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Abstract—Compilers face an intrinsic tradeoff between compi-
lation speed and code quality. The tradeoff is particularly stark
in a dynamic setting where JIT compilation time contributes
to application runtime. Many systems now employ multiple
compilation tiers, where one tier offers fast compile speed while
another has much slower compile speed but produces higher
quality code. With proper heuristics on when to use each, the
overall performance is better than using either compiler in
isolation. At the introduction of WebAssembly into the Web
platform in 2017, most engines employed optimizing compilers
and pre-compiled entire modules before execution. Yet since that
time, all Web engines have introduced new “baseline” compiler
tiers for Wasm to improve startup time. Further, many new non-
web engines have appeared, some of which also employ simple
compilers. In this paper, we demystify single-pass compilers for
Wasm, explaining their internal algorithms and tradeoffs, as well
as providing a detailed empirical study of those employed in
production. We show the design of a new single-pass compiler
for a research Wasm engine that integrates with an in-place
interpreter and host garbage collector using value tags, while
also supporting flexible instrumentation. In experiments, we
measure the effectiveness of optimizations targeting value tags
and find, somewhat surprisingly, that the runtime overhead can
be reduced to near zero. We also assess the relative compile
speed and execution time of six baseline compilers and place
these baseline compilers in a two-dimensional tradeoff space with
other execution tiers for Wasm.

Index Terms—compilers, JITs, single-pass, baseline, compila-
tion time, tradeoff, instrumentation WebAssembly

I. INTRODUCTION

Software virtual machines (VMs) provide a way to execute

a guest programming language, instruction-set architecture, or

bytecode format on a different host machine. VMs employ a

variety of execution strategies that balance memory consump-

tion, startup time, and peak performance. In settings where

loading or generating code at runtime is possible, new code can

“appear from nowhere”, and purely ahead-of-time translation

is not possible. This leaves such virtual machines with the

option to employ an interpreter or a dynamic compiler.

A. WebAssembly

First appearing in major Web Browsers in 2017, WebAssem-

bly [1] (or Wasm) is a bytecode format designed to offer

portable native-level performance and software fault isolation

via efficient in-process sandboxing. Wasm is a low-level,

machine-independent compilation target that can be executed

on modern CPUs with very low overhead. It has allowed an

explosion of new, powerful Web applications and capabilities,

such as desktop applications like AutoCAD [2] and Photo-

shop [3], video conference acceleration [4], real-time audio

processing for echo reduction [5], and many others. Many of

these are made possible by recompiling (potentially millions

of lines of) legacy C/C++ code using standard toolchains that

now support Wasm as a target.

WebAssembly is the first example of a major language

that has employed formal specification and verification from

design inception. With a fully-formalized specification [6]

and machine-checked proof of type safety [7], it offers the

most rigorously-specified compilation target to date, making

it the most robust option for strongly isolating untrusted

code on the Web or in other intra-process scenarios. In the

literature, Wasm has inspired a number of exciting directions

in Web research [8] [9], verification research [10] [11], systems

research [12], cloud and edge computing [13] [14] [15], and

PL research [16].

B. Execution Strategies for Dynamic Code

Interpreters. An interpreter executes a program by ex-

amining data that represents guest code. Strict interpreters

can execute any given input program without generating new

machine code1. Interpreters have the advantage that little or

no up-front processing of the program is required and can

often execute the code directly from the disk or wire format,

saving both startup time and memory. Interpreters also excel

at debugging and introspecting execution states, as they often

directly implement the state abstractions of their respective

code format, such as an operand stack. However, dispatch

overhead means interpreters can never match the performance

of compiled code in the long run.

Baseline JIT compilers. VMs have deployed dynamic

translation to machine code as far back as LISP in 1960. Often

called just-in-time (JIT) compilation, a dynamic compiler gen-

erates new machine code at runtime that behaves equivalently

to the interpreter’s semantics, but is much faster. A baseline

compiler is designed to generate machine code as fast as

possible, forgoing the use of an intermediate representation

(IR). The very first dynamic translators were baseline compil-

ers, stamping out templates of the interpreter’s logic for each

1Some interpreters may generate machine code stubs or, e.g. per-signature
helper routines, but don’t translate guest code directly to machine code.
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guest instruction or AST node, one after another, thus neatly

eliminating the interpreter dispatch loop. Despite the simplicity

of baseline compilers, execution time improvements of 3× to

10× are common.

Optimizing JIT compilers. JITs in today’s virtual machines

are powerful, integrating many ideas from static compilers,

employing state-of-the-art IRs and sophisticated optimization

passes. For example, TurboFan [18], the optimizing compiler

in V8, employs a program dependence graph (PDG) repre-

sentation called the “sea of nodes” [19], with two different

but overlapping optimization pipelines, one for JavaScript, and

one for WebAssembly. Key optimizations employed by most

modern optimizing JITs are inlining, load elimination, strength

reduction, branch folding, loop peeling and unrolling, global

code motion, instruction selection, and register allocation.

C. Overview and Contributions

This paper is about maximizing compile speed for We-

bAssembly. It presents a new single-pass compiler design for

a research engine and compares and contrasts it with other

single-pass compilers and other tiers for Wasm execution. This

paper’s contributions are:

• A new baseline compiler, Wizard-SPC, designed for

interoperability with in-place interpretation of Wasm in

the Wizard Research Engine, supporting full-fidelity in-

strumentation and debugging.

• Distillation of the key designs for five other Wasm base-

line compilers that all share the same foundational ab-

stract interpretation approach, yet are discussed nowhere

in the literature.

• Novel value tag optimizations that reduce their runtime

cost nearly to zero, greatly simplifying runtime systems.

• Novel instrumentation optimizations that support flex-

ible instrumentation for dynamic analysis.

• Empirical evaluation of baseline compiler optimizations

in Wizard, including novel value tag optimizations.

• Multi-tier performance comparison among interpreters,

baseline compilers, and optimizing compilers for Wasm.

As description of fast Wasm baseline compilers do not yet

appear in the literature, this paper first clarifies these designs

by describing the basic abstract interpretation algorithm which

they all share. We then report on Wizard-SPC, a new, state-

of-the-art single-pass compiler for a research Wasm engine. A

novel design problem is integrating with an in-place interpreter

to support full-fidelity debugging and instrumentation of Wasm

code. For evaluation, we compare six baseline compilers found

in industry across a wide variety of benchmarks and place

them in context with interpreters and optimizing compilers.

II. EXECUTING WASM

Wasm bytecode is organized into modules, with top-level

functions containing instructions for a stack machine. Wasm

bytecode is unusual in that it has structured control-flow con-

structs like block, if, and loop. Such constructs improve

the compactness of the code format and the efficiency of the

code validation algorithm. A key property is that branches that

target a block or loop must be nested inside the construct.

This leads to a natural notion of a “control stack” that allows

the validator algorithm to immediately reuse any internal

metadata for control constructs as soon as the construct is

exited2. Another intentional design property is that all control-

flow predecessors of a label (except loop) precede the label,

enabling highly efficient single-pass forward data flow analysis

via abstract interpretation.

Wasm now exhibits execution tiers of all three basic designs.

