmark

Synthesis of Sorting Kernels CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

4. The scores of our solutions are {55, 58, 61, 64, 67, 70}. We

sample 2000 solutions with score 55 and 2000 with score

58. We validated for programs with 𝑛 = 3 that this scoring

scheme picks good programs.

We evaluate the sorting algorithms for 𝑛 = 4 in a stan-

dalone setting (subscript 𝑆) and embedded in a quicksort

algorithm (subscript𝑄). Note that Neri [15] does not provide

a cassioneri algorithm for 𝑛 = 4.

Algorithm Time𝑆 Rank𝑆 Time𝑄 Rank𝑄

enum 9.4ms 2 800ms 1

enumworst 12.1ms 4004 1033ms 4009

mimicry 8.8ms 1 826ms 1877

alphadev 10.4ms 2549 822ms 1282

branchless 14.9ms 4007 824ms 1609

default 14.8ms 4006 861ms 3822

swap 10.2ms 1977 827ms 2084

std 16.7ms 4009 854ms 3705

Similar to 𝑛 = 3, the swap approach is the best manual

approach for the standalone benchmark. Our enumerative

approach leads the benchmark only beaten by the vectorized

mimicry approach which is slightly faster in the standalone

benchmark.

For 𝑛 = 5, we evaluate the program presented by alphadev

and sample kernels generated by our approach:

Algorithm Time

enum 14.84ms

enumworst 17.77ms

alphadev 16.20ms

For alphadev, we test the version they provide as well as a

version where we reorder all memory move instructions to

the beginning and end. In the standalone tests, our reordered

version is faster than the original version.

As we enumerate the search space completely, we are able

to confirm the optimality of our solution. For 𝑛 = 3, we

enumerate all 5602 solutions of length 11. For 𝑛 = 4, we

enumerate the search space for length 19 without finding a

solution. Therefore, we confirm that our solutions of length

20 are optimal for 𝑛 = 4. This bound is new and has not been

reported in the literature before. Note that the length-20

solution for 𝑛 = 4 is identical to using 5 swaps which is the

standard implementation of an optimal sorting network for

𝑛 = 4.

5.4 Min/Max Kernels
In addition to the conditional move setting presented by [13],

we also investigate min/max kernels as mentioned in Sec-

tion 2.1. We have also investigated “hybrid” kernels that use

cmovs and min/max instructions at the same time. However,

since min/max instructions work on the vector register file

and cmovs on the general purpose registers, such kernels re-

quire additional instructions that transfer the values between

both register files which makes them not competitive.

In a min/max kernel, a compare-and-swap can be imple-

mented using three instructions compared to four for the

cmov case. This results in 9, 15, 27 for a straight-forward

implementation of a minimal-size sorting network for sizes

𝑛 = 3, 4, 5. Our approach synthesizes min/max kernels of the

following sizes, synthesis time, and speed:

Runtime

𝑛 # Instr Synthesis min/max cmov network

3 8 3.8ms 4.57ms 5.80ms 5.29ms

4 15 70.5ms 7.00ms 9.48ms 8.12ms

5 26 32.5 s 10.66ms 14.84ms 12.23ms

The last column shows the runtime of the synthesized min/-

max kernel, compared to the runtime of the best cmov kernel,

and to the runtime of the min/max implementation of an op-

timal sorting network. A detailed analysis using uiCA [1] of

the best synthesized kernel also showed that the synthesized

code has a better dependence structure that allows for higher

instruction-level parallelism (and therefore throughput) than

the sorting network implementation.

For 𝑛 = 3 and 𝑛 = 4, we verified the minimality of the

solutions with respect to the program length. For 𝑛 = 3, our

CP approach generates a solution in 15.8s while our SMT

approach takes 10s. Neither can generate a solution for 𝑛 = 4.

6 Related Work
Gulwani et al. [7] use SMT-based synthesis to generate pro-

grams in a CEGIS loop. Similar to our restricted set of in-

structions, they use library of components that are employed

for the synthesis. The SMT solver enable the synthesis of

programs involving constants that can not be exhaustively

enumerated. However, this capability is not necessary for

our problem as sorting is a purely structural problem.

