'.)

Check for
Updates

Refined Input, Degraded Output:
The Counterintuitive World of Compiler Behavior

THEODOROS THEODORIDIS, ETH Zurich, Switzerland
ZHENDONG SU, ETH Zurich, Switzerland

To optimize a program, a compiler needs precise information about it. Significant effort is dedicated to
improving the ability of compilers to analyze programs, with the expectation that more information results
in better optimization. But this assumption does not always hold: due to unexpected interactions between
compiler components and phase ordering issues, sometimes more information leads to worse optimization.
This can lead to wasted research and engineering effort whenever compilers cannot efficiently leverage
additional information. In this work, we systematically examine the extent to which additional information
can be detrimental to compilers. We consider two types of information: dead code, i.e., whether a program
location is unreachable, and value ranges, i.e., the possible values a variable can take at a specific program
location. Given a seed program, we refine it with additional information and check whether this degrades the
output. Based on this approach, we develop a fully automated and effective testing method for identifying
such issues, and through an extensive evaluation and analysis, we quantify their existence and prevalence in
widely used compilers. In particular, we have reported 59 cases in GCC and LLVM, of which 55 have been
confirmed or fixed so far, highlighting the practical relevance and value of our findings. This work’s fresh
perspective opens up a new direction in understanding and improving compilers.

CCS Concepts: « Software and its engineering — Compilers.
Additional Key Words and Phrases: Missed Compiler Optimizations, Automated Compiler Testing

ACM Reference Format:

Theodoros Theodoridis and Zhendong Su. 2024. Refined Input, Degraded Output: The Counterintuitive
World of Compiler Behavior. Proc. ACM Program. Lang. 8, PLDI, Article 174 (June 2024), 21 pages. https:
//doi.org/10.1145/3656404

1 INTRODUCTION

Compilers are complex systems with hundreds of “moving parts”. An optimizing compiler must
simultaneously understand the semantics of an input program using many different analyses [9,
14, 15, 21], and transform it into an equivalent program that is more efficient to execute. This
process requires hundreds or even thousands of interdependent transformation steps [1, 2, 25].
Naturally, a compiler may fail to properly optimize a program, e.g., due to phase ordering issues [33],
unexpected interactions between its components [7], or missing analyses and optimizations [3, 6].

However, as users of a compiler, we expect it to behave consistently. If, for example, it can
optimize a code snippet well in one program, we expect similar results if the same snippet occurs in
another program. Similarly, a newer compiler version should optimize a given program at least as
well as an older version of the same compiler. Furthermore, we expect that a compiler does better
given additional program information, similarly to Listing 1 where GCC generates better code by
leveraging the given hint.

Authors’ addresses: Theodoros Theodoridis, ETH Zurich, Zurich, Switzerland, theodoros.theodoridis@inf.ethz.ch; Zhendong
Su, ETH Zurich, Zurich, Switzerland, zhendong.su@inf.ethz.ch.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART174

https://doi.org/10.1145/3656404

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-0896-9997
HTTPS://ORCID.ORG/0000-0002-2970-1391
https://doi.org/10.1145/3656404
https://doi.org/10.1145/3656404
https://orcid.org/0000-0002-0896-9997
https://orcid.org/0000-0002-2970-1391
https://orcid.org/0000-0002-2970-1391
https://doi.org/10.1145/3656404
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656404&domain=pdf&date_stamp=2024-06-20

174:2 Theodoros Theodoridis and Zhendong Su

int foo(int x,

int y) { bar: int bar(int x, int y){
if (x ==y) xorl %eax, %eax // We know that
return 0; cmpl %esi, %edi // x > =y and bar: . ,
if (x > y) je el #x ==y // make it obvious xorl keax, keax
return 1; // to the compiler cmpl #esi, %edi
else setg %al #x >y Ok >= y)) setne %al #x <y
return -1; movzbl %al, %eax ret
} leal -1(%rax,%rax),%eax __builtin_unreachable();
int bar(int x, .L6: return foo(x, y);
int y) { ret }
return foo(x, y);
3
(a) Original code (b) Generated ASM (c) Refined code (d) Refined ASM

