
Experiences Building an MLIR-Based SYCL

Compiler

Ettore Tiotto

Intel Corporation

Toronto, Canada

ettore.tiotto@intel.com

Vı́ctor Pérez

Codeplay Software

Edinburgh, Scotland, UK

victor.perez@codeplay.com

Whitney Tsang

Intel Corporation

Toronto, Canada

whitney.tsang@intel.com

Lukas Sommer

Codeplay Software

Edinburgh, Scotland, UK

lukas.sommer@codeplay.com

Julian Oppermann

Codeplay Software

Edinburgh, Scotland, UK

julian.oppermann@codeplay.com

Victor Lomüller

Codeplay Software

Edinburgh, Scotland, UK

victor@codeplay.com

Mehdi Goli

Codeplay Software

Edinburgh, Scotland, UK

mehdi.goli@codeplay.com

James Brodman

Intel Corporation

Boston, MA, USA

james.brodman@intel.com

Abstract—Similar to other programming models, compilers
for SYCL, the open programming model for heterogeneous
computing based on C++, would benefit from access to higher-level
intermediate representations. The loss of high-level structure and
semantics caused by premature lowering to low-level intermediate
representations and the inability to reason about host and device
code simultaneously present major challenges for SYCL compilers.

The MLIR compiler framework, through its dialect mecha-
nism, allows to model domain-specific, high-level intermediate
representations and provides the necessary facilities to address
these challenges.

This work therefore describes practical experience with the
design and implementation of an MLIR-based SYCL compiler. By
modeling key elements of the SYCL programming model in host
and device code in the MLIR dialect framework, the presented
approach enables the implementation of powerful device code
optimizations as well as analyses across host and device code.

Compared to two LLVM-based SYCL implementations, this
yields speedups of up to 4.3x on a collection of SYCL benchmark
applications.

Finally, this work also discusses challenges encountered in the
design and implementation and how these could be addressed in
the future.

Index Terms—SYCL, MLIR, compiler, optimization, heteroge-
neous programming

I. INTRODUCTION

For many applications in the machine learning and high-

performance computing (HPC) domain, heterogeneous comput-

ing has become inevitable to meet the computational demands,

creating a strong need for powerful heterogeneous programming

models.

There are several heterogeneous programming models, such

as CUDA, SYCL, and OpenCL, enabling offloading portions of

an application on hardware accelerators. Among them, SYCL

provides a modern C++-based open-standard single-source

programming paradigm enabling portability across a wide range

of hardware from different vendors. SYCL supports kernel

dependency tracking and data management between host and

device that helps reduce boilerplate code found in many similar

programming models, e.g., OpenCL.

At the same time, being based on C++ also means that

SYCL compilers are presented with the same challenges as

other C++-based languages. One such challenge is to keep track

of the high-level structure of the program and domain-specific

information that can significantly affect the effectiveness of

compiler optimizations. Hence, the SYCL semantics, including

work-item parallel execution and device memory access, will

be lost in the early stages of the compilation pipeline when

lowering to a low-level intermediate representation (IR) such

as LLVM IR.

Also, in most current SYCL compilers, translation and

optimizations of the device code happens in isolation from

host compilation. Such separation can prevent passing relevant

information, e.g., the invocation context of a device kernel, to

the device optimization pipeline.

The MLIR compiler framework is well suited to address these

challenges. MLIR dialects allow capturing domain-specific

semantics, in the case of this work the SYCL semantics, on a

high level of abstraction. At the same time, MLIR’s ability to

nest operations allows reasoning about host and device code

at the same time.

Building on top of the MLIR framework [1], this work there-

fore aims to address these challenges. By leveraging MLIR’s

more fine-grained lowering process and extensibility, which

allows capturing the semantics of the SYCL programming

model and making it accessible to compiler optimizations, the

SYCL-MLIR project presented in this work aims to build more

powerful optimizations for SYCL code.

Overall, this work makes the following contributions:

• Extension of the MLIR framework to capture the semantics

of the SYCL programming model.

• Architecture and implementation of an MLIR-based

compilation flow that allows joint analysis of host and

device code to enable better device optimizations based

on invocation context.

• Design and implementation of analyses for SYCL host

and device code as well as device code optimizations.

979-8-3503-9509-9/24/$31.00 © 2024 IEEE 399

20
24

 IE
EE

/A
CM

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Co

de
 G

en
er

at
io

n
an

d
O

pt
im

iza
tio

n
(C

GO
) |

 9
79

-8
-3

50
3-

95
09

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CG

O
57

63
0.

20
24

.1
04

44
86

6

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on March 27,2024 at 10:47:53 UTC from IEEE Xplore. Restrictions apply.

• Evaluation of the MLIR-based compilation flow with a

variety of SYCL benchmark applications and comparison

with an existing LLVM-based SYCL compiler.

• Report on our practical experience with building an MLIR-

based compiler for a C++-based parallel programming

model and the main challenges involved.

The rest of this work is structured as follows. Section II

introduces necessary background information on the SYCL

programming model and the MLIR compiler framework.

Sections III to VII describe the SYCL-MLIR project, its

extension of MLIR for SYCL, the compilation flow as well

as the host and device analyses and optimizations in detail.

Section VIII evaluates the MLIR-based SYCL compiler and

compares it to an existing LLVM-based SYCL compiler.

Related approaches in literature are discussed in Section IX,

and Section X concludes this work and gives an outlook on

future development.

II. BACKGROUND

A. SYCL

SYCL [2] is a Khronos open standard defining a C++-

based parallel programming model for heterogeneous systems,

providing a rich API for users to access accelerator resources.

While SYCL shares some of the underlying concepts and

abstractions with them, there are a number of interesting

differences between SYCL and other heterogeneous, parallel

programming models such as OpenCL, OpenMP or CUDA. In

contrast to these programming models, SYCL does not rely

on extensions to the C++ language.

SYCL kernels are expressed using functors (plain C++ class

defining a call operator or a lambda expression). A kernel is

submitted for execution to a queue using a command-group

function (shortened to command-group). The command-group

allows the user to express the dependencies the kernel requires

in order to be run. These dependencies can involve waiting on

another kernel or requesting a memory transfer. The command-

group will finish with the submission of the kernel specifying

the index space it shall run on.

Kernels are submitted for execution with an index space

(called ND-range) subdivided into work-groups. For each point

of this space, an instance (called work-item) executes the

kernel in parallel to other work-items. Work-items are also

bundled into work-groups, allowing some resource sharing,

communication and synchronization via barriers between work-

items belonging to the same work-group. Each SYCL kernel

functor will take as a parameter either an id, item or

nd_item encapsulating the position of the work-item within

the ND-range.

SYCL also defines a memory hierarchy with different levels

of visibility: global, local and private memory. Whereas global

memory is shared by all work-items, local memory is shared

by all work-items within a work-group, enabling work-group–

wide cooperation, and it is usually faster to access than global

memory. Finally, private memory is only visible to a given

work-item.

SYCL offers two ways to manage memory between host

and device: Unified Shared Memory (USM) and the buffer

and accessor model. When using USM, the user manipulates

pointers directly. The memory is allocated and freed using

dedicated malloc- and free-like functions and the user

is responsible for transferring data to and from the device

manually. The buffer and accessor model allows the SYCL

runtime to handle not only memory management across

devices (memory creation, deletion, transfer to and from

device) to ensure memory consistency but also the creation of

dependencies between kernels.

A SYCL buffer is a multi-dimensional container owning

the memory that tracks where copies live across the host and

devices, however it does not provide access to the memory

directly. In order to get access to the data, the user must create

an accessor object inside a command-group. The creation of

the object will create a dependency within the SYCL scheduler

in order to ensure the data is available prior to the kernel

execution. Inside the kernel, the user can use the accessor

object in a similar way to a regular C++ vector or mdspan

container.

The accessor is a heavy object encapsulating several dynamic

pieces of information: the pointer to the data, the full range of

the data but also a sub-range and offset. The sub-range and

offset is only useful in the case of a ranged accessor which

allows the user to pass only part of a buffer to the kernel.