Alur et al. [2] introduce the SyGuS framework for syntax-

guided synthesis. In their work, they evaluate multiple clas-

sical synthesis techniques including SMT-based CEGIS syn-

thesis, enumerative learning, constraint-based learning, and

stochastic search. Their focus are functional programs ac-

cording to a fixed grammar. Their techniques are similar to

ours.

In their enumerative approach, they deduplicate expres-

sions that behave the same on the current input-output ex-

amples. This deduplication corresponds to our handling of

states. Each state represents the execution of the partial pro-

gram under consideration. If two programs behave the same,

we only keep the better one. In their experiments, Alur et al.

[2] conclude that the enumerative solver is the often most

effective. Furthermore, they also note that the formulation

of the synthesis problem can have a significant impact on

the performance of the synthesis algorithm.

Mankowitz et al. [13] introduce AlphaDev, a system for

synthesizing programs using reinforcement learning via

MCTS. Their approach is based on AlphaZero [22]. The RL

approach is able to solve much larger problems than the

classical synthesis techniques. However, the approach is not

11

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Marcel Ullrich and Sebastian Hack

guaranteed to find an optimal solution. The reinforcement-

learning approach ofMankowitz et al. [13] is also not fully au-

tonomous and applies the following human-provided heuris-

tics. In comparison to their approach, we directly start with

the values inside the registers and end our algorithm with

the sorted registers avoiding the need for heuristics about

memory access. The other heuristics Mankowitz et al. [13]

uses are already covered by our equivalence checks and sym-

metries.

Mimicry [14] employ shuffle vectors to sort the data. They

use single instruction, multiple data (SIMD) instructions to

transform the data reducing the overall needed computation

cycles. In their tests, they improve upon the speedup of

AlphaDev.

Mankowitz et al. [13] claim that they exhaustively checked

for 3 days that their solution is minimal for 𝑛 = 3. We val-

idate their claim and extended the claim to 𝑛 = 4 by more

efficiently enumerating the search space pruning programs

that are guaranteed to be suboptimal or incorrect as dis-

cussed in Section 5.3. Our search is restricted to mov, cmp, and

conditional move instructions. We presume Mankowitz et al.

[13] used the same set of instructions that are also explained

in the appendix of their paper.

Neri [15] challenges the claim of Mankowitz et al. [13]

that their solution is minimal. They present shorter solutions

for 𝑛 = 3. One of their algorithms uses loops. The other uses

more complex instructions like movsb, adc, and sbb. Further-

more, they propose an algorithm that is faster in their tests

than the one by Mankowitz et al. [13].

Recent research on synthesis techniques focuses on the

combination of traditional search techniques like MCTS and

A* with neural networks to guide the search via heuristics.

Neural networks are able to learn from the encountered

states and discover heuristics and properties on their own.

Especially large language models (LLMs) have shown to be

able to learn complex patterns and properties showing logic

reasoning capabilities.

Parsert and Polgreen [17] present a reinforcement learning

approach for SyGuS synthesis using MCTS and gradient-

boosted trees for the machine learning part.

Li et al. [12] present a LLM based approach for SyGuS

synthesis. They investigate the use of probability grammars

and interactive queries to the LLM to guide the synthesis

process.

Lehnert et al. [10] present a search approach for planning

problems using LLMs and A* search. The LLM is used to

learn the pattern of the search trace and find shortcuts to

speed up the search.

Planning is most commonly applied to concrete instances

of a problem of the form ∃path. The synthesis problem is

more abstract and can be formulated as∃ program : ∀ inputs :
correct. The synthesis problem in planning is called gener-

alized planning. Segovia-Aguas et al. [20] investigates the

heuristics for generalized planning.