Listing 1. Consistent behavior example: GCC 13 -03 generates simpler code given the additional information.
In the original assembly code (Listing 1b) two conditional instructions are used to determine the return value
je .L6and setg .L7:(1) je .L6 implements the x == y check by jumping to the return statement if the
previous comparison result (cmpl %esi, %edi) is “equal”, the return value is 0 (which set by initially xor-ing
%eax with itself), (2) setg .L7 implements the x > y check by setting the return value to 1 if the previous
comparison result is “greater”. In the refined assembly (Listing 1d) there is only one conditional: setne %al
which sets the return value to 1 if the previous comparison result is “not equal”.

Compilers, however, often defy our expectations—their behavior can be inconsistent. For example,
aloop’s source code “form” can drastically affect the generated code [13, 20] and, counterintuitively,
auto-vectorizers sometimes generate better code given less information [27]. Even seemingly
insignificant changes such as swapping the order of independent statements can lead to unexpected
differences in the generated code. Moreover, compilers are frequently unable to use additional
information hints provided by programmers [10], and improving the strength of analyses has
sometimes little impact on optimizations [22].

The inconsistent and unpredictable behavior of compilers can be a major obstacle in compiler
research and development. Compiler developers are aware of these issues and rely on bug reports
or continuous benchmarking to identify them, but the scope of these efforts is limited. Previous
work has focused on automatically identifying missed optimizations [3, 18, 29, 31]. None, however,
has systematically studied this inconsistent behavior of compilers, i.e., the phenomenon where more
information about a program’s semantics causes a compiler to generate worse code. Techniques and
tools are necessary for finding such optimization inconsistencies, both to help with understanding
the unexpected interactions between compiler components, but also to identify these issues and fix
the missed optimizations, analysis weaknesses, and unexpected interactions that cause them.

To this end, this work develops a general approach for finding optimization inconsistencies in
compilers. Our core idea is to (1) refine an input program by adding additional information about
its semantics without affecting its runtime behavior, and (2) check whether the compiler generates
worse code for the refined program. For example, in Listing 1c we explicitly “tell” the compiler
that x >= y: GCC is consistent in this case, it generates better code for the refined version (Listing
1d). Another example of adding information would be to annotate pointers with the restrict
keyword, making it obvious that they do not alias. In general, we expect that a compiler should be
able to optimize a refined program at least as well as the original one; otherwise, we have identified
an optimization inconsistency.

Note that our work is orthogonal to finding missed optimizations such as the aforementioned
efforts [3, 29-31]. Detection oracles like DCE Markers [31], optdiff checkers [3], or identifying

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

Refined Input, Degraded Output: The Counterintuitive World of Compiler Behavior 174:3

redundant memory operations [29] aim at reliably finding missed compiler optimizations. In
contrast, our work investigates the novel issue of how additional information about a program’s
behavior can negatively impact a compiler, leading to inferior code generation. Furthermore, as
demonstrated in our evaluation (Section 4.8), our approach can uncover such issues much more
effectively than merely using a missed optimization detection oracle.

We refine programs with two kinds of information: (1) dead code information, i.e., by explicitly
annotating dead locations as unreachable, and (2) value ranges, i.e., by making the bounds of
variable values on specific program locations explicit. Deriving this information is generally
nontrivial, but we focus on closed (i.e., taking no input) and deterministic programs where this task is
straightforward (Section 3.2); such programs are often used in automated compiler testing [4, 23, 34].
Our approach, however, is general and extendable to other kinds of information (Section 4.9).

We determine if the compiler is consistent between an original and refined program by using an
oracle. Such an oracle, given a compiler C, an original program P, and the refined one P’, determines
if the compilation result on the latter is degraded. Note that the oracle is not limited to the compiler’s
output, but it can also consider other information such as the compiler’s internal representation,
diagnostics, or the compiled program’s runtime behavior. Our approach can be instantiated with
a number of different oracles. In this work, we use three: (1) the size of the generated code, i.e.,
whether refining a program leads to a significant binary size increase, (2) the number of Dead Code
Elimination (DCE) markers [31], i.e., whether refining a program leads to less eliminated dead code,
and (3) the precision of value range analysis, i.e., whether refining a program leads to less precise
value range results. Our approach is described in detail in Section 3.