However, the distinction between a ranged and non-ranged

accessor is done by calling different constructors and is never

reflected on the C++ type. Other information is also embedded

statically via template parameters, including if it is read-only,

write-only or read-write.

While the underlying concepts such as the execution and

memory model are similar to OpenCL or CUDA, the buffer and

accessor model is a good example of how SYCL leverages the

power of modern C++ to automate some of the cumbersome

tasks in heterogeneous programming. If an application uses the

buffer and accessor abstraction, the SYCL runtime can fully

automate dependency tracking between kernels and necessary

data movements between host and one or multiple devices,

whereas in more low-level programming models such as

OpenCL or CUDA, the developer needs to manually take

care of these details. This example, and other more high-level

abstractions in SYCL such as the powerful out-of-order queues,

make typical SYCL more concise, improving maintainability

and programmer productivity.

The higher level of abstraction can also facilitate portability

between different architectures. In contrast to proprietary

models such as CUDA, which can only run on devices from one

specific vendor, SYCL’s open nature allows implementations to

target hardware from different vendors, making SYCL available

on many different platforms.

While a comparison of SYCL with other programming

models in even more detail is beyond the scope of this work,

such comparisons can for example be found in [3]–[8].

400
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on March 27,2024 at 10:47:53 UTC from IEEE Xplore. Restrictions apply.

B. MLIR

The inception of the MLIR framework [1] was motivated

by the insights that prematurely lowering a high-level pro-

gramming model to a low-level representation can significantly

harm the compiler’s ability to perform powerful optimizations,

and that many of the existing IR representations (e.g., LLVM

IR) are hard to extend. Instead of working on a low-level

representation such as LLVM IR, many optimization passes

would benefit from a higher-level representation that preserves

the structure of the program, e.g., loops, and can also encode

domain knowledge about the application.

This insight is also an important motivation for this work,

which seeks to improve SYCL code optimization through

an intermediate representation that allows encoding SYCL’s

semantics directly in it.

Even before MLIR, the benefit of having several intermediate

representations in a compiler infrastructure was well recognized

in the literature [9]–[11]. Programming languages such as Swift

or Rust later introduced higher-level representations with the

same aim, before eventually lowering it to LLVM IR. MLIR

now seeks to provide a platform and common infrastructure

for such representations, to enable better re-usability across

different frontends.

The core concept that allows MLIR to cover such a wide

range of abstraction levels and domains is the notion of dialects.

A dialect encapsulates the attributes, types and operations

associated with the representation of a specific domain. The

upstream MLIR project collects a number of composable

dialects that are useful across different abstractions, such as

the arith dialect for arithmetic operations or the structured

control flow (scf) dialect for loops. In addition to the upstream

dialects, users of MLIR can freely extend the framework by

defining specialized dialects to fit their problem domain. To

this end, this work defines a dialect capturing SYCL semantics,

with more details given in Section IV.

MLIR-based compilation flows will then typically use a

combination of multiple dialects to represent an application at

every stage of the compilation process. Once optimizations on

one level of abstraction are completed, the representation is

typically lowered to another set of dialects, where more opti-

mizations can happen. Overall, this yields a gradual lowering

process through dialect conversion and pattern rewriting, this

aspect is also exercised in this work as described in Section IV.

In addition to dialect abstraction and progressive lowering,

MLIR also provides a common infrastructure for creating

analyses and transformation passes. This common infrastructure

also underpins the analyses and transformations for this work,

described in Sections V to VII.

III. AIM & APPROACH

As already briefly discussed in Section I, the aim of the

SYCL-MLIR project presented in this work is to build an MLIR-

based compiler for the SYCL heterogeneous programming

model. There are two main motivations for the use of the

MLIR compiler framework for a SYCL compiler.

First, the ability to nest operations that is inherent to MLIR

allows the compilation flow to represent SYCL host and

device code alongside each other in the same MLIR module,

enabling better analyses of device kernels in the context of

their invocation on the host. The details of the compilation

flow and how this side-by-side analysis of host and device

code is achieved are described in Sections IV and VII.

Second, the MLIR concept of dialects enables the com-

pilation flow to initially preserve the high-level semantics

of the SYCL programming model. This way, the precise

semantics of the language can be made available to analyses and

transformations, and lowered only after optimizations benefiting

from access to the SYCL semantics have concluded. To this end,

the SYCL-MLIR project defines a SYCL dialect, modeling key

entities of the SYCL programming model as MLIR attributes,

types and operations.

In device code, the SYCL dialect models two main concepts.

One is the position of the current work-item (see Section II-A)

in the overall execution grid and within its work-group. To

this end, the SYCL classes id, item, nd_item, range,

nd_range and group are modeled as types in the SYCL

dialect and key functions to obtain and operate on instances

of these classes are represented as operations of the dialect.

Another important part of the SYCL programming model

on devices with high relevance for compiler transformations

is the access to device memory through SYCL accessors (see

Section II-A). To enable optimizations to reason about and

transform memory access behavior of a kernel, the SYCL

accessor class is modeled as another type in the SYCL

dialect and operations such as accessing an element of memory

through an accessor are modeled as MLIR operations in the

dialect. Typically, memory is accessed based on the position

of the work-item in the execution grid, so the representation

of id and related classes in the SYCL dialect play another

important role here.

On the host side, the dialect aims to represent the invocation

context of kernels, including the arguments passed to those

kernels and the ND-range. To this end, operations representing

the construction of the SYCL command-group and the kernel

function object (see Section II-A) are added to the dialect.

Many of the types introduced for the representation of SYCL

entities on the device side, e.g., for the id or range classes,

can be reused here, and additional types for classes such as

buffer have also been added to the dialect.

Next to the kernel launch and its arguments, the prove-

nance of accessors used in device code can provide valuable

information. Therefore, operations modeling the construction

of accessors and their underlying buffers (see Section II-A)

are also added to the dialect. Analyzing the parameters used

for construction of accessors and buffers can provide useful

insights into their behavior, for example into potential overlap

or aliasing of two accessors.

The raising process for the host code and how the aforemen-

tioned operations are used there is described in greater detail

in Section VII.

401
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on March 27,2024 at 10:47:53 UTC from IEEE Xplore. Restrictions apply.

source.cpp

Compiler

driver

SYCL-MLIR

device compiler

C++ host

compiler

SYCL

device compiler

Device

object file

Host

object file
mlir-translate

Linker

Combined

binary file

Fig. 1. SYCL compilation flow. Solid lines and elements in white and gray
show common parts of the compilation flow shared by DPC++ and SYCL-
MLIR. DPC++’s (dotted path) device compiler only receives the kernel source
code as an input and device compilation happens entirely in isolation from
host compilation. SYCL-MLIR (dashed path), on the other hand, receives an
MLIR representation of the host module obtained via mlir-translate,
enabling joint analysis of host and device.

IV. COMPILATION FLOW

The SYCL standard (see Section II-A) describes a single-

source multiple compiler passes (SMCP) compilation flow. This

consists in processing the same source code several times using

different compilers: one for the host, and one for each target.

In the case of the Intel DPC++ compiler [12], the generated

device images are linked together and wrapped in the host

object to be later read by the SYCL runtime (dotted path in

Fig. 1).

However, this SMCP technique presents a limitation by

design: no host-device cross-boundary optimizations can be

efficiently performed at compile time, due to the limited

information being shared between host and device compilers.

To address this point, using a custom SYCL compiler handling

both host and device code, i.e., through the single-source single

compiler pass (SSCP) approach, opens up the possibility to

perform transformations in the host code using device code

analysis, and vice versa.

To translate from C++ AST to MLIR we use our own

Polygeist [13] fork as a device compiler. While being efficient

for compiling the device side, it struggles to handle the required

C++ construct of the host side. For example, virtual functions

and exceptions are not properly supported. In order to obtain

similar results to the SSCP technique without needing a robust

C++ MLIR frontend (see Section IX), we take an alternative

approach obtaining MLIR host code from LLVM IR, which can

then be used to leverage device compilation. We then obtain a

joint representation of host and device code exploiting MLIR’s

nested IR structure (see dashed path in Fig. 1). This way, we

set the basis for a SYCL compiler capable of performing device

code optimizations using host code analysis.