7 Conclusions
In this paper, we showed an enumerative search technique

based onA* search and presented novel optimality-preserving

heuristics and non-optimality-preserving cuts for sorting

kernel synthesis. We showed that our heuristics and cuts

significantly reduce the search space and allow us to syn-

thesize sorting kernels for arrays of lengths 3 to 5. In our

evaluation we compared against a wide range of existing

program synthesis approaches using different techniques

and showed that none of them was able to synthesize a sort-

ing kernel of length greater than 3. The only other approach

that scales to lengths beyond 3 is AlphaDev [13] which uses

reinforcement learning and Monte-Carlo tree search. We

outperform AlphaDev in synthesis time by two orders of

magnitude running on a standard notebook.

Approaches like AlphaDev have demonstrated the po-

tential of RL for program synthesis by scaling to larger in-

stances. However, they still require human knowledge to

guide the search, lack guarantees about the quality of the

found solutions, and require significant compute resources.

We have shown that simple classical search techniques can

be enhanced with domain-knowledge to close the gap to

reinforcement learning techniques in terms of scaling while

still providing guarantees and resource efficiency.

A Artifact Appendix
A.1 Abstract
We provide an artifact to run the synthesis approaches and

benchmark the resulting sorting kernels. For each test, we

provide shell scripts and docker containers to run the exper-

iments.

Our artifact is available on Github
∗∗
and at Zenodo

††
under

the DOI 10.5281/zenodo.14092980.

A.2 Artifact Check-List (Meta-Information)
• Algorithm: New algorithm in the enum folder.
• Program: Benchmark code included in the comparison
folder, public.

• Compilation: No specific compiler needed, all tools are

included in the docker containers.

• Run-time environment: The planning container needs

--privileged (as seen in the shell/python script).

• Execution: Execution times for the synthesis is given in the

paper otherwise stated in the shell scripts. Most benchmarks

time out. The main benchmarks are explained below.

• Metrics: Synthesis time and execution time of synthesized

kernels are evaluated.

• Output: The results are logged in the results folder of

each benchmark or textfiles in the current folder, expected

results are stated in the paper.

• Experiments: The ReadMe file states where the scripts are

located and to be run.

∗∗https://github.com/NeuralCoder3/cgo25_artifact
††https://zenodo.org/records/14092980

12

https://github.com/NeuralCoder3/cgo25_artifact
https://zenodo.org/records/14092980
https://github.com/NeuralCoder3/cgo25_artifact
https://zenodo.org/records/14092980

Synthesis of Sorting Kernels CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

• Howmuch disk space required (approximately)?: 10GB
• How much time is needed to prepare workflow (ap-
proximately)?: No preparation needed (assuming docker

is installed).

• How much time is needed to complete experiments
(approximately)?: Up to six hours for the main bench-

marks.

• Publicly available?: On Github and Zenodo.

• Workflow framework used?: Docker

• Archived (provide DOI)?: DOI 10.5281/zenodo.14092980

A.3 Description
A.3.1 How delivered. The artifact is available at https://github.
com/NeuralCoder3/cgo25_artifact and can be cloned via

git clone --recurse-submodules
https://github.com/NeuralCoder3/cgo25_artifact.git
350MB will be used.

A.3.2 Hardware Dependencies. For one target of the enumera-

tion synthesis, a GPU is needed. To skip this target, remove the two

GPU targets (line 41–44) from the exec.sh file in the enum folder

and remove --gpus all from run.sh in the enum folder.

A.3.3 Software Dependencies. The artifact is provided as a

docker containers and shell scripts. Under Linux, the run.sh files
can be invoked directly. On other operating systems, the commands

in the run.sh files can be run manually. This usually involves

building and running the docker containers.

A.4 Installation
Clone the repository using

git clone --recurse-submodules
https://github.com/NeuralCoder3/cgo25_artifact.git
Install Docker as explained on Docker

‡‡
.

A.5 Experiment Workflow
For the main benchmarks, the workflow is as follows:

• Run the enumeration synthesis using ./run.sh in the enum
folder.

• Evaluate the sorting kernels using ./run.sh in the

comparison folder.