Our empirical analysis demonstrates the usefulness and applicability of our approach in uncov-
ering a wide range of optimization inconsistencies (Section 4). We reported 40 GCC and 19 LLVM
cases, out of which 39 and 16 respectively have been confirmed/fixed. We also analyzed 89 GCC and
69 LLVM unique regressions, i.e., cases where a previous compiler version was consistent. These
regressions were caused by changes in 18 GCC and 16 LLVM components, including, among others,
alias analysis, control flow graph transformations, constant propagation, global value number,
jump threading, loop transformations, peephole optimizations, value range analysis, etc.. Overall,
this demonstrates that our technique is highly effective in finding a wide range of optimization
inconsistencies, unexpected interactions between compiler components, and missed optimizations
in state-of-the-art compilers. Our key contributions are:

e Formulating the optimization inconsistency problem in compilers and an automated approach
for finding them;

e An implementation of our approach which we used to find and report a wide range of issues
to compiler developers; and

e A systematic and quantitative study of optimization inconsistencies in GCC and LLVM.

2 AN OPTIMIZATION INCONSISTENCY EXAMPLE

We start with an example demonstrating an optimization inconsistency (Listing 2). When compiling
the original program in Listing 2a with the current development version of GCC! at -Os, the
compiler is able to optimize away all control flow and simplify the code, as shown in Listing 2b.
To uncover the optimization inconsistency in this example, we must refine the program with
additional information; the refinement is done in a semantics preserving way, i.e., the refined
program must have the same behavior as the original one. In this work, we refine programs by
explicitly annotating dead code as unreachable and by making the ranges of variable values at
specific program locations explicit.

1Revision r14-5021-g94c0b26f454

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

174:4 Theodoros Theodoridis and Zhendong Su

In this particular example, the inconsistency is triggered by refining function h: h is called 13
times in main’s outer loop and the values of its parameter, j, range from 1 to 65535. We “inject”
this information via a conditional call to __builtin_unreachable() [24], as shown in Listing 2c.
This annotation informs the compiler that j’s values can never be outside the range [1,65535]. The
compiler’s output on the refined program, shown in Listing 2d, is significantly longer and more
complex than the original one. The compiler’s behavior is unexpected: it can fully optimize the
original program, but it fails with the refined one, even though the only difference between the
two is the constrained range of j’s values. This is an example of optimization inconsistency where
refining a program with additional information leads to an unexpected degradation in the generated

static struct { int a; int b; } c; main:
static int d, e, g; movl $-7, d(%rip)
static short f, i; xorl %eax, %eax
static void h(unsigned short j) { movl %eax, c(%rip)
c.a = i; xorl %eax, %eax
} ret
int main() { d = 6;
for (; d != -7; d--) { (b) Original ASM
h(d * d < (0 <= 6));
if (d >= 12) if (e) {
for (; f; ++f) g = c.b;
if (g) e = o; // The rest of the code is unchanged
3 static void h(unsigned short j) {
} c.a = 1i;
3 if (1((G >= 1) & (j <= 65535)))
__builtin_unreachable();
}
(a) Original code (c) Refined code
main: | .L4: | .L32: | LL12:
movl e(%rip), %ecx | testb %dil, %dil | testl %esi, %esi | testb %r9b, %r9b
movl $6, %eax | je .L5 | je .L6 | je .L20
xorl %edi, %edi | movl %ecx, e(%rip) | movb $1, %dil | movw %dx, f(%rip)
xorl %r8d, %r8d | .L5: | xorl %ecx, %ecx | movl %esi, g(%rip)
movl c+4(%rip),%ried | xorl Y%ecx, %ecx | .L6: | jmp .L20
movl g(%rip), %esi | movw %dx, f(%rip) | decl %eax | .L1e:
xorl %r9d, %rod | movl %ecx, c(%rip) | movb $1, %r8b | testb %dil, %dil
movl $6, d(%rip) | movl %esi, g(%rip) | jmp L1 | je .L12
movw f(%rip), %dx | .L3: | .L31: | movl %ecx, e(%rip)
L2 | cmpl $11, %eax | testb %r8b, %r8b | jmp .L12
cmpl $-7, %eax | ile .L6 | je .L1e | .L20:
je .L31 | testl %ecx, %ecx | movl $-7, d(%rip) | xorl %eax, %eax
xorl %r11d, %ri11d | je .L6 | testb %dil, %dil | ret
testl %eax, %eax | L7 | je .L11 |
setle %r11b | testw %dx, %dx | movl %ecx, e(%rip) |
cmpw %ax, %rililw | je .L32 | L1t |
jne .L3 | incl %edx | xorl %eax, %eax |
testb %r8b, %r8b | movl %ried, %esi | movl %eax, c(%rip) |
je .L4 | movb $1, %r9b |
movl %eax, d(%rip) | jmp L7 |