Interestingly, these appeared in the exact opposite order to

most VMs. Optimizing compilers for Wasm appeared first in

Web engines, made possible by the engineering effort put into

making JavaScript fast. Later, Web Engines added baseline

compiler tiers, as startup time became an issue for large Wasm

modules. Concurrently, non-Web compilers and interpreters

started appearing. Initially, interpreters employed rewriting of

Wasm code to another representation, but recent work [20]

showed an in-place interpreter can be on par with rewriting

interpreters.

III. SINGLE-PASS COMPILATION OF WASM

Single-pass compilers for Wasm are designed for compile

speed and simplicity. A single pass affords no time to build

an intermediate representation of the code. Instead, such

compilers are limited to generating code for one (or a small

number) of instructions at a time based on limited context

accumulated from prior instructions.

In our study of Wasm compilers, we found that all single-

pass compilers are simply variations on a basic abstract-

interpretation approach that is similar to Wasm code vali-

dation3. Thus, by understanding this common approach, we

can compare and contrast the variations and more easily

understand the innovation represented by Wizard-SPC.

Figure 1 gives an example compilation of Wasm code using

the common abstract-interpretation approach. The abstract

state consists of an abstract value stack (shown), an abstract

control stack (not shown), and register allocation state (not

shown). Each local variable slot and operand stack slot in the

abstract value stack has an abstract value that can contain

information such as:

• stored - tracks whether the slot has been stored into

memory, and where,

• register - the register, if any, which holds the value, and

• const - the concrete value, if a constant.

Local variables representing parameters are initialized from

the signature of the function and the calling convention. In the

example, argument values arrive from the caller in an explicit

value stack stored in memory. Declared local variables (not

shown) are by Wasm semantics initialized to the zero value

of their respective type. Not shown, the algorithm maintains

an abstract control stack that tracks the nesting of control

constructs such as block and loop. Each construct has a

2It is believed, but has not been yet shown, that this representation is
optimally efficient.

3In fact, some baseline compilers in this study, like Liftoff, reuse parts of
their validation algorithms to drive compilation.
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Fig. 1. Illustration of single-pass compilation using abstract interpretation. (Actual code emitted by the Wizard single-pass compiler.)

label which represents the place in the machine code where

branches targeting it will jump.

After emitting a few machine instructions for the pro-

logue, compilation procedes by examining each instruction

in sequence. Instructions that access locals (local.get,

local.set and local.tee) manipulate the abstract state.

Depending on whether the local or top-of-stack is allocated to

a register, the compiler may emit a load or store instruction,

but often emits no code at all. We’ll see in the next section

that variations in the abstract state of the compilers we ex-

amined impact the amount of moves generated. For constant-

generating instructions like i32.const, abstract values can

model concrete values and avoid generating any code at all.

Of the six compilers we study, all but one model constants.

Control flow requires the compiler to manage snapshots of

the abstract state that represent the contents of registers and

the stack at labels, i.e. merges in control flow. All constructs

except loop have their label at the end, which means that all

branches to the label will be seen before the label itself. For

loop, absent any knowledge of the code in the loop body,

compilers must over-approximate the abstract state before

compiling the loop body, e.g. by assuming all slots could be

modified on backedges.

A key design consideration in making a fast compiler is

efficiently snapshotting the abstract state and merging states

coming from multiple branches, since the abstract state can

have tens of thousands of slots for large functions. Different

compilers we studied have different strategies, either making

copy extremely cheap (i.e. memcpy), keeping a delta index,

or tracking only a subset of slots and spilling the rest. A nice

benefit of Wasm’s structured control flow is that the snapshot

for a merge point can be deallocated as soon as a control

construct is exited. These considerations help avoid JIT bombs,

which are small programs that exploit a non-linearity in the

algorithmic complexity of a compiler as a form of denial-of-

service attack [21].

The deceptively simple compilation approach is quite tricky

to implement correctly and efficiently, but nevertheless yields

surprisingly good code, as can be seen in the example. Wasm’s

control flow design helps here; labels (other than loop)

will have had all their predecessors visited before they are

reached, allowing abstract interpretation to propagate constants
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to merge points in a single forward pass. All-in-all, a single-

pass compiler can peform:

• register allocation - if abstract values track register

occupancy for each slot, codegen can elide code for most

local accesses, often just updating the abstract state,

• constant-folding - if abstract values track constants,

codegen can compile-time-evaluate side-effect free in-

structions, producing more constants,

• branch-folding - if abstract values track constants, then

branches whose input condition is a constant can be

removed or compiled to unconditional jumps,

• strength-reduction - if abstract values track constants,

then some simple patterns such as (i32.add x

(i32.const 0)) can be reduced or eliminated,

• instruction selection - if abstract values track register

occupancy, codegen can select memory or register ad-

dressing modes, and if abstract values track constants, it

can emit immediate-mode instructions such as addi,

• avoid redundant spills - if the abstract values track spill

state, codegen can avoid repeated spills to the stack in

subsequent instructions, and

• peephole optimization - if codegen can peek one or more

instructions ahead, it can combine multiple instructions,

such as a compare and a branch.

From our study of baseline Wasm compilers, code gener-

ation for most opcodes (over 440 in Wasm today) is tedious

and formulaic but not intrinsically difficult. The crux of good

single-pass compilation is two subtle things that require careful

data structure design. First, managing the abstract state,

whose size is proportional to the locals and operand stack,

must be done carefully and efficiently at all control flow points

(branches, loops, and merges) to avoid (or at least mitigate)

quadratic compilation time. And second, abstract values should

model constants and registers, allowing efficient forward-

pass register allocation so that most Wasm instructions use

machine registers and avoid spills. The two are intertwined;

the abstract state of all compilers contains register assignments

and must be checkpointed at control flow split points and

merged at control-flow join points.

IV. BASELINE COMPILER INTEGRATION

A JIT compiler in any virtual machine must integrate

with other execution tiers and services such as debugging,

instrumentation, and garbage collection. Thus, in a mature

system, a JIT compiler becomes invisible, and users experience

better performance with no loss of functionality. This becomes

progressively more complicated with more execution tiers, as

handoff between different types of code efficiently can involve

very delicate machine code tricks. In this section we cover

aspects of integrating Wizard-SPC that motivated and are

in turn constrained by Wizard’s prior design decisions.

A. In-place Interpreter Integration

Prior to this work, the Wizard Research Engine was an

interpreter-based system with debuggability and introspection

as the main priorities. The in-place interpreter [20] (hereafter

referred to as Wizard-INT) executes Wasm code without

rewriting, allowing tracing, profiling, and debugging in terms

of the original bytecodes and offsets.

Relevant points on the Wizard-INT design are:

• Interpreter performance is competitive with production

interpreters for Wasm.

• The value stack is explicitly emulated at runtime, includ-

ing locals and operand stack values.

• Stack walking uses value tags to precisely find GC roots

(externref and Wasm GC objects).

• Users can insert probes into bytecode locations which

call back to instrumentation and implement tracing, de-

bugging, and profiling in an extensible way.

The last three points were addressed in Wizard-SPC by 1)

using an identical value stack and nearly-identical execution

stack layout as Wizard-INT, 2) emitting (and optimizing)

value tag stores in JITed code, and 3) emitting efficient

callbacks to user code and 4) intrinsifying key probe kinds.