Depending on the docker setup, docker needs to be invoked as

root, for instance by running sudo ./run.sh.

A.6 Evaluation and Expected Result
A.6.1 Enumeration Synthesis. The benchmark synthesized

kernels for 𝑛 = 3, 𝑛 = 4, and 𝑛 = 5.

Execute ./run.sh (or ./run_no_gpu.sh) in the enum folder to
run the benchmark. Furthermore, we generate all solutions for

𝑛 = 3 and test the influence of different heuristics on the synthesis

time. Lastly, sorting kernels using min/max assembly instructions

are generated.

• 𝑛 = 3 output in enum/results/sol3_h1.txt, expected syn-
thesis time is around 100ms.

• 𝑛 = 4 output in enum/results/sol4_h1.txt, expected syn-
thesis time is around 2.5s.

‡‡https://www.docker.com/get-started/

• 𝑛 = 5 output in enum/results/sol5_h1.txt, expected syn-
thesis time is around 11m.

• All 𝑛 = 3 solutions log in sol3_allsolutions_log.txt,
expected synthesis time is around 30m, 5602 solutions are

expected (solutions in enum/results/sol3/).
• The generated solutions are then checked for correctness.

• We generate solutions using different heuristics in

sol3_h15_allsolutions_log.txt and
sol3_h1_allsolutions_log.txt respectively taking

around 4 minutes for ℎ = 1.5 and 30 seconds for ℎ = 1.

• Afterward, we recreate the TSNE embedding in

tsne_scattered_a70_p50_i300.png.
• Next, the parallel CPU and two GPU enumeration syntheses

are run taking 30s, 3min, and 1min respectively. (Output in

sol3_parallel.txt, sol3_gpu.txt,
and sol3_gpu_struct.txt)

• Lastly, we synthesize min/max kernels for 𝑛 = 3, 𝑛 = 4, and

𝑛 = 5 taking 3ms, 50ms, and 1min respectively. As well as

all min/max solutions for𝑛 = 3 taking 500ms. The files follow

the naming scheme in sol3_minmax.txt, sol4_minmax.txt,
sol5_minmax.txt, and sol3_minmax_allsolutions.txt.

Any synthesis for 𝑛 = 4 and 𝑛 = 5 in under a few hours (a

few minutes for 𝑛 = 3) is a success compared to state-of-the-art

techniques. However, the times should not significantly differ from

those reported in our paper. Our enum synthesis reports times

faster than AlphaDev-RL and as fast or faster than AlphaDev-S as

reported in Section 5.2.

A.6.2 Benchmark. The benchmark evaluates the synthesized

kernels aswell as the best-known sorting kernels. Execute ./run.sh
in the comparison folder to run the benchmark.

• The script builds the Clang release version of the benchmark

program and runs all benchmarks for 𝑛 = 3, 𝑛 = 4, and 𝑛 = 5

as well as the kernels embedded into larger sorting programs

for 𝑛 = 3 and 𝑛 = 4.

• Afterward, the throughput of the kernels is predicted using

LLVM MCA and UICA.

The runtime of the comparison is expected to take a few hours

up to five hours. The expected results of the benchmarks are de-

tailed in Section 5.3 of the paper. The correctness can be checked

by inspecting the generated files in comparison/refined. The
computed execution times are listed in sort_bench*.txt and are

sorted by time. The absolute time is not relevant just the relative

order. Near entries might appear swapped due to fluctuation in

execution. However, the general order should be as reported in the

paper.

For non-embedded tests, we report sort3_minmax, a kernel gen-
erated using our enumeration technique, as the best time for 𝑛 = 3,

the second best (beaten by mimicry) for 𝑛 = 4, and the best for

𝑛 = 5. For embedded tests, cassioneri performs the best for 𝑛 = 3

followed by our kernel. For 𝑛 = 4, our kernels perform the best in

the embedded setting.