1 func.func @foo(%cond: i1, %v1: i32, %v2: i32,

2 %ptr1: memref<i32>, %ptr2: memref<i32>) {

3 scf.if %cond {

4 memref.store %v1, %ptr1[] {tag = "a"}: memref<i32>

5 } else {

6 memref.store %v2, %ptr2[] {tag = "b"}: memref<i32>

7 }

8 ... = memref.load %ptr1[] : memref<i32>

9 }

Listing 1. Function with potentially aliasing memref arguments.

After this, a series of custom analyses and transformation

passes using SYCL domain-specific knowledge are executed,

including a host raising pass detecting and raising relevant

patterns in SYCL host code, as described in Section VII. This

alternative approach enables host-device optimizations at little

cost compared to the development of a C++ MLIR frontend.

However, as a downside, changes to SYCL runtime code can

lead to raising pattern matching to fail, forcing this pass to be

up-to-date with runtime changes.

V. COMPILER ANALYSES

During the development of the SYCL-MLIR compiler

we have found the need to extend the MLIR framework

with several static analyses and utilities that are generally

useful in an optimizing compiler. This section gives a brief

overview of our implementation, highlighting how the semantic

information encoded by several SYCL dialect operations have

been leveraged.

A. Alias Analysis

MLIR provides an alias analysis framework which can be

readily augmented to take into account the domain knowledge

provided by different dialects. In order to leverage the semantic

information of the SYCL dialect, we have created a SYCL-

specific alias analysis extending MLIR’s existing one.

The semantics of SYCL dialect operations can be encoded in

the analysis, allowing the compiler to prove that values yielded

by SYCL operations do not alias in many circumstances, and

thus leveraging the SYCL dialect to make alias analysis more

precise.

B. Reaching Definition Analysis

The classic reaching definition analysis is a data-flow analysis

designed to provide the set of operations that might have

modified a value in memory at a given program point. Our

implementation leverages the data-flow analysis framework

provided by MLIR, and our specialized alias analysis. We

consider two kinds of reaching definitions for a value:

• modifiers (MODS): definitions for the value itself or

definition of a value that is known to be definitely (must)

aliased to it

• potential modifiers (PMODS): definitions of a value that

is known to be possibly (may) aliased to the value

As an example let us consider the MLIR code snippet in

Listing 1. The store operation at line 4 updates the memory

location %ptr1 points to directly, while the store operation at

402
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on March 27,2024 at 10:47:53 UTC from IEEE Xplore. Restrictions apply.

line 6 might update the same memory location because %ptr2

may alias %ptr1. It follows that the reaching definition for

%ptr1 at line 8 is {MODS: a, PMODS: b}.

To define the memory effects of different operations, the

MLIR framework provides a generic interface for operations,

so analyses such as the reaching definition analysis can reason

about effects of operations from different dialects.

By implementing this interface for the relevant SYCL dialect

operations, the reaching definition analysis can be customized

to account for the precise memory semantics of each SYCL

dialect operation.

C. Uniformity Analysis

In GPU programming, a divergent branch is a branch in

which the condition does not yield the same result for all work-

items in the work-group (cf. Section II-A), causing subsets of

work-items to branch to different program points.

Divergent branches can be recognized by tracking the

uniformity of variables. A variable is said to be uniform if

all work-items in a work-group assign the same value to it, and

non-uniform otherwise. A trivial example of a non-uniform

value is the result of an operation yielding the global id of

the work-item. Values assigned to the same memory location

under divergent paths yield data divergence and may cause

divergent control flow if used in a conditional expression.

In the example in Listing 2, the %gid_x value (line 9) is a

source of non-uniformity, as it is the result of evaluating the

sycl.nd_item.get_global_id operation, which yields

the global id (see Section II-A) of a SYCL work-item. As a

result, the branch conditions %cond (line 12) and %cond1

are therefore non-uniform, the former because it uses the non-

uniform value and the latter because it loads from the memory

pointed to by %alloca, which is assigned different values in

the divergent branch (lines 14 and 16).

In order to reason about divergent control flow we have

implemented the Uniformity Analysis as an inter-procedural

data-flow analysis based on MLIR’s data-flow framework.

Formal parameters are initially assigned unknown uniformity,

with the exception of the SYCL kernel entry point which has

parameters that are uniform by definition. The analysis then

propagates the uniformity of values by visiting operations in

a function. A custom trait informs the analysis about SYCL

operations that are known sources of non-uniformity.

The uniformity of values yielded by other operations is:

• non-uniform: if any operand is non-uniform;

• unknown: if any operand has unknown uniformity, or

• uniform: if all operands are uniform and the operation is

free of memory effects.

Through the trait mechanism, the MLIR framework allows

to leverage domain-specific knowledge to inform the analysis

of the effects of dialect operations. The trait can easily

be added to operations from other dialects to allow the

uniformity analysis to also reason about operations from other

dialects, demonstrating the re-usability facilitated by the MLIR

framework.

1 func.func @non_uniform(%arg1: memref<?x!sycl_nd_item_2>,

2 %idx: index) {

3 %c0_i32 = arith.constant 0 : i32

4 %c0_i64 = arith.constant 0 : i64

5 %c1 = arith.constant 1 : i64

6 %c2 = arith.constant 2 : i64

7 %alloca = memref.alloca() : memref<10xi64>

8 // Get the global id of an nd_item (non-uniform value).

9 %gid_x = sycl.nd_item.get_global_id(%arg1, %c0_i32)

10 : (memref<?x!sycl_nd_item_2>, i32) -> i64

11 // The branch condition is non-uniform.

12 %cond = arith.cmpi sgt, %gid_x, %c0_i64 : i64

13 scf.if %cond {

14 memref.store %c1, %alloca[%idx] : memref<10xi64>

15 } else {

16 memref.store %c2, %alloca[%idx] : memref<10xi64>

17 }

18 // Yields non-uniform value.

19 %load = memref.load %alloca[%idx] : memref<10xi64>

20 // Divergent branch.

21 %cond1 = arith.cmpi sgt, %load, %c0_i64 : i64

22 scf.if %cond1 {

23 ...

Listing 2. Function showing a divergent branch.

Operations that have memory effects are further analyzed,

using the memory effect interface that is also used for the

reaching definition analysis. This way, the analysis cannot

only reason about the SYCL dialect, but also all other dialect

operations that implement this interface.

If the operation has unknown memory effects, it is conser-

vatively considered to have unknown uniformity. Otherwise,

each memory effect is analyzed. For a write memory effect,

using the Reaching Definition Analysis (Section V-B), unknown

or non-uniform uniformity is propagated from the (potential)

modifiers and their dominating branch conditions.

Finally, the analysis works inter-procedurally by using the

call graph to propagate the uniformity of the actual argument

to a function across every possible call site. If all call sites

are known (no external calls are possible), the uniformity of

the parameters is computed by merging the uniformity of the

actual arguments.

In the SYCL-MLIR compiler, this analysis is currently used

by the Loop Internalization optimization (Section VI-C) to

determine whether a loop is executed in a divergent region.

This is a necessary prerequisite because the transformation

needs to inject a group barrier, which would deadlock if it

were to be executed in a divergent region.

D. Memory Access Analysis

Reasoning about the memory access pattern of a kernel is key

to many transformations, including some of the optimizations

presented in Section VI. To this end, we have implemented

a Memory Access Analysis to derive the access pattern that

SYCL memory accesses exhibit in a GPU kernel.

The analysis is based on [14] and extends it to consider

SYCL memory accesses. Given an affine loop, SYCL memory

access patterns can be modeled by using an access matrix and

a vector of offsets.

As an example, consider the MLIR function in Listing 3.

The memory access in the loop (line 23) uses a memref

obtained via a sycl.accessor.subscript operation

403
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on March 27,2024 at 10:47:53 UTC from IEEE Xplore. Restrictions apply.