(d) Refined ASM

Listing 2. Optimization inconsistency example: the current upstream version of GCC -Os optimizes away all
control flow in the original program. Refining the program with additional information, leads to an unexpected
behavior: the compiler fails to optimize the refined program and generates significantly more complex code.
Adapted from bug report: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=112545

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=112545

Refined Input, Degraded Output: The Counterintuitive World of Compiler Behavior 174:5

code. Note that existing (differential) testing based approaches [3, 29, 31] cannot detect this issue,
as it only manifests in the refined program and not the original one. Given the standardization
of the ability to “inject” information similarly to Listing 2 [11], optimization inconsistencies will
likely become an even more prevalent issue in the future.

Derived Information Refined Program

Fo
(,o@b@ %,
N K3
Program Generator Input Program Oracle

a Inconsistency
-— -— Detected
=~ ™

Compile

Repeat

Refine e

Fig. 1. Overview of our approach.

3 DETECTING OPTIMIZATION INCONSISTENCIES

This section introduces our approach for detecting optimization inconsistencies in compilers and
describes our end-to-end automated testing implementation.

3.1 High-level Overview and Background

Our technique (Figure 1) detects cases where a compiler can optimize an input program, but fails
with a refined version, which should be easier to optimize. Our core idea is the following: given an
input program P, we can run it and observe parts of its behavior, e.g., what the bounds of variable
values are on specific program locations; we call this information I. If we “inject” I into P, we get a
refined version, P’. Our expectation is that a compiler C should be able to optimize P’ at least as
well as P. If not, then we have identified an optimization inconsistency.

We refine programs with two kinds of additional information: (1) dead code information, i.e.,
which parts of the code are unreachable, and (2) value ranges, i.e., what the bounds of variable values
are on specific program locations. We can efficiently derive these for closed and deterministic pro-
grams which are typically used for compiler testing [34] (Section 3.2). To refine a program we “inject”
the derived information using __builtin_unreachable (Section 3.3). To detect inconsistencies,
we need an oracle that compares a compiler’s output on the original, P, and refined, P’, programs.
In this work we test three different oracles in our end-to-end implementation (Section 3.4).

Program Generation. We use a standard C program generator, Csmith [34], to produce candi-
date test programs. Csmith generates closed and deterministic programs, which are suitable for
our approach. However, our technique is not limited to Csmith, alternative generators such as
YarpGen [22] can also be used.

Injecting Additional Information. Compilers offer multiple generic ways for providing additional
information about the compiled program; we use the __builtin_unreachable() extension [24].
This extension indicates that a given location is unreachable, and the compiler can use this in-
formation to better optimize the input program. We can inject any piece of information that can
be written as an expression using this builtin: if (! (EXPR)) __builtin_unreachable(). For
example, if (!(a == 0)) __builtin_unreachable() tells the compiler that a is always zero at
this program location. Other alternatives include:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

174:6 Theodoros Theodoridis and Zhendong Su

e LLVM’s __builtin_assume(EXPR) builtin function, e.g., __builtin_assume(a == @)
tells the compiler that the expression a is always zero. This is similar to using:
if (!'(EXPR)) __builtin_unreachable().

e GCC 13 also implements a similar extension: __attribute__((assume(EXPR))).

e C++23’s [[assume(EXPR)]]; [11].