B. Value Stack and Execution Frame Layouts

As we’ve seen, all single-pass compilers for Wasm use

abstract interpretation to statically compute the operand stack

height and approximate stack contents at every instruction in a

function. Some of the baseline compilers we studied reallocate

the storage of operand stack slots and locals to machine stack

slots and registers, i.e. they scramble the stackframe layout.

Scrambling the stack creates a mapping problem for debugging

and instrumentation: where are original values stored on the

machine stack? This metadata imposes a space cost, and is

remarkably complex, tricky and error-prone. In fact, of the five

previous compilers we studied, only two support introspection

in their baseline compilers; the others just do not support

debugging at all.

Wizard’s baseline compiler is meant to integrate with

Wizard-INT that has an exact model of the value stack.

It does not scramble the stack, and moreover, uses a nearly

identical execution frame layout between the interpreter and

JITed code. In Figure 2, we see the layout of execution frames

in Wizard for the interpreter and JIT code. Both use the

same value stack representation for storing Wasm values and

only differ in their native execution (machine stack) frames. In

particular, interpreter frames contain bytecode-level pointers

(IP), a sidetable pointer (STP), and additional metadata.

When executing in the interpreter, more registers are needed

to store these additional pointers, whereas in JIT code, only

the value frame pointer (VFP), instance (inst), and memory

base (not shown) are needed. That leaves more registers to be

allocated to compiled code. While values are in registers, the

value stack in memory may not be up-to-date. At observable

points like outcalls, JITed code simply writes values into the

value stack in memory. For stacktraces, instrumentation, and

debugging, the current program counter (i.e. bytecode offset)

can be recomputed from the machine code instruction pointer

or explicitly saved into the execution stack.

The compatibility between the two frame layouts allows

Wizard to tier-up from Wizard-INT to baseline-compiled
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Fig. 2. Execution frame and value stack layout for Wizard-INT and Wizard-SPC. Both kinds of execution frames are the same number of machine
words, allowing quick tier-up (OSR) and tier-down (deopt) by rewriting execution frames in place. The interpreter directly manipulates the value stack in
memory, while JIT code only spills to the value stack when registers are exhausted and across calls.

code (e.g. when a function is detected as hot) by changing

only the execution frame and jumping into JITed machine

code. Conversely, Wizard can tier-down (for debugging or

to support user instrumentation) by simply reconstructing IP

and STP and jumping back into Wizard-INT.

C. Value Tags Versus Stackmaps for GC

Wasm code can contain references to host objects as values

of type externref. In a host environment with precise

garbage collection, the VM must find all roots, including

those that may be in the Wasm value stack. There are two

basic strategies that allow the VM to distinguish references

from non-references: stackmaps or value tags. The primary

difference between the two is that stackmaps are basically

static and value tags are basically dynamic.

Stackmaps. For JIT-compiled code, compilers often emit

metadata called stackmaps attached to the code which encodes

how to find references in stack frames of JITed code. Such

metadata usually adds space proportional the size of JITed

code, so it is often very compactly stored. It is also notoriously

hard to get right, as bugs in stack walking logic or errors

in compressed metadata result in VM-level crashes that are

insanely tedious to debug4. Despite the added complexity and

potential robustness problems of stackmaps, they have less

dynamic cost, normally only used during GC.

Value Tags. Value tags are an entirely dynamic strategy

where values themselves contain the metadata that distin-

guishes references from non-references. This metadata can be

encoded in various ways, such as a tag bit, an indirection,

a value range restriction, or often an additional byte or

word, such as a tag byte or dynamic type information. The

possibilities for encodings varies with the kinds of values that

are used to implement the guest language. Value tags allow the

4Generally the least welcome type of GC+JIT bug.

VM to easily inspect a value anywhere in memory (such as

GC scanning stacks for references) making it vastly simpler

and more robust. Another important advantage is that a JIT

compiler may save compile time, space, and complexity by

skipping stackmaps altogether. A disadvantage is the dynamic

cost, since tags require additional space and may introduce

dynamic checks.

Of the Wasm engines in the wild, including the ones

containing the six baseline compilers, none use value tags

except Wizard. These systems either do no precise garbage

collection at all, needing no stackmaps, or they reuse the

battle-tested stackmap logic of their host system, as is the case

in all Web engines. Since Wizard makes unusual choices

here, we evaluate some of the tradeoffs specific to that design

in the experimental section.

Optimizing Value Tags. The dynamic cost of value tags can

be reduced with compiler optimization. While an optimizing

compiler can use a sophisticated global register allocator to

only store tags on spills, a baseline compiler cannot afford an

IR. Instead, we outline three optimizations for reducing the

dynamic cost of value tags in a single-pass compiler.

• lazy tagging of locals. Since Wasm is a typed bytecode,

local variables have static types that do not change during

the execution of a function. Thus the types of locals

can determined from the first bytes of a function body.

Instead of writing value tags at runtime, the stackwalker

computes them on-the-fly by decoding local declarations

in the original bytecode, needing no additional metadata.

• lazy tagging of operand stack. While the types of local

variables of a Wasm function don’t change during ex-

ecution, the types of operand stack slots certainly can.

With this optimization, the compiler omits tag stores for

operand stack slots. Like lazy tagging for locals, types

are reconstructed at stackwalking time, but this is more
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Name Language Year Features Description

wizeng-spc Virgil 2023 MR K KF ISEL TAG MV The Wizard Research Engine’s single-pass compiler.
wazero Go 2022 R An open-source engine written in Go [22].
wasm-now C++ 2022 MR K ISEL A research project using Copy&Patch [23] code generation.
wasmer-base Rust 2020 R K MV The --singlepass option of wasmer [24].
v8-liftoff C++ 2018 MR K ISEL MAP MV The baseline Wasm compiler in V8 [25].
sm-base C++ 2018 MR K ISEL MAP MV The baseline Wasm compiler in Spidermonkey [26].

Fig. 3. WebAssembly baseline compilers used in this study. MR = multiple register allocation, R = register allocation, K = constant tracking, KF = constant-
folding, ISEL = instruction selection, TAG = value tags, MAP = stackmaps, MV = multi-value, a Wasm feature where blocks can return (multiple) values.

complicated than for locals, because the types could be

different at each bytecode. That means storing additional

metadata (basically a stackmap), or reconstructing them

from the bytecode by revalidating the code.

• on-demand tagging using abstract interpretation. The de-

fault for Wizard-SPC, value tag stores are only emitted

by the compiler across possible observations (calls, traps,

and instrumentation) and the abstract state tracks whether

each slot has an up-to-date tag. Parameters are assumed

to have their tags stored by the caller.

We evaluate these alternatives in the experiments section by

comparing with the worst-case overhead (an implementation

that always stores value tags at each instruction, exactly as an

interpreter would do) and the best-case alternative of simply

disabling value tags. As we will see, on-demand tagging

mostly eliminates tag overhead.

D. Supporting and Optimizing Instrumentation

Like Wizard-INT, Wizard-SPC supports flexible in-

strumentation via local probes, which are user callbacks that

fire before a given instruction is executed. Wizard exposes

an API that allows user code called a monitor to instrument

Wasm modules as they are loaded. Probes are written in

the implementation language of engine and when fired can

access both engine APIs and the state of the Wasm program,

including the values in execution frames, memory, tables,

etc. In the interpreter, a probed instruction triggers a call to

Wizard’s runtime system which looks up attached probes

and fires them, passing an opaque, lazily-allocated accessor

object that exposes methods to access to the frame’s internal

state. Probes are supported transparently, and more efficiently,

in Wizard-SPC. Wizard-SPC inserts direct calls at probed

instructions, saving indirection through the runtime by stati-

cally determining which probes to fire for which instruction.