A.7 Experiment Customization
All source files are available to test out other heuristics or param-

eters. We give a short overview of tuning parameters for each

benchmark:

13

https://github.com/NeuralCoder3/cgo25_artifact
https://github.com/NeuralCoder3/cgo25_artifact
https://www.docker.com/get-started/
https://www.docker.com/get-started/

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Marcel Ullrich and Sebastian Hack

• comparison: Other compilers, optimizations, and flags can

be tested using the CMake presets. Furthermore, additional

kernels can be added in headers for comparison.

• cp: Solver targets and heuristics can be changed in the files.

• enum: Compile time flags allow to turn on and off different

code parts.

• planning: The availability of the problem and domain files

allows to try out different solvers and planning heuristics.

• smt: The files are provided allowing for easy interchange of

the solver and addition of new heuristics.

• stoke: The parameters of stoke can be adjusted in

stoke/sym/synthesis.conf as well as the function that is

taken as a start point (multiple functions are provided in

main.cc).

B Data-Availability Statement
The artifact is available at [23].

References
[1] Andreas Abel and Jan Reineke. 2022. uiCA: Accurate throughput

prediction of basic blocks on recent Intel microarchitectures. In Pro-
ceedings of the 36th ACM International Conference on Supercomputing.
1–14. https://doi.org/10.1145/3524059.3532396

[2] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MKMartin, Mukund

Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama,

Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis.
IEEE. https://doi.org/10.1109/FMCAD.2013.6679385

[3] Shadaj Laddad Alvin Cheung, Sahil Bhatia. 2023. MetaLift – A program

synthesis framework for verified lifting applications. https://github.
com/metalift/metalift.

[4] Geoffrey Chu, Andreas Schutt Peter Stuckey, Gaeme Gange

Thorsten Ehlers, and Kathryn Francis. 2023. Chuffed, a lazy clause

generation solver. https://github.com/chuffed/chuffed.
[5] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford

Stein. 1990. 33.3: Finding the convex hull. Introduction to Algorithms
(1990), 955–956.

[6] Daniel Fiser. 2024. CPDDL. https://gitlab.com/danfis/cpddl.
[7] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-

san. 2011. Synthesis of loop-free programs. ACM SIGPLAN Notices 46,
6 (2011), 62–73. https://doi.org/10.1145/1993316.1993506

[8] Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual.

https://www.gurobi.com
[9] Malte Helmert. 2006. The fast downward planning system. Journal of

Artificial Intelligence Research 26 (2006), 191–246. https://doi.org/10.
1613/jair.1705

[10] Lucas Lehnert, Sainbayar Sukhbaatar, Paul Mcvay, Michael Rabbat, and

Yuandong Tian. 2024. Beyond A*: Better Planning with Transformers

via Search Dynamics Bootstrapping. arXiv preprint arXiv:2402.14083
(2024). https://doi.org/10.48550/arXiv.2402.14083

[11] A Solar Lezama. 2008. Program synthesis by sketching. Ph. D. Disserta-
tion. Citeseer.

[12] Yixuan Li, Julian Parsert, and Elizabeth Polgreen. 2024. Guiding Enu-

merative Program Synthesis with Large Language Models. arXiv
preprint arXiv:2403.03997 (2024). https://doi.org/10.1007/978-3-031-
65630-9_15

[13] Daniel J Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi,

Marco Selvi, Cosmin Paduraru, Edouard Leurent, Shariq Iqbal, Jean-

Baptiste Lespiau, Alex Ahern, et al. 2023. Faster sorting algorithms

discovered using deep reinforcement learning. Nature 618, 7964 (2023),
257–263. https://doi.org/10.1038/s41586-023-06004-9

[14] Mimicry. 2023. Faster Sorting Beyond DeepMind’s AlphaDev. https:
//www.mimicry.ai/faster-sorting-beyond-deepminds-alphadev Ac-

cessed: 2023-09-20.