We wanted a solution that is available in older versions of GCC and LLVM for our evaluation, thus
we chose __builtin_unreachable().

Detection Oracles. To detect optimization inconsistencies, we must compare the compiler outputs
on the original and refined programs. To this end, we need an oracle that determines whether or not
the compiler is consistent. Our approach can be instantiated with any oracle that can compare the
compiler’s behavior outputs on the two inputs. For example, an oracle based on optdiff checkers [3]
can detect inconsistencies directly in the generated assembly outputs. Another possibility is to
target the precision of static analyses and whether they deteriorate on the refined programs [30].
One can also choose to compare the runtime behavior of the original and refined programs, e.g., via
CIDetector [29] to determine if the refined program contains more redundant (useless) operations.
In this work, we utilize three oracles: significant binary size increase, DCE markers [31], and Value
Range Analysis precision degradation; the three oracles are described in Section 3.4.

End-to-end Testing. Our implementation also uses the following tools:

e C-Reduce [23] in combination with sanitizers [26], to reduce test cases before reporting them
to compiler developers.

e git bisect [8], to bisect regressions and identify the changes in compilers that introduced
the detected inconsistent behavior.

3.2 Extracting Additional Program Information

We extract additional program information by running the input programs and observing their
behavior. Since we test closed and deterministic programs, a single execution is enough to determine
all possible behaviors. We track two kinds of information: (1) dead code information, i.e., for a
given program branch (e.g., an if-statement or a loop) we identify if it is never executed, and (2) the
value ranges of variables at specific program locations, i.e., for a program location p and a variable
v, we determine v’s lower and upper bounds: v € [Ib, ub] at p. Listing 3a shows an instrumented
version of Listing 2a with branch and value range tracking. The two macros TRACK_BRANCH and
TRACK_VALUES record the program’s behavior; the former tracks whether branches are executed
and the latter tracks the runtime values of variables. The tracking data is printed at the end of the
program’s execution, as shown in Listing 3b.

Extracting Dead Code Information. We track all branches during program execution, the dead
branches are the ones that are never reached. For example, in Listing 3a all branches are instrumented
with TRACK_BRANCH(ID). After executing the program, we can determine that only Branch@ is
alive, as shown in Listing 3b; the remaining branches are dead.

Extracting Value Ranges. We extract value ranges by tracking the lower and upper runtime
variable values throughout a program’s execution. For example, in Listing 3a, we track the values
of j in function h with TRACK_VALUES(7, j, 1i);the tracked value range is [1, 65535] (Listing 3b).

Given a variable v, we insert annotations before each statement that uses v to track its value.
Barring a few exceptions (e.g., variables that might be uninitialized at particular program locations),
we use the following procedure: for each program statement S, and the set of local variables V used
by S, track each variable in V immediately before S. Note that this is done recursively, e.g., in i (C)
STMT(v) ; we would track v both before STMT(v) and before if (C). We use unique identifiers for

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

Refined Input, Degraded Output: The Counterintuitive World of Compiler Behavior 174:7

static void h(unsigned short j) {
TRACK_VALUES(7, j, 1);

c.a = 1i; }

int main() { d = 6;

TRACK_VALUES(®, d, e, f, g, c.b); Valuese: dls,6l,
for (; d != -7; d--) { TRACK_BRANCH(®); ete,ol,

flo,01,

TRACK_VALUES(1, d); glo,0],
h(d * d < (0 <= 6)); c.b[0,0]
TRACK_VALUES(2, d);
if (d >= 12) { TRACK_BRANCH(1); Branchd: Alive

TRACK_VALUES(3, e);

if (e) { TRACK_BRANCH(2);
TRACK_VALUES(4, f, c.b); Values2: d[-6,6]
for (; f; ++f) { TRACK_BRANCH(3);
TRACK_VALUES(5, c.b);

Values1: d[-6,6]

Values7: j[1,65535],

¢ - cb:) ire,o]
TRACK_VALUES(6, g);
if (g) { TRACK_BRANCH(4); e = 0;3}3}}}}

(a) Instrumented program (b) Tracked Information

Listing 3. Program information tracking example. Listing 3a is an instrumented version of Listing 2a.

each combination of variable (sets) and program location; the collected variable value ranges are
always associated with the corresponding location.