Wizard-SPC further optimizes certain types of probes by

emitting specialized machine code, such as a direct increment

of a counter’s value or directly passing the top-of-value-stack

to a probe, eliding the accessor object.

V. BASELINE COMPILER COMPARISON

We studied the implementation of six single-pass compilers

for WebAssembly that employ the basic abstract-interpretation

algorithm. The table in Figure 3 compares their designs in

terms of features. In particular, we find that both Web engine

compilers (v8-liftoff and sm-base) implement GC with

stackmaps, using the same metadata format as their optimizing

Fig. 4. Execution time speedup of Wizard-SPC over Wizard-INT (1×
= same speed, 10 = 10× faster, up is better).

compilers. As discussed, Wizard-SPC uses value tags, and

the three remaining compilers do no GC, because their host

environment is not garbage-collected. A key feature is multiple

register allocation, where the abstract state allows a register to

be used for more than one slot. This is more complex to track

and merge efficiently, but experimental results show it signif-

icantly improves code quality. All compilers except wazero

track constants. Experiments also show that tracking constants

measurably improves code quality, as it allows some local

instruction selection. Of the six, only Wizard-SPC performs

constant-folding and branch-folding, though our experiments

show that it has marginal benefit for the benchmarks studied.

VI. EXPERIMENTS

This section details a number of experiments we conducted

to evaluate Wizard-SPC’s optimizations and design choices,

compare it against other baseline compilers, and place baseline

compilers in context with other tiers.

Benchmark Suites. We use three different benchmark

suites: PolyBenchC [27], an often-used suite of numerical

kernels, Libsodium [28] a suite of cryptographic primitive

benchmarks, and Ostrich [29]. Each of these suites consists

of a number of line-items comprised of different programs

(28 for PolyBenchC, 39 for Libsodium, and 11 for Ostrich),

each compiled into a separate Wasm module.

A. Speedup over Interpreter

Our first experiment evaluates speedup over Wizard’s

existing configuration with its in-place interpreter

(Wizard-INT). Here we focus on code quality by
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Fig. 5. Execution time of Wizard-SPC tagging configurations relative to a
no-tagging configuration (1.0 = same speed as notags, lower is better).

measuring the main execution time, the time from the start

of the program’s main function until program exit. This

intentionally factors out VM startup and compilation time,

pitting the interpreter speed against the speed of compiled

code directly. We study startup and compilation time in

following experiments.

We evaluate five different optimization settings of

Wizard-SPC to assess the impact of each optimization.

• allopt - (default) all optimizations turned on.

• nok - abstract values do not track constants, thus no

constant-folding or instruction selection.

• nokfold - no constant-folding or branch-folding.

• noisel - no instruction selection, e.g. immediate modes.

• nomr - no “multi-register” support; a register can cache

at most one slot at a time.

Figure 4 summarizes speedups across the three benchmark

suites. For each configuration, we run each benchmark line

item 25 times, each time in a separate VM instance (9750

data points). The height of each bar corresponds to the average

speedup across line items in that suite. Note the error bars are

not measurement variance5, but variance amongst line items

in that suite, i.e. the minimum and maximum average speedup

for any line item.

From these results we can see that the compiled code runs

between 5× and 28× faster than the interpreter for all line

items, while suites averages are 10× to 15×. From the nok

configuration, we can see that disabling constant tracking in

abstract interpretation has the most dramatic effect on code

quality. Disabling multiple register allocation (nomr) is sig-

nificant, in some cases larger than disabling constant tracking.

Finally, disabling constant-folding (nokfold) and instruction

selection (noisel) are small but measurable effects.

B. Optimizations for Value Tags

Our second experiment in Figure 5 compares design alter-

natives for Wizard-SPC’s support for value tags. Using the

same measurement methodology as the previous experiment,

5While there is significant variance amongst line items, measurements for
a single line item are stable within a small variance.

we measure relative main execution time of various tagging

configurations. Here, the baseline in the figure is no longer

Wizard-INT but notags, where we disabled value tags

altogether, including removing their space from the value

stack. The configurations tested here are:

• eagertags - “eagerly” store modified tags at every in-

struction.

• eagertags-o - “eagerly” store tags for operand slots only.

• eagertags-l - “eagerly” store tags for locals only.

• on-demand - (default) store tags on-demand by tracking

their state in abstract interpretation.

• lazytags - store tags on-demand, but leave tagging of

locals to the stack walker.

Figure 5 shows the average relative main execution time

over the line-items in each benchmark suite. As before, error

bars represent the minimum and maximum of any line item in

the respective suite. We see that the eager-tagging imposes a

2.4×- 3.3× overhead on execution time. By measuring eager-

tagging of locals separately from the operand stack, we can

attribute that overhead mostly to tagging of the operand stack6.

We also see that the default on-demand tagging strategy

almost completely eliminates the cost of value tags, within

0.9 - 4.9% of the ideal notags configuration. We can also

see that lazytags can further reduce the tagging overhead

of on-demand, statistically measurable, but the improvement

is marginal, to 0.4 - 4.2% on average. Given that lazytags

would imply design complexity to perform tagging in the stack

walker, it was not productionized.

C. Instrumentation Optimizations

Our next experiment evaluates the effectiveness of

Wizard-SPC’s optimizations targeting instrumentation. In

Figure 6, we report measurements with the branch mon-

itor, a standard Wizard tool that profiles the targets of

all conditional branches using a local probe that reads the

top-of-value-stack. We show the increase in main execution

time normalized to each line item’s execution time on the

interpreter, grouped by benchmark suite, and with error bars

as before. In interpreted mode (int), this monitor imposes

a moderate 20-49% average slowdown per suite. Without

optimization (jit), Wizard-SPC simply emits calls to probe

code which produces similar but slightly lower overhead.

It’s similar because the overhead consists of runtime calls,

the allocation of the accessor object, and accesses of the

value stack through it, which are all in engine code. In the

(optjit) configuration however, Wizard-SPC emits direct

calls to the probe passing the top-of-stack value, skipping

the runtime and accessor object allocation, which reduces

overhead by approximately 10×. Of course JIT code runs 10-

30× faster than the interpreter, so renormalizing the data in

Figure 6 to the JIT baseline, without optimizations the branch

monitor slowdown is 5.4-9×, which reduces to 42-77% with

optimization.
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Fig. 6. Probe overhead in Wizard-INT and Wizard-SPC, reported as the
increase in execution time relative to the interpreter. (0.0 = same speed, 1.0
= increase of 1× the interpreter execution time; lower is better).

Fig. 7. Relative execution time over Wizard-SPC for other baseline
compilers. (1.0 = same speed, 2.0 = 2× as long; lower is better).

Fig. 8. Relative compilation time over Wizard-SPC for other engines in
their baseline compiler configurations. (1.0 = same speed, 2.0 = 2× as long;
lower is better).