1 func.func @mem_acc(%acc: memref<?x!sycl_accessor_3_f32>,

2 %item: memref<?x!sycl_item_2>) {

3 %c0_i32 = arith.constant 0 : i32

4 %c1_i32 = arith.constant 1 : i32

5 %c1 = arith.constant 1 : index

6 %c2 = arith.constant 2 : index

7 %id = memref.alloca() : memref<1x!sycl_id_3>

8 %gid_x = sycl.item.get_id(%item, %c0_i32)

9 : (memref<?x!sycl_item_2>, i32) -> index

10 %gid_y = sycl.item.get_id(%item, %c1_i32)

11 : (memref<?x!sycl_item_2>, i32) -> index

12 affine.for %i = 0 to 64 {

13 // [gid_x+1, 2*i, 2*i+2+gid_y]

14 %add1 = arith.addi %gid_x, %c1 : index

15 %mul1 = arith.muli %i, %c2 : index

16 %add1a = arith.addi %mul1, %c2 : index

17 %add1b = arith.addi %add1a, %gid_y : index

18 sycl.constructor @id(%id, %add1, %mul1, %add1b)

19 : (memref<1x!sycl_id_3>, index, index, index)

20 %subscr1 = sycl.accessor.subscript %acc[%id]

21 : (memref<?x!sycl_accessor_3_f32>,

22 memref<1x!sycl_id_3>) -> memref<?xf32>

23 %load1 = affine.load %subscr1[0] : memref<?xf32>

24 }

25 return

26 }

Listing 3. MLIR memory access example.

with an index given by the 3-dim SYCL id constructed at line 18

by a sycl.constructor operation. The indexing function

is an affine function of the work-item global id (%gid_x

and %gid_y) and the loop induction variable %i and, in the

analysis, is described by an access matrix and an offset vector

as follows:





1 0 0

0 0 2

0 1 2



×





%gid x

%gid y

%i



+





1

0

2





In the SYCL-MLIR compiler, the Memory Access Analysis

is currently used by the Loop Internalization optimization

(Section VI-C) to identify SYCL array accesses to consider as

candidates for prefetching into local memory.

VI. DEVICE OPTIMIZATIONS

This section describes optimizations designed to improve per-

formance of SYCL device code. These transformations provide

a significant speedup for the polyhedral benchmarks in the

SYCL-Bench suite [15] as described in detail in Section VIII.

A. Loop Invariant Code Motion (LICM)

The MLIR community provides a utility which can be used

to hoist operations that are free of memory effects out of

a region. The SYCL-MLIR compiler implements an LICM

transformation which also considers operations that read or

store from memory. The transformation uses the MLIR memory

effect interface that is also used for the reaching definition

analysis to determine the memory effects of an operation, and

leverages the alias analysis specialized for SYCL (Section V-A)

to determine whether memory accesses are aliased.

An operation can be hoisted if its operands are either already

defined outside of the loop, or they can be hoisted out of the

loop. Operations with read-only memory effects can be hoisted,

as long as the compiler can prove that no operation in the loop

1 affine.for %iv = %lb to %ub {

2 %val = affine.load %ptr[0] : memref<1xf32>

3 %other = affine.load %other_ptr[%iv] : memref<?xf32>

4 %res = arith.addf %val, %other : f32

5 affine.store %res, %ptr[0] : memref<1xf32>

6 }

Listing 4. Reduction example.

1 %val = affine.load %ptr[0] : memref<1xf32>

2 %loop_res = affine.for %iv = %lb to %ub

3 iter_args(%red = %val) -> (f32) {

4 %other = affine.load %other_ptr[%iv] : memref<?xf32>

5 %res = arith.addf %red, %other : f32

6 affine.yield %res : f32

7 }

8 affine.store %loop_res, %ptr[0] : memref<1xf32>

Listing 5. Transformed version of the reduction in Listing 4.

may write to the memory locations being read by the candidate

operation. Given a candidate SYCL read operation, which

loads an operand, the transformation analyzes all values that

may alias to it, and determines whether any of them is either

defined outside the loop or can also be hoisted. Operations

that exhibit a write memory effect can be hoisted if there is no

subsequent operation that writes to the same memory location,

or an operation that might read from the memory location the

candidate operation writes.

Once a loop has been analyzed, and candidate operations for

hoisting are identified, the transformation guards the loop by

injecting a versioning condition in order to guarantee that the

loop is executed at least once (otherwise a hoisted operation

might cause a side effect that would not exist in the original

code).

The transformation has also the ability to collect candidate

operations that cannot be hoisted unless some of their operands

are proven at runtime to not alias. These candidates, if they

exist, are handled by versioning the transformed loop with

a versioning condition to check that the operands preventing

hoisting do not overlap in memory.

B. Detect Reduction

Array reductions are a common operation in scientific code.

This pass is designed to detect this pattern and accumulate the

reduction in a scalar variable rather than updating the array

element at every loop iteration. As an example, consider the

code in Listing 4. The loop loads a value from memory at

line 2 and updates it at line 5. If the loop iterates N times, it

will perform 2N memory accesses. Given that %ptr is loop

invariant, this code can be transformed into the code shown in

Listing 5.

The transformed loop receives the incoming value for the

array element (line 1) through the iter_args operand of

the affine.for operation. It then accumulates the reduction

results in the loop-carried scalar variable %red. Finally, the

array element is updated with the reduction result at line 8.

The optimized version of the loop no longer performs any

memory accesses involving the array element pointed to by

404
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on March 27,2024 at 10:47:53 UTC from IEEE Xplore. Restrictions apply.

1 range<2> global_size(N, N), wg_size(M, M);

2 cgh.parallel_for<matrix_multiply>(

3 nd_range<2>(global_size, wg_size), [=](nd_item<2> item) {

4 size_t i = item.get_global_id(0),

5 j = item.get_global_id(1);

6 for (size_t k = 0; k < N; k++)

7 C[i][j] += A[i][k] * B[k][j];

8 });

Listing 6. Command-group function snippet with a loop internalization
candidate.

%ptr. Reducing memory traffic to and from memory is an

important optimization on many types of devices and its benefit

will be quantified in Section VIII.

Alias analysis (Section V-A) is used to ensure the safety

of the transformation because in the example above, %ptr

and %other_ptr must not be aliased in order for this

transformation to be legal.

C. Loop Internalization

As discussed in Section II-A, the SYCL programming model

defines a memory hierarchy with different types of memory.

The different memories in the hierarchy each have unique

characteristics regarding size and access latency, opening the

possibility for optimization.

For example, as local memory is smaller but faster than

global memory, it can be profitably used to prefetch subsets

of a memory region, especially if its accesses exhibit temporal

locality or an access pattern that is not conducive to being

coalesced by the GPU hardware.

Using the Loop Internalization pass, SYCL memory accesses

in perfectly nested loops are made to use local memory

by leveraging the MLIR’s loop tiling infrastructure. The

pass leverages the Memory Access Analysis (Section V-D)

to determine the memory access pattern inside a loop.

The access pattern information from the analysis is then used

to determine whether the memory access can be coalesced.

To do so, the submatrix describing the inter–work-item access

pattern is obtained by removing columns corresponding to loop

induction variables.

In the example in Section V-D, this submatrix is given by the

first two columns because the rightmost column corresponds

to the loop induction variable.

The access can be coalesced if the inter–work-item access

matrix is Linear or ReverseLinear (as described in [14]).

Temporal reuse is present if the intra–work-item memory access

matrix (obtained by removing columns corresponding to thread

variables) is not the zero matrix. Based on this information, the

memory access is assigned to either remain in global memory

or to be prefetched into local memory.