[15] Cassio Neri. 2023. Shorter and faster than Sort3AlphaDev. arXiv
preprint arXiv:2307.14503 (2023). https://doi.org/10.48550/arXiv.2307.
14503

[16] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,

Gregory J. Duck, and Guido Tack. 2007. MiniZinc: towards a stan-

dard CP modelling language. In Proceedings of the 13th International
Conference on Principles and Practice of Constraint Programming (Prov-

idence, RI, USA) (CP’07). Springer-Verlag, Berlin, Heidelberg, 529–543.
https://doi.org/10.1007/978-3-540-74970-7_38

[17] Julian Parsert and Elizabeth Polgreen. 2024. Reinforcement Learning

and Data-Generation for Syntax-Guided Synthesis. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 38. 10670–10678.
https://doi.org/10.1609/aaai.v38i9.28938

[18] Silvia Richter and Matthias Westphal. 2010. The LAMA planner: Guid-

ing cost-based anytime planning with landmarks. Journal of Artificial
Intelligence Research 39 (2010), 127–177. https://doi.org/10.1613/jair.
2972

[19] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic super-

optimization. ACM SIGARCH Computer Architecture News 41, 1 (2013),
305–316. https://doi.org/10.1145/2490301.2451150

[20] Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. 2021. Gen-

eralized planning as heuristic search. In Proceedings of the International
Conference on Automated Planning and Scheduling, Vol. 31. 569–577.
https://doi.org/10.1609/icaps.v31i1.16005

[21] Jendrik Seipp. 2023. Scorpion 2023. Tenth International Planning
Competition (IPC-10): Planner Abstracts (2023).

[22] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,

Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan

Kumaran, Thore Graepel, et al. 2018. A general reinforcement learning

algorithm that masters chess, shogi, and Go through self-play. Science
362, 6419 (2018), 1140–1144. https://doi.org/10.1126/science.aar6404

[23] Marcel Ullrich and Sebastian Hack. 2024. Synthesis of Sorting Kernels.
https://doi.org/10.5281/zenodo.14092980

Received 2024-09-12; accepted 2024-11-04

14

https://doi.org/10.1145/3524059.3532396
https://doi.org/10.1109/FMCAD.2013.6679385
https://github.com/metalift/metalift
https://github.com/metalift/metalift
https://github.com/chuffed/chuffed
https://gitlab.com/danfis/cpddl
https://doi.org/10.1145/1993316.1993506
https://www.gurobi.com
https://doi.org/10.1613/jair.1705
https://doi.org/10.1613/jair.1705
https://doi.org/10.48550/arXiv.2402.14083
https://doi.org/10.1007/978-3-031-65630-9_15
https://doi.org/10.1007/978-3-031-65630-9_15
https://doi.org/10.1038/s41586-023-06004-9
https://www.mimicry.ai/faster-sorting-beyond-deepminds-alphadev
https://www.mimicry.ai/faster-sorting-beyond-deepminds-alphadev
https://doi.org/10.48550/arXiv.2307.14503
https://doi.org/10.48550/arXiv.2307.14503
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1609/aaai.v38i9.28938
https://doi.org/10.1613/jair.2972
https://doi.org/10.1613/jair.2972
https://doi.org/10.1145/2490301.2451150
https://doi.org/10.1609/icaps.v31i1.16005
https://doi.org/10.1126/science.aar6404
https://doi.org/10.5281/zenodo.14092980

	Abstract
	1 Introduction
	2 Sorting Kernels
	2.1 Background
	2.2 Model
	2.3 Correctness

	3 Enumerative Synthesis
	3.1 Step 1: Select an Open State
	3.2 Step 2: Selecting an Instruction
	3.3 Step 3: Check for Viability
	3.4 Step 4: Check for Correctness
	3.5 Step 5. Cutting Non-Promising States
	3.6 Step 6: Deduplication of Equivalent Programs

	4 Solver-Based Synthesis Techniques
	4.1 Satisfiability Modulo Theories
	4.2 Constraint Programming

	5 Evaluation
	5.1 Search Space Structure
	5.2 Synthesis Time
	5.3 Evaluation of Sorting Algorithms
	5.4 Min/Max Kernels

	6 Related Work
	7 Conclusions
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Experiment Customization

	B Data-Availability Statement
	References