Fig. 9. SQ-space comparison for baseline compilers. Quality is measured by
the relative improvement in execution time over Wizard-INT. (1.0 = same
speed, 2.0 = 2× as fast; up and right are better).

D. Baseline Shootout

Our next experiment compares the compile speed and code

quality of baseline compilers listed in Figure 3. To gather

compile times, we instrumented each engine to measure and

report the time taken to compile each module, as well the

number of input Wasm code bytes. We compute the compile

time as the time taken per byte of input code, which naturally

normalizes across different function and benchmark sizes7. We

normalize the results relative to Wizard-SPC for each line

item.

Figure 8 displays the results of measuring compile time.

The height of each bar represents the compile time per byte

of input code normalized to Wizard-SPC, averaged over the

line items in each suite. The error bars represent the minimum

and maximum of line items within each suite. We were not

able to run wasmnow on all benchmarks; it is clearly fastest on

Libsodium and Ostrich. Besides WasmNow, sm-base is the

fastest compiler; nearly 3× faster than the others, and wazero

is 3× to 4× slower than the others. Wizard-SPC is roughly

on par with v8-liftoff in compile speed, varying between

0.6× the speed to 1.5× the speed over different line items.

To measure code quality of compilers, we compare the

execution time of benchmarks relative to Wizard-SPC. For

this experiment, we use a more comprehensive measurement

methodology that factors in VM startup and compilation. If

necessary we configure their respective engine to use only a

specific tier, and disable on-disk caching of compiled code.

Figure 7 displays the results of our measurements.

With this data we can approximate each compiler’s SQ-

region (speed-quality region), the general area in the tradeoff

space for the runtime of the compiler versus the runtime of the

generated code, which is characteristic of the specific compiler.

Figure 9 displays the SQ-space for baseline compilers using

6Which is to be expected, as the operand stack is where the action is!
7and also controls for lazy compilation, though engines in this study were

configured to eagerly compile modules when possible.
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the same data as Figures 7 and 8. It uses a scatter-plot with

all benchmark line items to illustrate the variance in both

compilation time and execution time across items. Since many

short-running benchmark line items are included, clusters

towards the bottom of the graph (lower speedups) indicate

where VM startup time is more significant.

Our last experiment puts baseline compilers in context with

other execution tiers. We compare baseline compilers to other

tiers (interpreters, optimizing JIT compilers, and ahead-of-time

translations) in two dimensions: setup time (S) and execution

speed, or quickness. This makes a larger SQ-space that is

similar in nature but more general than the compiler SQ-space

because it includes other setup costs than compiling. We define

setup time as the time a VM takes from starting the load of a

program to executing its first instruction. This therefore will

characterize the per-module processing time before execution,

such as loading and verifying code, building program IR, and

compiling. Since most of these costs are a function of module

size, it’s reasonable to define their ratio as the setup speed and

measure it in megabytes per second (MiB/s).

In this experiment, we measure an even larger set of

Wasm execution tiers that includes several interpreters and

optimizing compilers, drawn from a larger set of engines. All

new compiler tiers are IR-builders, and all interpreter tiers

rewrite the bytecode, with the exception of Wizard-INT.

Most, but surprisingly not all8, verify the bytecode. Thus every

engine has some measurable per-module parsing, verification,

translation, or compilation cost. Measuring setup time can be

done by instrumenting engines, but requires intrusive mod-

ifications. Instead, we use a simpler strategy to empirically

bound setup time without missing hidden costs. We chose this

strategy because it avoids engine modifications and thus can

be applied to any engine9.

We define TE(m) as the time to execute a module m on

engine configuration E. First, we measure VM startup time by

executing the smallest possible Wasm module Mnop, which

has only one function that simply returns (total module size

is 104 bytes). We run this hundreds of times to get a statis-

tically significant characterization of startup time. Next, we

approximate the processing cost of each benchmark line-item

by inserting an early return in its _start function, resulting

in module m0. The new module will undergo loading and

processing (often compilation) in each engine, but execution

time is near zero.

With measurements TE(Mnop), TE(m0), and TE(m):

• TE(m0)−TE(Mnop) approximates10 the upper bound of

pre-processing time by removing VM startup time,

• T̃E(m) = TE(m)− TE(m0) defines the adjusted execu-

tion time which is the program’s execution time without

VM startup or module setup time, and

8wasm3 does not, in fact, verify the bytecode!
9A longer term goal, outside the scope of this work, is to track engine

performance over time, and intrusive patches become a maintenance problem.
10In fact, all of these quantities are all subject to sampling error and thus

form individual distributions. The resulting “crude” approximation is just
another distribution that approximates processing time.

Fig. 10. The SQ-space for 18 different Wasm execution strategies.

• S̃E,B(m) = T̃B(m)

T̃E(m)
defines the adjusted speedup of

configuration E over a baseline config B.

This strategy is inherently noiser than intrusive modifica-

tions because of the variance in the (somewhat large) engine

startup time TE(Mnop).

E. Mapping the Larger SQ-space

Figure 10 presents averages of 25 runs of each of the

78 benchmark line items on 18 different engines (3 data

points each = 106550 data points). The vertical axis is

S̃E,wizeng-int(m) (i.e. adjusted speedup over Wizard-INT)
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and the horizontal axis represents setup speed, (the speed of

loading, verifying, and translating). New tiers are:

• jsc-int, jsc-bbq, jsc-omg, the interpreter, less

optimizing, and more optimizing compiler tiers of

JavaScriptCore [30].

• wasmtime [31] and wasmer, two different Wasm run-

times written in Rust which both use the Cranelift [32]

optimizing compiler.

• wavm [33], a primarily ahead-of-time Wasm engine that

uses LLVM.

• iwasm-int and iwasm-fjit, the interpreter and fast

JIT of the WebAssembly MicroRuntime [34].

• wasm3 [35], a fast rewriting interpreter for embedded

systems.

In the top plot of Figure 10, we see all tiers compared. The

primarily ahead-of-time wavm engine uses LLVM to compile

up-front; a slow compiler, this is clearly the slowest at setting

up due to a large compile time. Apparent in the zoomed-

in middle plot, baseline compilers (blue colors) all cluster

together in the middle; they all have very similar speedups,

and though they vary by an order of magnitude in setup speed,

are clearly distinguishable from optimizing compilers (red and

purple colors) which definitely produce bigger speedups, about

2×-3× faster than baseline compilers, though at an order-

of-magnitude slower compile speed than baseline. When we

zoom in on interpreters in the bottom plot, it is clear they

have a clear performance ceiling; they are all fairly close to

each other, within 2× of Wizard-INT. Interpreter setup time

varies the most; we attribute this to the fact that 1) some don’t

verify bytecode, and 2) all the jsc-* (JavaScriptCore) tiers

use lazy translation, which we could not control.

In general, laziness (i.e. translating a function upon first

invocation) is a confounding factor in these measurements,

as lazy compile time is not measured in setup time, but

attributed to run time, and therefore the adjusted speedup is

lower. As can be seen in the figure, this might be factor for

the jsc-* compiler tiers, whose speedups appear lower than

other optimizing compilers and setup speeds appear faster.

Another confounding factor is parallelism in compilation.

Some engines have fully parallel compilation pipelines and

others do not11. We chose to leave default threading settings

for all engines. Benchmark modules used in this study are

fairly small, so parallel speedup may not be as big of a factor.