To demonstrate the transformation performed by the pass,

consider the SYCL code in Listing 6 containing a loop (lines 6–

7) within a SYCL kernel launched via parallel_for. The

load operations corresponding to accessors A and B (line 7) are

classified as candidates for using local memory by the analysis,

because they both exhibit temporal reuse. When there exists at

least one candidate access to be prefetched, the optimization

1 range<2> global_size(N, N), wg_size(M, M);

2 local_accessor<float> A_tile(wg_size, cgh);

3 local_accessor<float> B_tile(wg_size, cgh);

4 cgh.parallel_for<matrix_multiply>(

5 nd_range<2>(global_size, wg_size),

6 [=](nd_item<2> item) {

7 size_t i = item.get_global_id(0),

8 j = item.get_global_id(1);

9 size_t x = item.get_local_id(0),

10 y = item.get_local_id(1);

11

12 group<2> group = item.get_group();

13 for (size_t t = 0; t < N; t += M) {

14 A_tile[x][y] = A[i][t + y];

15 B_tile[x][y] = B[t + x][j];

16 group_barrier(group);

17 for (int k = 0; k < M; k++)

18 C[i][j] += A_tile[x][k] * B_tile[k][y];

19 group_barrier(group);

20 }

21 });

Listing 7. Command-group function snippet from Listing 6 after loop
internalization.

transforms the loop into the MLIR equivalent of the code in

Listing 7. Note that the optimized code requires two barriers,

so, before doing the transformation, the Uniformity Analysis

(Section V-C) is used to ensure the loop is not in a divergent

region.

In the optimized code, the loop is being tiled by the work-

group size M (line 13) and an M ×M tile of local memory

is allocated for each global memory region (lines 2–3). In the

outer loop, a portion of each memory region is prefetched into

local memory (lines 14–15). The optimization relies on each

work-item in the work-group to initialize the local memory

used by the inner loop, and so a group barrier is injected

to ensure all threads complete the initialization (line 16). In

the tiled inner loop (lines 17–18), the original accesses are

substituted by the local accessors (line 18). Finally, a second

group barrier (line 19) is injected, to guarantee that the inner

loop is completed by all work-items in the work-group before

prefetching the next global memory portions.

The performance gains obtained by this transformation will

be discussed in Section VIII.

VII. HOST RAISING AND HOST-DEVICE OPTIMIZATION

A. Host Raising

One of the rationales behind SYCL-MLIR’s compilation

flow is performing host-code analysis to leverage device code

compilation. However, the MLIR code obtained from LLVM

IR is too low-level for analysis, as, in the end, there is a

one-to-one correspondence between both modules.

In order to obtain a higher-level analysis-friendly represen-

tation, we defined an MLIR transformation pass matching

patterns present in DPC++’s runtime code, and replacing them

with operations in the SYCL dialect. The two main patterns to

be raised to perform SYCL-specific host-device optimizations

are SYCL objects construction, and kernel scheduling.

As an example of the raising process, we will use the SYCL

program in Listing 8, which, after compilation, translation to

MLIR, and raising, is transformed into the code in Listing 9.

405
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on March 27,2024 at 10:47:53 UTC from IEEE Xplore. Restrictions apply.

1 constexpr std::size_t size = 1024;

2 ...

3 queue.submit([&](handler &cgh) {

4 accessor a(buff_a, cgh, size, read_only);

5 accessor b(buff_b, cgh, size, read_only);

6 accessor c(buff_c, cgh, size, write_only);

7 cgh.parallel_for<K>(size, ...);

8 });

Listing 8. SYCL CGF example.

As we can see, the sycl.host.* operations capture all the

relevant semantics in the original program according to the

aforementioned transformations.

After these higher-level operations capturing SYCL domain-

specific semantics have been introduced in the code, static host

code analysis can be run to infer relevant properties that will

result in device code optimizations. Our analyses make use of

the reaching definition analysis described in Section V-B in

order to infer properties such as accessor aliasing or argument

constness, including implicit arguments like accessors ranges

and offset and the kernel ND-range.

B. Host-Device Optimization

Our approach for joint analysis of host and device code

enables several kinds of optimizations. While at the time of

writing, the focus of implementation has been on host-device

constant propagation, further optimizations discussed at the

end of this section can be implemented in the future.

Exploiting the SYCL dialect domain-specific semantics,

two additional kinds of optimizations can be enabled next

to conventional constant propagation:

Constant ND-Range Propagation: SYCL kernels may

use ND-range information (see Section II-A) in their body,

e.g., to iterate over a container. These queries are usually

implemented as calls to platform-specific built-in functions,

which are encoded as SYCL dialect operations in SYCL-

MLIR. Corresponding getter operations for constant ND-range

information are replaced by a constant range or id.

Accessor Members Propagation: DPC++ accessors are

passed as four kernel arguments (see Listing 9 and Section II-A

for context). Exploiting this argument flattening, and using host

code static analysis, we cannot only propagate constant accessor

members, but also infer when both ranges are the same, thus

replacing uses of one of the argument ranges with the other

even when these are not constant.

Note that, thanks to SYCL’s heterogeneous nature, constant

propagation will result in both host and device code optimiza-

tions. On the device side, constant propagation may lead to code

optimizations like expressions or control flow simplification.

Also, DPC++’s SYCL pipeline includes a SYCL Dead Argument

Elimination pass, which marks kernel arguments as unused.

Using this information, the SYCL runtime will not pass these

arguments to the kernel, making kernel launches more efficient

on the host side.

Performance improvements arising from host-device constant

propagation will be discussed in Section VIII.

1 llvm.function @cgf(%cgh: !llvm.ptr, %buf_a: !llvm.ptr,

2 %buf_b: !llvm.ptr, %buf_c: !llvm.ptr){

3 %size = llvm.mlir.constant(1024: i64) : i64

4 ...

5 sycl.host.constructor(%range, %size)

6 {type = !sycl_buffer} : !llvm.ptr, i64

7 sycl.host.constructor(%a, %buf_a, %cgh, %range)

8 {type = !sycl_accessor}

9 : !llvm.ptr, !llvm.ptr, !llvm.ptr, !llvm.ptr

10 ...

11 sycl.host.schedule_kernel %handler -> @kernels::@K

12 [range %range](%a: !sycl_accessor,

13 %b: !sycl_accessor, %c: !sycl_accessor)

14 : !llvm.ptr, !llvm.ptr, !llvm.ptr,

15 !llvm.ptr, !llvm.ptr

16 }

Listing 9. SYCL CGF in Listing 8 after compilation and raising.

In future work, joint analysis of host and device code can

be leveraged for even more analyses and optimizations. One

example of that would be to refine alias analysis for SYCL

accessors. Many of the device analyses and optimizations in

Sections V and VI depend on alias analysis, so providing better

alias analysis results for SYCL constructs will therefore enable

more powerful analyses and optimizations.

To explain how joint analysis of host and device code can

refine alias analysis results, consider the SYCL example in

Listing 8 again. An alias analysis considering only device

code would neither see the construction of the three accessors

(line 4–6) nor the construction of the underlying buffers

(omitted for brevity). It would therefore need to assume that the

accessors and their underlying pointers may alias, as the SYCL

specification allows two accessors to be defined on the same

buffer or two different buffers to be overlapping sub-buffers

of another buffer.

Joint analysis of the host and device on the other hand

would be able to see the construction of the accessors and their

underlying buffers in host code and would therefore in many

cases be able to determine whether two accessors can alias

or not, giving an example of how joint analyses of host and

device code can be further extended in the future.

Another class of optimization that would be enabled through

joint optimization of host and device affects the application as a

whole. One example for this kind of optimization is the fusion

of device kernels. By merging multiple SYCL device kernels,

the overhead associated with kernel launch can be reduced and

dataflow that happens via expensive loads and stores to and

from global memory can potentially be made internal to the

fused kernel. For SYCL, this was successfully demonstrated

by Pérez et al. in [16]. In their work, because at compilation

time host and device were compiled separately, they had to

perform fusion at runtime using a JIT compiler, which carries

additional overhead that can be only partially mitigated using

a compilation cache. With joint analysis and optimization of

host and device code, such transformations could be done at

compilation time, reducing the runtime overhead.

406
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on March 27,2024 at 10:47:53 UTC from IEEE Xplore. Restrictions apply.

VIII. EVALUATION

To investigate the benefits of the compilation flow described

in Section IV and the applicability and effectiveness of

the optimizations described in Sections VI and VII, this

section presents performance evaluations for typical SYCL

applications.

We use the SYCL-Bench benchmark suite [15], [17] as

representative examples of SYCL applications. It comprises a

number of benchmarks with SYCL kernels often found in scien-

tific applications and HPC workloads in different categories. As

the runtime component of the SYCL implementation remains

completely unchanged for the SYCL-MLIR compiler and is

the same as is used by the baseline compiler, the categories

runtime and micro, which mainly test the performance of the

runtime component and the GPU device itself, are omitted here.

Instead, the focus will be on the benchmarks in the polybench

and single-kernel categories.

The polybench category contains a number of core work-

loads from domains such as linear algebra found in many HPC

applications. Using the defaults provided by the run-script

found in the SYCL-Bench suite, a problem size of 1024 is

used for the majority of the benchmarks (2mm, 3D Convolution,

3mm, Correlation, Covariance, FDTD2D, Gramschmidt, GEMM,

SYRK and SYR2K), while a problem size of 4096 is used for

Atax and 2D Convolution, and a size of 16384 is used for Bicg,

GESUMMV and MVT.

The single-kernel category contains real-world applications

and kernels from domains such as image processing and

molecular dynamics. Again using the defaults from SYCL-

Bench, most benchmarks are executed with a problem size

of 1, 048, 576 (KMeans, Linear Regression Coeff., Molecular

Dynamics, Scalar Product and Vector Addition), while Linear

Regression uses a size of 65, 536 and NBody uses a size of

1024.

All performance measurements are performed on system

with an Intel Xeon Platinum 8480+ CPU with 503 GiB

RAM and an Intel Data Center GPU Max 1100 GPU with

48GB RAM, running Ubuntu 22.04.2 LTS (Linux kernel

5.15.0), DPC++ version 3482e2d1 and Intel Level Zero driver

version 1.3.26690, and the reported runtimes and speedups are

discarding the first run for warm-up of the device driver and

then average over thirty runs.

Using this methodology, we compare SYCL-MLIR to two

different SYCL implementations, in order to assess the overall

performance impact of the compilation flow and optimizations

developed in this work. The first implementation is Intel’s

state-of-the-art, open-source DPC++ compiler [12]. DPC++

is a typical example of an LLVM IR-based SYCL compiler

which uses the multi-pass compilation approach discussed in

Notices and Disclaimers: Performance varies by use, configuration and other
factors. Performance results are based on testing on 2023-11-17 and may not
reflect all publicly available updates. See Section VIII for configuration details.
No product or component can be absolutely secure. Your cost and results may
vary. Intel technologies may require enabled hardware, software or service
activation.

1Commit 3482e2d in [18].

Section IV and shown in Fig. 1. It also shares the SYCL runtime

implementation with SYCL-MLIR, making performance better

attributable to changes to the compiler itself.

The second implementation is AdaptiveCpp [19]. Adap-

tiveCpp brings its own SYCL runtime implementation and a

different compilation flow (cf. Section IX), which involves JIT

compilation and allows it to leverage runtime information for

compilation. We have built AdaptiveCpp version c33e8c42

with LLVM release 17 and Boost version 1.77. The validation

of results failed for a number of benchmarks with AdaptiveCpp,

indicated by missing bars in Figs. 2 and 3.

The performance comparison for the benchmarks from the

single-kernel category is shown as speedup of SYCL-MLIR

and AdaptiveCpp over DPC++ in Fig. 2. AdaptiveCpp can

achieve speedups in a number of cases, but also suffers from

a number of mostly smaller degradations, with an overall geo.-

mean speedup of 1.03x. The performance benefit of SYCL-

MLIR for these benchmarks is small but notable, with small

speedups for many benchmarks and a few small performance

degradations, yielding a geometric mean speedup of 1.02x.

For the benchmarks from the polybench category, the picture

as shown in Fig. 3 is different. AdaptiveCpp achieves a number

of notable speedups over DPC++, with the biggest speedup of

close to 3x on the SYR2K benchmark, while performing on par

for the remaining cases with the exception of MVT, geo.-mean

1.22x.

SYCL-MLIR, apart from a few minor performance regres-

sions, achieves speedups of up to 4.32x over DPC++, with a

geo.-mean of 1.45x.

Multiple benchmarks, including Correlation and Covariance,

benefit significantly from the array reduction optimization (cf.

Section VI-B). These benchmarks typically contain several

opportunities for array reduction, for example Correlation and

Covariance contain five and four opportunities respectively.

For even more benchmarks, the loop internalization op-

timization (cf. Section VI-C) can improve performance. In

particular, five benchmarks (2mm, 3mm, GEMM, SYR2K, and

SYRK) benefit significantly from this optimization. Amongst

these benchmarks, compiler traces show that the optimization

was able to prefetch several array references to local memory.

For example, two array references (in the same loop) were

prefetched to local memory for the GEMM benchmark, and four

array references were prefetched for the SYR2K benchmark,

also in the same loop. We also note that the Gramschmidt

benchmark contains a candidate loop in a divergent region, and

therefore is not optimized by this transformation. Finally, our

current implementation does not consider stores as candidates

for using local memory, removing this temporary limitation

should provide even more opportunities.

The host-device propagation described in Section VII-B also

contributes to the performance improvements. For example,

in the Sobel7 benchmark, the Sobel filter declared as a

constant array can be propagated to the device code to improve

performance.

2Commit c33e8c4 in https://github.com/AdaptiveCpp/AdaptiveCpp.

407
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on March 27,2024 at 10:47:53 UTC from IEEE Xplore. Restrictions apply.

KM
ea

ns
 (f

lo
at

32
)

KM
ea

ns
 (f

lo
at

64
)

Lin
Re

g
(fl

oa
t3

2)
Lin

Re
g

(fl
oa

t6
4)

Lin
Re

g
Co

ef
f.

(fl
oa

t3
2)

Lin
Re

g
Co

ef
f.

(fl
oa

t6
4)

M
ol

Dy
n

NB
od

y
(fl

oa
t3

2)
NB

od
y

(fl
oa

t6
4)

Sc
al

Pr
od

 (f
lo

at
32

)
Sc

al
Pr

od
 (f

lo
at

64
)

Sc
al

Pr
od

 (i
nt

32
)

Sc
al

Pr
od

 (i
nt

64
)

So
be

l3
So

be
l5

So
be

l7
Ve

cA
dd

 (f
lo

at
32

)
Ve

cA
dd

 (f
lo

at
64

)
Ve

cA
dd

 (i
nt

32
)

Ve
cA

dd
 (i

nt
64

)
ge

o.
-m

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Implementation

AdaptiveCpp
SYCL-MLIR

Fig. 2. Performance comparison for single kernel benchmarks between DPC++,
AdaptiveCpp and SYCL-MLIR with all optimizations enabled. Plot shows
speedup over DPC++, higher is better. Missing bars indicate that AdaptiveCpp
results failed validation.

Overall, on SYCL-Bench, SYCL-MLIR achieves a geo.-

mean speedup of 1.18x over DPC++ and also performs better

than AdaptiveCpp (geo.-mean 1.13x).

As none of the stencil-based workloads from polybench [20]

have been ported to SYCL-Bench so far, we complement our

investigation of SYCL-Bench with an additional evaluation

of some stencil-based workloads. The SYCL version of these

workloads stems from the oneAPI samples repository [21],

from which multiple workloads were extracted.

The one-dimensional heat transfer (1d HeatTransfer) work-

load simulates heat transfer in one dimension. In the samples

collection, there are two implementations of this workload

given, one using the SYCL buffer and accessor model, and

another using the SYCL unified shared memory (USM) feature.

Both versions of the workload will be included in the evaluation.

For the configuration, the recommended setting with 100 points

and 1,000 iteration steps was used.

The iso2dfd sample from the collection uses a two-

dimensional stencil to simulate wave propagation in a two-

dimensional isotropic medium. As for the heat transfer example,

the recommended configuration with a 1,000 × 1,000 grid and

2,000 iterations is used for this workload.