A third confounding factor is caching of compiled code. After

noticing anomalies in initial experiments12 wasmtime and

wasmer, we disabled caching in both of these.

Overall, we can see a great diversity of execution char-

acteristics for Wasm engines, as each tier tends to occupy

its own region in this space. Precision of the plot could

probably be improved with metrics measured directly within

engines, rather than empirically bounding them as we’ve

done. Nevertheless, we believe the SQ-space analysis provides

11Parallel speedup for multiple compiler threads may be greater for opti-
mizing compilers due to longer work units.

12Optimizing tiers with instant startup? Too good to be true.

insight into tradeoffs in a new way and can further inform the

design of tomorrow’s virtual machines.

VII. RELATED WORK

The first disk format for intermediate code was invented

as early as 1968, in the first BCPL compiler’s O-Code [36].

Prioritizing compiler simplicity and speed above code quality

is an old idea that has roots at least as far back as the design

of the first Pascal compiler [37] in 1970. Pascal compilers

gave rise to the first widely-used intermediate code format,

P-code [38], in the mid 1970s, which was still in use as late

as 1990 [39]. P-code was certainly not the last portable low-

level code, with others such as TIMI [40], LLVM bitcode [41],

PNaCl [42] (itself a variant of LLVM bitcode). Fast P-code

translators might be considered the first baseline compilers.

Dynamic Compilation. Over the years, many virtual ma-

chines and bytecode formats have been developed, from

Smalltalk [43], to Java [44], to the Common Language Run-

time (CLR). The first dynamic compilers were simple, fast,

and performed little optimization. They were often instruction-

by-instruction translators, with extremely simple, or even no,

register allocation. They were essentially baseline compilers,

but some had IR, e.g. to harness type feedback [45]. Later,

runtime profiling led to more complex compilers that build

and optimize IRs.

Copy & Patch Code Generation Recent work [23] on

fast compilation uses code templates with data patching.

The key idea is to use an offline compiler (e.g., LLVM)

to generate machine code snippets under various register

assignments and with “holes” for constants. When compiling

Wasm, an assembler isn’t needed; instead, a cache supplies

the appropriate snippet for the register assignment at each step

of abstract interpretation, patched with appropriate constants.

Our paper evaluated the artifacts of that work, but on a

subset of the benchmarks, which did confirm their blistering

compile speed, but execution time was not better than other

baseline compilers. Correspondence with the authors helped us

understand its SQ-region in Figure 10, which is explained by

the template generation occuring during VM startup. One issue

with a template-based approach is that the number of templates

is combinatoric in the possible abstract values. Wizard-SPC

tracks value tags in its abstract state, which could potentially

double or quadruple the number of templates needed.

Synthesizing and Verifying JITs. Simple compilers are

easier to build, specify, verify, and even synthesize. Recent

work [46] has advanced the generation of correct JIT compil-

ers from a specification, which demonstrated a instruction-by-

instruction compiler for eBPF running in-kernel with correct-

ness guarantees. Another approach is to verify the output of the

compiler for sandboxing properties, and has been employed

for Wasm in [11].

Fast compilers in other domains. Many other domains

than VMs employ dynamic code generation. Generating ma-

chine code without an intermediate representation has been

repeatedly shown to dramatically improve compile speed. For
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example, the VCode [47] research system improved on its pre-

decessor, DCG [48] by 35×. Simple AST-walking compilers

have been deployed in database systems and programmable

networks. Regexes are often implemented with JIT compilers

today. For example, all Web engines use JITs in their regex

implementations [49], as well as popular libraries [50].

Fast compilers cooperate with other tiers. Today, many

production virtual machines employ multiple compiler tiers.

OpenJDK [52] employs an interpreter and two (tierable) JIT

compilers; C2, a highly-optimizing sea-of-nodes compiler, and

C1, a faster, SSA-based optimizing compiler. Web engines

continue to evolve, and all employ multiple tiers for both

JavaScript and WebAssembly. The V8 JavaScript engine [53]

became multi-tier in 2010 when its first optimizing compiler

“Crankshaft” [54] joined its fast AST-walking code generator

named “full codegen” [55]. In 2018 V8 replaced both tiers

with an interpreter and a new TurboFan [18] optimizing

compiler, and in 2021 added a baseline compiler “Sparkplug”

for JavaScript [56]. In 2023, V8 introduced a fourth compiler,

Maglev [57], which sits between Sparkplug and TurboFan. The

JavaScriptCore [30] virtual machine in Safari employs three

different compiler designs, even briefly using LLVM as a top-

tier optimizing compiler.

VIII. CONCLUSION

This paper captured the core design ideas of baseline

compilers for Wasm and documented six implementations,

which have appeared nowhere in the literature to date. As

this paper documents, efficient forward-pass register allocation

via abstract interpretation is widespread in single-pass Wasm

compilers. Examples in this paper illustrate and experiments

show that single-pass compilers for Wasm can generate good

code very quickly. This paper also presented the design of

a new, state-of-the-art single-pass compiler, Wizard-SPC

with the unique design choice of value tags, which simplifies

integration with an in-place interpreter for Wasm and the host

garbage collector. Measurements show that the overhead of

Wizard-SPC’s value tag approach is mostly eliminated by

optimizations and that the resultant performance is on par with

production single-pass compilers. Discussion compared and

contrasted the six designs and experiments evaluated them on

benchmarks, showing that single-pass compilers vary in code

quality, primarily due to the differences in modeling constants

and register allocation. Additional benchmarking data allows

us to place all single-pass compilers in a two-dimensional

speed-quality tradeoff space (SQ-space) with other available

execution tiers for Wasm, including rewriting interpreters and

optimizing compilers. We find these developments extremely

exciting; the explosion of execution strategies for WebAssem-

bly holds great promise to shed new light on long-standing

tradeoffs in VM design by studying many diverse engines that

all accept a common, well-specified code format and can run

the same benchmark programs.
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IX. DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly

available in the artifact at https://doi.org/10.5281/zenodo.

10205323 [58].

APPENDIX

A. Abstract

The artifact submitted with this paper contains everything

necessary to reproduce the experimental data and figures

included in this paper, including a snapshot of the source code

of the Wizard engine (with additional configuration options),

the source code and build configurations for other Wasm

engines compared in the paper, build instructions for all of

them, scripts to run experiments that generate experimental

data, and spreadsheets used to generate the figures. For con-

venience, it also includes pre-built binaries so that artifact

reviewers do not have to rebuild large pieces of software,

those these are not guaranteed to work on every system. The

archive includes the actual experimental data recorded from

experiments conducted that generated the actual figures in the

paper and the spreadsheet is pre-populated with this data.

B. Artifact Check-list

The linked artifact https://doi.org/10.5281/zenodo.10205323

contains all data and scripts including:

• Source for wazero, WAVM, wasmer, wasmtime,

WasmNow and WAMR.

• Binaries for all Wasm engines used in the study

• Source for Wizard, including various configuration op-

tions for experiments

• Data collected to generate figures

• Spreadsheet generating figures

Keywords. WebAssembly, virtual machines, JavaScript en-

gines, Web engines, compiler optimizations, benchmarking.