Lastly, the jacobi workload demonstrates the use of the

Jacobi iteration to solve a linear system of equations. The

implementation in the samples collection contains two kernels

to execute on the device. One is the actual computation kernel,

and the other (prepare for next iteration) computes the L1-

norm and error to prepare for the next iteration. The latter uses

SYCL reductions which are currently not yet supported by

the compiler presented in this work. Therefore, the workload

2D
 C

on
vo

lu
tio

n
2m

m

3m
m

At
ax

Bi
cg

Co
rre

la
tio

n
Co

va
ria

nc
e

FD
TD

2D

GE
M

M
GE

SU
M

M
V

Gr
am

sc
hm

id
t

M
VT

SY
R2

K

SY
RK

ge
o.

-m
ea

n

0

1

2

3

4
Implementation

AdaptiveCpp
SYCL-MLIR

Fig. 3. Performance comparison for Polybench benchmarks between DPC++,
AdaptiveCpp and SYCL-MLIR with all optimizations enabled. Plot shows
speedup over DPC++, higher is better. Missing bars indicate that AdaptiveCpp
results failed validation. Note the different y-axis scale compared to Fig. 2.

was adapted such that the preparation for the next iteration

happens on the host rather than on the device. However, the

main computation kernel still executes on the device.

In sum, as the 1D heat transfer is provided in two versions,

this yields four different stencil-based workloads. Similar to

above, the performance of SYCL-MLIR and AdaptiveCpp is

reported in comparison with the DPC++ compiler.

AdaptiveCpp achieves an 1.5x speedup on iso2dfd, but fails

to execute the remaining stencil workloads correctly.

For the 1D heat transfer, there is a small performance

degradation with the SYCL-MLIR compiler, resulting in 0.86x

speedup for the buffer-based implementation and 0.87x speedup

for the USM-based implementation.

For the two other stencil workloads, SYCL-MLIR performs

on par with the DPC++ compiler, with a 0.99x speedup on

iso2dfd and 1x speedup on jacobi. A first investigation shows

that none of the device optimizations described in Section VI

is currently applied to those workloads. Improving the SYCL-

MLIR compiler by adding new optimizations and extending

existing ones for stencil-based and convolution-based workloads

is an important goal for future work.

IX. RELATED WORK

Various approaches to compiling C/C++ code into MLIR

are currently under development in the LLVM community.

Polygeist [13] supports transforming a subset of the Clang

AST directly into a mix of standard MLIR dialects augmented

with a small set of custom operations. Affine loops and other

structured control-flow constructs from the input program are

maintained and exposed to analyses and transformations. We

extended Polygeist to compile SYCL device code, however

408
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on March 27,2024 at 10:47:53 UTC from IEEE Xplore. Restrictions apply.

it currently still lacks the capabilities to fully translate host

code, as virtual functions and exceptions are not yet supported.

Polygeist is also trying to minimize the introduction of custom

operations, leading to the relaxation of some MLIR validation

rules. While this is fine in the context in which the tool is

being used, integration with the rest of the MLIR ecosystem

will potentially be more difficult. ClangIR [22] is another

LLVM incubator project aiming to enable MLIR-based static

analysis and code generation from the Clang AST. In contrast

to Polygeist, the project plans to develop a dialect covering

the entire surface of C/C++ and then lower directly to the

LLVM dialect, skipping MLIR’s built-in higher-level dialects,

which eases the correct representation of the source language’s

semantics. ClangIR is still in early development, but is a

promising candidate to replace the raising of host code in

our proposed flow in the future. VAST [23] will employ a

“tower of IRs” to enable program analysis across different

levels of abstraction in the compilation of C/C++ code.

Host-device optimization of heterogeneous programming

models has been attempted in prior work. Singer et al. [24]

presented SYCLOps, a SYCL-specific translator from LLVM-

IR to MLIR’s standard dialects. While similar to our work in

motivation, their tool only raises the device code, and does not

define a dialect to capture SYCL-specific operations. Moses et

al. [25] extended Polygeist to compile CUDA applications to

MLIR, representing host and device code simultaneously, and

keeping parallel constructs and barriers intact. This enabled

various opportunities for code motion across barriers as well as

out of parallel regions. Tian et al. [26] implemented run-time

and link-time specializations, such as constant propagation, of

OpenMP kernels in LLVM.

Independent from MLIR, the AdaptiveCpp project is taking

a different approach to SYCL compilation. Initially, the project

(formerly known as hipSYCL) [27] followed the approach of a

library-only implementation of SYCL, mapping SYCL device

kernels to suitable lower-level programming models such as

OpenMP or CUDA and relying on the corresponding compilers,

e.g., Nvidia’s nvc++.

In more recent versions, as the one used in Section VIII,

AdaptiveCpp also added a compiler-based approach to their im-

plementation [19], which is however different from other SYCL

compilers. In so-called single source multiple compiler passes

(SMCP [2]) compile flows such as the DPC++ compilation

flow depicted in Fig. 1, the source code is processed multiple

times, once during host compilation and once for each device

compilation, i.e., per target architecture specified by the user.

AdaptiveCpp on the other hand follows a so-called single source

single compiler pass (SSCP [2]) approach, where the source

code is only processed once. To this end, the AdaptiveCpp flow

uses LLVM IR as an intermediate exchange format and embeds

the LLVM IR for the device code in the application binary

during the single compilation pass. At runtime, the LLVM IR

for the device kernel is then retrieved upon kernel launch and

further compiled to the appropriate device-specific format, e.g.,

SPIR-V for Intel devices or PTX for Nvidia CUDA GPUs.

The compilation from SYCL source code to LLVM IR and

later to device format is common to DPC++ and AdaptiveCpp,

but the difference is when the second step happens. For DPC++

this happens at compile time, for AdaptiveCpp at application

runtime upon kernel launch.

As such, the AdaptiveCpp compilation flow has one goal in

common with SYCL-MLIR: by only performing the second

compilation step at runtime, AdaptiveCpp can propagate

information about the context of the device invocation from

the host to the device compiler, as this information is available

at kernel launch when the compilation happens. SYCL-MLIR

also tries to propagate this information, but at application

compile time by leveraging the MLIR framework to enable joint

analyses of host and device code (cf. Fig. 1 and Section VII).

The advantage of AdaptiveCpp’s approach is that even

runtime values can be taken into account for the device

compilation, which may yield more information than available

to SYCL-MLIR’s joint analysis of host and device code at

compilation time. On the other hand, the compilation step at

runtime causes additional overhead to kernel launches. Even

if that overhead can be reduced by caching compilation, that

cache is not persisted between distinct application runs, a

disadvantage to approaches such as DPC++ or SYCL-MLIR

which only need to compile once.

X. CONCLUSION AND OUTLOOK

This work presented our practical experience with building

an MLIR-based compiler for the SYCL heterogeneous pro-

gramming model. Leveraging MLIR’s dialect framework, the

SYCL dialect in this work captures key elements of the SYCL

API in host and device code on a high level of abstraction,

giving the compile flow access to SYCL semantics, such as

work-item parallel execution and device memory access.

Building on top of the dialect, this work implements powerful

device optimizations as well as analyses that reason across the

border between SYCL host and device code.

Using these analyses and optimizations, the compile flow

in this work achieves speedups of up to 4.3x over a state-of-

the-art, LLVM-based SYCL compiler on a collection of SYCL

benchmark applications, and proves particularly effective for

loop-based workloads.

Despite the speedup achieved in the evaluation, there is

still room for improvement: Limitations of the existing C++

frontends for MLIR currently force the compilation flow to

perform raising from LLVM IR to MLIR for SYCL host code,

as important constructs such as C++ exceptions are not fully

supported yet. This currently limits the ability of the compiler

to perform optimizations across the host-device border, such

as hoisting device code to the host. With the evolution of

the C++ frontends discussed in Section IX, future work could

implement such optimizations and also reason about the overall

structure of the SYCL application to perform more advanced

optimizations such as device kernel fusion.

DATA AVAILABILITY STATEMENT

Source code for the SYCL-MLIR project is available from

[18], a software artifact with the version used for the evaluation

in Section VIII from [28].

409
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on March 27,2024 at 10:47:53 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR:
Scaling compiler infrastructure for domain specific computation,” in
2021 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), 2021, pp. 2–14.
[2] M. Rovatsou, L. Howes, and R. Keryell, “SYCL 2020

specification (revision 7),” 04 2023. [Online]. Available:
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

[3] G. K. Reddy Kuncham, R. Vaidya, and M. Barve, “Performance study
of gpu applications using sycl and cuda on tesla v100 gpu,” in 2021

IEEE High Performance Extreme Computing Conference (HPEC), 2021,
pp. 1–7.

[4] M. Breyer, A. Van Craen, and D. Pflüger, “A comparison of sycl,
opencl, cuda, and openmp for massively parallel support vector
machine classification on multi-vendor hardware,” in International

Workshop on OpenCL, ser. IWOCL’22. New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3529538.3529980

[5] A. Bagusetty, A. Panyala, G. Brown, and J. Kirk, “Towards cross-platform
portability of coupled-cluster methods with perturbative triples using sycl,”
in 2022 IEEE/ACM International Workshop on Performance, Portability

and Productivity in HPC (P3HPC), 2022, pp. 81–88.
[6] M. Tanvir, K. Narasimhan, M. Goli, O. El Farouki, S. Georgiev, and

I. Ault, “Towards performance portability of ai models using sycl-dnn,”
in International Workshop on OpenCL, ser. IWOCL’22. New York, NY,
USA: Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3529538.3529999

[7] B. Sobol and G. Korcyl, “Particle track reconstruction on heterogeneous
platforms with sycl,” ser. IWOCL ’23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3585341.3585344

[8] L. Solis-Vasquez, E. Mascarenhas, and A. Koch, “Experiences migrating
cuda to sycl: A molecular docking case study,” in Proceedings of the

2023 International Workshop on OpenCL, ser. IWOCL ’23. New
York, NY, USA: Association for Computing Machinery, 2023. [Online].
Available: https://doi.org/10.1145/3585341.3585372

[9] K. O’Brien, K. M. O’Brien, M. Hopkins, A. Shepherd, and R. Unrau,
“Xil and yil: The intermediate languages of tobey,” in Papers from the

1995 ACM SIGPLAN Workshop on Intermediate Representations, ser. IR
’95. New York, NY, USA: Association for Computing Machinery, 1995,
p. 71–82. [Online]. Available: https://doi.org/10.1145/202529.202537

[10] D. Novillo, “Design and implementation of tree ssa,” 2004. [Online].
Available: https://api.semanticscholar.org/CorpusID:199513487

[11] J. Merrill, “Generic and gimple: A new tree represen-
tation for entire functions,” 2003. [Online]. Available:
https://api.semanticscholar.org/CorpusID:58211542

[12] Intel Corporation, “DPC++ open-source SYCL Compiler,” Aug 2023.
[Online]. Available: https://github.com/intel/llvm

[13] W. S. Moses, L. Chelini, R. Zhao, and O. Zinenko, “Polygeist: Raising
C to polyhedral MLIR,” in 30th International Conference on Parallel

Architectures and Compilation Techniques, PACT 2021, Atlanta, GA, USA,

September 26-29, 2021, J. Lee and A. Cohen, Eds. IEEE, 2021, pp. 45–
59. [Online]. Available: https://doi.org/10.1109/PACT52795.2021.00011

[14] D. Kaeli, P. Mistry, D. Schaa, and B. Jang, “Exploiting memory access
patterns to improve memory performance in data-parallel architectures,”
IEEE Transactions on Parallel & Distributed Systems, vol. 22, no. 01,
pp. 105–118, jan 2011.

[15] S. Lal, A. Alpay, P. Salzmann, B. Cosenza, A. Hirsch, N. Stawinoga,
P. Thoman, T. Fahringer, and V. Heuveline, “SYCL-Bench: A Versatile
Cross-Platform Benchmark Suite for Heterogeneous Computing,” in
Euro-Par 2020: 26th International European Conference on Parallel

and Distributed Computing, ser. Euro-Par ’20. Springer International
Publishing, 2020.

[16] V. Pérez, L. Sommer, V. Lomüller, K. Narasimhan, and M. Goli,
“User-driven online kernel fusion for sycl,” ACM Trans. Archit.

Code Optim., vol. 20, no. 2, mar 2023. [Online]. Available:
https://doi.org/10.1145/3571284

[17] S. Lal, A. Alpay, P. Salzmann, B. Cosenza, N. Stawinoga, P. Thoman,
T. Fahringer, and V. Heuveline, “SYCL-Bench: A Versatile Single-Source
Benchmark Suite for Heterogeneous Computing,” in Proceedings of the

International Workshop on OpenCL, ser. IWOCL ’20. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3388333.3388669

[18] DPC++ contributors, “oneAPI DPC++ compiler,”
https://github.com/intel/llvm/, 2023.

[19] A. Alpay and V. Heuveline, “One pass to bind them: The
first single-pass sycl compiler with unified code representation
across backends,” ser. IWOCL ’23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3585341.3585351

[20] L.-N. Pouchet et al., “Polybench: The polyhedral benchmark suite,” URL:

http://www. cs. ucla. edu/pouchet/software/polybench, vol. 437, pp. 1–1,
2012.

[21] oneAPI Samples contributors, “oneAPI samples,”
https://github.com/oneapi-src/oneAPI-samples, 2023.

[22] B. C. Lopes and N. Lanza, “[RFC] An MLIR based Clang IR (CIR),”
2022, post on LLVM Discourse, https://discourse.llvm.org/t/rfc-an-mlir-
based-clang-ir-cir/63319/1.

[23] “Finding bugs in C code with Multi-Level IR and VAST,” 2023, post on
Trail of Bits blog, https://blog.trailofbits.com/2023/06/15/finding-bugs-
with-mlir-and-vast.

[24] A. Singer, F. Gao, and K. A. Wang, “Syclops: A SYCL specific
LLVM to MLIR converter,” in IWOCL’22: International Workshop on

OpenCL, Bristol, United Kingdom, May 10 - 12, 2022. ACM, 2022, pp.
13:1–13:8. [Online]. Available: https://doi.org/10.1145/3529538.3529992

[25] W. S. Moses, I. R. Ivanov, J. Domke, T. Endo, J. Doerfert,
and O. Zinenko, “High-performance gpu-to-cpu transpilation and
optimization via high-level parallel constructs,” vol. abs/2207.00257,
2022. [Online]. Available: https://doi.org/10.48550/arXiv.2207.00257

[26] S. Tian, J. Huber, J. R. Tramm, B. M. Chapman, and J. Doerfert,
“Just-in-time compilation and link-time optimization for openmp target
offloading,” in OpenMP in a Modern World: From Multi-device

Support to Meta Programming - 18th International Workshop on

OpenMP, IWOMP 2022, Chattanooga, TN, USA, September 27-

30, 2022, Proceedings, ser. Lecture Notes in Computer Science,
M. Klemm, B. R. de Supinski, J. Klinkenberg, and B. Neth,
Eds., vol. 13527. Springer, 2022, pp. 145–158. [Online]. Available:
https://doi.org/10.1007/978-3-031-15922-0 10

[27] A. Alpay, B. Soproni, H. Wünsche, and V. Heuveline, “Exploring the
possibility of a hipsycl-based implementation of oneapi,” ser. IWOCL’22.
New York, NY, USA: Association for Computing Machinery, 2022.
[Online]. Available: https://doi.org/10.1145/3529538.3530005

[28] E. Tiotto, V. Perez, W. Tsang, L. Sommer, J. Oppermann, V. Lomüller,
M. Goli, and J. Brodman, “Software Artifact for Experiences Building
an MLIR-based SYCL Compiler,” Dec. 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.10410758

410
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on March 27,2024 at 10:47:53 UTC from IEEE Xplore. Restrictions apply.