• Algorithm: WebAssembly compilation and execution
• Program: Wizard Research Engine and various other We-

bAssembly engines
• Compilation: Virgil Compiler III-7.1632
• Binaries: included in artifact, but can be compiled on target

platform
• Data set: PolyBenchC, libsodium, and Ostrich open-source

benchmark suites
• Run-time environment: Ubuntu Linux 22.04
• Hardware: AMD Ryzen 9 5950X 16-Core Processor

64GiB RAM
• Execution: benchmark shell scripts for several experiments
• Metrics: Execution time: relative to various baselines

compilation time: comparative
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startup time: in bytes/sec
setup time: in bytes/sec

• Output: benchmark outputs
• Experiments: We conduct a value tagging performance

comparison, Wizeng-SPC optimization setting comparison,
baseline JIT comparison, and all-tiers comparison across
the metrics.

• How much disk space required (approximately)?: 20GiB
• How much time is needed to prepare workflow (approxi-

mately)?: 1 hour
• How much time is needed to complete experiments (approx-

imately)?: 3 hours
• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache license for

Wizard, various for others
• Workflow framework used?: experiment scripts included
• Archived: https://doi.org/10.5281/zenodo.10205323

C. Description

1) How Delivered: Source for Wasm engines was cloned from
public repositories.

2) Hardware Dependencies: While the Wizard Research En-
gine can run on any target supported by the Virgil compiler,
Wizard-INT and Wizard-SPC only support x86-64-linux plat-
forms. Several of the comparison Wasm engines support other plat-
forms.

3) Software Dependencies:
4) Data Sets: We use the PolyBenchC, libsodium, and Ostrich

benchmark suites, binaries of which are included in the artifact.

D. Installation

Unpack the archive given by the DOI.

E. Experiment Workflow

The source archive contains engines pre-built in a (hopefully)
runnable state. All of the Wizard configurations tested are included
as binaries. These engines are intended to be run natively on a
target machine without Docker or another VM to more reliably
measure extremely short-running processes, like what is needed to
estimate setup and engine startup time in our experiments. See the
README.md in the archive if engines need to be rebuilt from source.
Of those included in the archive, the only one that has caused trouble
is JavaScriptCore, provided the requisite library dependencies are
met.

Figure 4 was generated by running Wizard-INT and

Wizard-SPC with different optimization configurations using the

run.bash speedup experiment. These configurations are not

standard in Wizard, but are included in the source archive and are

available in a branch in the main Wizard GitHub repository. The

summarized data was used to generate the plot via the charts.ods.

The summarize.bash <experiment> script generates a read-

able tabular output. Similarly, Figure 5 was generated by run.bash

tagging, and Figure 6 by run.bash probe. Two comparative

experiments were performed, one against (instrumented) baseline

JITs, which generated data for Figures 7, 8 and 9, and one

against all (uninstrumented) tiers, which generated Figure 10.

This data is generated by run.bash translation and

execution. See the README in the artifact for details on

how to run these scripts and the specific settings that were used

to get the data in the exact format to reproduce the figures from

the spreadsheet. Because of the higher measurement error in

the setup time methodology (estimated via averages), some

datapoints for very short-running programs were unusable;

thus all negative adjusted-execution-time values were excluded

from the scatter plot as can be seen in the pre-populated

spreadsheet.

F. Evaluation and Expected Result

Running the experiments according to the instructions in

the README.md should produce data in the output directory,

and running the summarization scripts should produce tables

of numbers that track what is reported in the figures. To

double-check, figures can be regenerated by pasting the tabular

output from summarize scripts into the appropriate places

in the spreadsheet. As we’ve tested on at least 3 different

microarchitectures, the broad results hold, though standard

caution of comparing across CPUs is warranted.

G. Experiment Customization

This scripts to run experiments and summarize the results

are intended to be reusable13. The experiments and sum-

marize scripts have several customization dimensions. These

scripts make use of a number of environment variables that

allow selecting alternative benchmarking suites or line items,

configuring the number of runs, as well as the engines and

configurations tested. Adding new engines and engine config-

urations (i.e. command-line options to an engine) is done via

adding symlinks in the exp/engines/ directory according

to detailed instructions in the README. The instrumentation

(i.e. source modifications) added to baseline compilers gathers

detailed translation (i.e. compilation time) metrics, prints the

sum of compilation time gathered from the beginning of

compilation to the end. For modified engines, patches are part

of the source control (i.e. the last commit in the git history).

Modifications to engines not required to evaluate setup time,

as discussed in the paper; m0 modules that immediately exit,

which are included, are used to estimate startup time on

unmodified engines.

REFERENCES

[1] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the
web up to speed with WebAssembly,” in Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language Design and

Implementation, ser. PLDI 2017. New York, NY, USA: Association
for Computing Machinery, 2017, p. 185–200. [Online]. Available:
https://doi.org/10.1145/3062341.3062363

[2] L. Friedman, “The AutoCAD Web App at Google I/O 2018,” https:
//blogs.autodesk.com/autocad/autocad-web-app-google-io-2018/, 2018,
(Accessed 2023-5-7). [Online]. Available: https://blogs.autodesk.com/
autocad/autocad-web-app-google-io-2018/

[3] T. Nattestad and N. Al-Shamma, “Photoshop’s journey to the Web,”
https://web.dev/ps-on-the-web/, 2021, (Accessed 2023-5-7). [Online].
Available: https://web.dev/ps-on-the-web/

[4] T. Hou and T. Mullen, “Background features
in Google Meet, powered by Web ML,” https:
//ai.googleblog.com/2020/10/background-features-in-google-meet.html,
Oct 2020. [Online]. Available: https://ai.googleblog.com/2020/10/
background-features-in-google-meet.html

[5] Amazon, “The amazon chime sdk now offers enhanced
echo reduction,” https://aws.amazon.com/about-aws/whats-new/2021/
11/amazon-chime-sdk-echo-reduction/, 2021, (Accessed 2023-5-
7). [Online]. Available: https://aws.amazon.com/about-aws/whats-new/
2021/11/amazon-chime-sdk-echo-reduction/

13The spreadsheet, not so much, unfortunately.

218
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on March 27,2024 at 10:42:53 UTC from IEEE Xplore.  Restrictions apply. 



[6] W. C. Group, “WebAssembly Specification Draft 2.0,” https:
//webassembly.github.io/spec/core/, Jan 2023. [Online]. Available:
https://webassembly.github.io/spec/core/

[7] C. Watt, “Mechanising and verifying the WebAssembly specification,”
in Proceedings of the 7th ACM SIGPLAN International Conference

on Certified Programs and Proofs, ser. CPP 2018. New York, NY,
USA: Association for Computing Machinery, 2018, p. 53–65. [Online].
Available: https://doi.org/10.1145/3167082

[8] A. Kohn, D. Moritz, M. Raasveldt, H. Mühleisen, and T. Neumann,
“Duckdb-wasm: Fast analytical processing for the web,” Proc. VLDB

Endow., vol. 15, no. 12, p. 3574–3577, aug 2022. [Online]. Available:
https://doi.org/10.14778/3554821.3554847

[9] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan, “Ct-wasm:
Type-driven secure cryptography for the web ecosystem,” Proc. ACM

Program. Lang., vol. 3, no. POPL, jan 2019. [Online]. Available:
https://doi.org/10.1145/3290390

[10] A. E. Michael, A. Gollamudi, J. Bosamiya, E. Johnson, A. Denlinger,
C. Disselkoen, C. Watt, B. Parno, M. Patrignani, M. Vassena, and
D. Stefan, “MSWasm: Soundly enforcing memory-safe execution of
unsafe code,” in Proceedings of the ACM Symposium on Principles of

Programming Languages (POPL), January 2023.

[11] J. Bosamiya, W. S. Lim, and B. Parno, “Provably-safe multilingual soft-
ware sandboxing using WebAssembly,” in Proceedings of the USENIX

Security Symposium, August 2022.

[12] S. Narayan, T. Garfinkel, M. Taram, J. Rudek, D. Moghimi,
E. Johnson, C. Fallin, A. Vahldiek-Oberwagner, M. LeMay, R. Sahita,
D. Tullsen, and D. Stefan, “Going beyond the limits of sfi:
Flexible and secure hardware-assisted in-process isolation with hfi,”
in Proceedings of the 28th ACM International Conference on

Architectural Support for Programming Languages and Operating

Systems, Volume 3, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 266–281. [Online].
Available: https://doi.org/10.1145/3582016.3582023

[13] A. Hall and U. Ramachandran, “An execution model for serverless
functions at the edge,” in Proceedings of the International Conference

on Internet of Things Design and Implementation, ser. IoTDI ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
225–236. [Online]. Available: https://doi.org/10.1145/3302505.3310084

[14] P. K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, and
G. Parmer, “Sledge: A serverless-first, light-weight wasm runtime
for the edge,” in Proceedings of the 21st International Middleware

Conference, ser. Middleware ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 265–279. [Online]. Available:
https://doi.org/10.1145/3423211.3425680

[15] O. Nakakaze, I. Koren, F. Brillowski, and R. Klamma, “Retrofitting
industrial machines with webassembly on the edge,” in Web Information

Systems Engineering – WISE 2022, R. Chbeir, H. Huang, F. Silvestri,
Y. Manolopoulos, and Y. Zhang, Eds. Cham: Springer International
Publishing, 2022, pp. 241–256.

[16] D. Pinckney, A. Guha, and Y. Brun, “Wasm/k: Delimited continuations
for webassembly,” in Proceedings of the 16th ACM SIGPLAN

International Symposium on Dynamic Languages, ser. DLS 2020.
New York, NY, USA: Association for Computing Machinery, 2020, p.
16–28. [Online]. Available: https://doi.org/10.1145/3426422.3426978

[17] M. Paul, “Cve-2020-8835: Linux kernel privilege
escalation via improper eBPF program verifi-
cation,” https://www.zerodayinitiative.com/blog/2020/4/8/
cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification,
2020, (Accessed 2023-5-7). [Online]. Avail-
able: https://www.zerodayinitiative.com/blog/2020/4/8/
cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification

[18] “Turbofan: V8’s optimizing compiler,” https://v8.dev/docs/turbofan,
2018, (Accessed 2021-07-29). [Online]. Available: https://v8.dev/docs/
turbofan

[19] C. Click and M. Paleczny, “A simple graph-based intermediate
representation,” SIGPLAN Not., vol. 30, no. 3, p. 35–49, mar 1995.
[Online]. Available: https://doi.org/10.1145/202530.202534

[20] B. L. Titzer, “A fast in-place interpreter for webassembly,” Proc. ACM

Program. Lang., vol. 6, no. OOPSLA2, oct 2022. [Online]. Available:
https://doi.org/10.1145/3563311

[21] A. Gal, C. W. Probst, and M. Franz, “A denial of service attack on
the java bytecode verifier,” University of California, Irvine, Tech. Rep.,
November 2003.

[22] Tetrate.io, “WAZERO: The zero-dependency WebAsssembly runtime
for Go developers.” https://wazero.io/, 2022, (Accessed 2023-5-7).
[Online]. Available: https://wazero.io/

[23] H. Xu and F. Kjolstad, “Copy-and-patch compilation: A fast
compilation algorithm for high-level languages and bytecode,” Proc.

ACM Program. Lang., vol. 5, no. OOPSLA, oct 2021. [Online].
Available: https://doi.org/10.1145/3485513

[24] “Wasmer: A Fast and Secure Webassembly Runtime,” https://
github.com/wasmerio/wasmer, 2021, (Accessed 2021-07-06). [Online].
Available: https://github.com/wasmerio/wasmer

[25] C. Backes, https://v8.dev/blog/liftoff, 2018, (Accessed 2022-4-07).
[Online]. Available: https://v8.dev/blog/liftoff

[26] “SpiderMonkey: Mozilla’s JavaScript and WebAssembly engine,”
https://spidermonkey.dev, 2021, (Accessed 2021-07-29). [Online].
Available: https://spidermonkey.dev

[27] M. J. Reisinger, “Polybenchc,” https://github.com/MatthiasJReisinger/
PolyBenchC-4.2.1, 2016, (Accessed 2023-5-7). [Online]. Available:
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1

[28] F. Denis, “Libsodium WebAssembly benchmarks,” https://github.com/
jedisct1/webassembly-benchmarks, 2021, (Accessed 2023-5-7). [On-
line]. Available: https://github.com/jedisct1/webassembly-benchmarks

[29] D. Herrera, H. Chen, E. Lavoie, and L. Hendren, “Numerical
computing on the web: Benchmarking for the future,” SIGPLAN

Not., vol. 53, no. 8, p. 88–100, apr 2020. [Online]. Available:
https://doi.org/10.1145/3393673.3276968

[30] “JavaScriptCore, the built-in JavaScript engine for WebKit,” https:
//trac.webkit.org/wiki/JavaScriptCore, 2021, (Accessed 2021-07-29).
[Online]. Available: https://trac.webkit.org/wiki/JavaScriptCore

[31] “Wasmtime: a standalone runtime for WebAssembly,” https:
//github.com/bytecodealliance/wasmtime, 2021, (Accessed 2021-08-11).
[Online]. Available: https://github.com/bytecodealliance/wasmtime

[32] C. authors, “Cranelift code generator,” https://github.com/
bytecodealliance/wasmtime/tree/main/cranelift, 2018, (Accessed 2023-
5-7). [Online]. Available: https://github.com/bytecodealliance/
wasmtime/tree/main/cranelift

[33] “WAVM: a non-browser WebAssembly virtual machine,” https:
//github.com/WAVM/WAVM, 2018, (Accessed 2022-1-10). [Online].
Available: https://github.com/WAVM/WAVM

[34] “WebAssembly Micro Runtime (WAMR),” https://github.com/
bytecodealliance/wasm-micro-runtime, 2022, (Accessed 2022-
04-11). [Online]. Available: https://github.com/bytecodealliance/
wasm-micro-runtime

[35] “Wasm3: The fastest WebAssembly interpreter, and the most universal
runtime.” https://github.com/wasm3/wasm3, 2020, (Accessed 2021-08-
11). [Online]. Available: https://github.com/wasm3/wasm3

[36] M. Richards, “The BCPL Cintsys and Cintpos User Guide,” University
of Cambridge, 2023. [Online]. Available: https://www.cl.cam.ac.uk/
∼mr10/bcplman.pdf
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