Implementation. Calls to TRACK_BRANCH and TRACK_VALUES expand to function calls that record
the program’s behavior:

e Every invocation of TRACK_BRANCH(ID) records the branch ID as alive.

e Every invocation of TRACK_VALUES(ID, v@, v1, . . .) updates the value ranges of the
tracked variables in the program location identified by ID; for each tracked variable v and
its value val: if val < 1b then 1b = val and if val > ub then ub = val. The bounds are
undefined initially and are set to the first observed value.

3.3 Refining Programs with Additional Information

Injecting Dead Code Information. Given that a program’s branch is dead, we annotate it with a
call to __builtin_unreachable(). For example, we know that Branch1 is dead in Listing 3a:

for (; d != -7; d--) { //Brancho
h(d » d < (0 <= 6));
if (d >= 12) { /*Branchl1x/ __builtin_unreachable();
// the rest of the program is unmodified
This does not change the program’s behavior as this branch is never executed. We do the same for
all types of branches (loops, switch statements, etc.).

Injecting Value Range Information. Given a known value range, we inform the compiler about it
with a conditional: if (! (LB <= x & x <= UB)) __builtin_unreachable(); tells the compiler

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

174:8 Theodoros Theodoridis and Zhendong Su

that x € [LB, UB] in this program location. In the case of Listing 3a, we know that j € [1, 65535]
(Values7 in Listing 3b); we can express this information by injecting a conditional unreachable
annotation as shown in Listing 2c. Note that a call to __builtin_unreachable guarded by a value
range constraint is not necessarily just exercising a compiler’s ability to eliminate dead code. For
example, in Listing 5b the unreachable annotation bounds the values of the induction variable g (by
constraining variable h); however, this information is not relevant to the dead code of this example
(and its elimination).

3.4 Detecting Optimization Inconsistencies

To detect optimization inconsistencies, we must compare the compiler outputs on the original and
refined programs. In our example of Listing 2a and the refined version of Listing 2c, using binary
size as an oracle reveals the issue: the binary size of the refined program is significantly (around 3x)
larger than the binary size of the original program. Our approach is general and can be instantiated
with a number of different oracles; in this work we implement and test three different ones.

Size Oracle. The size oracle compares the binary sizes of the compiled original and refined programs.
If there is a size difference above a threshold (we used 200 bytes), we consider this an optimization
inconsistency. We found and reported the example of Listing 2a using this oracle. Note that this
oracle is suitable when optimizing for binary size (e.g., using -0s), as a drastic size increase is not
necessarily an optimization inconsistency indication when optimizing for performance (e.g., using
-03). Examples of cases found with this oracle are shown in Listing 2 and Listing 6a.

DCE Oracle. The dead code elimination (DCE) oracle uses DCE markers [31] to identify incon-
sistencies. These markers identify pieces of dead code a compiler has eliminated. DCE markers
can be implemented as function calls, e.g., given an input program with if (Condition) {
DCEMarker();. . . }, if the compiler’s output does not contain the call to the marker (i.e., callq
DCEMarker), then the compiler has eliminated the dead code inside the if-statement. A compiler’s
ability to remove dead code depends on many interactions between its analyses and transforma-
tions. Thus, a missed DCE opportunity may indicate another missed optimization or an unexpected
interaction between compiler components.

We use the DCE oracle in the following way: a compiler C eliminates the set of DCE markers
EM in a program P, and the set EM’ in its refined version P’, if m € EM and m ¢ EM’, then we
have identified an optimization inconsistency: C can eliminate m in P but not P’, even though P’ is
a more constrained version of P and should be easier to optimize. Examples of cases found with
this oracle are shown in Listing 4 and Listing 5.

VR Oracle. The value range (VR) oracle targets a compiler’s ability to infer variable value ranges.
We do not directly extract the compiler’s inferred ranges, but we estimate them using a compiler
agnostic method inspired by DCE markers, which we call value range markers (VR Markers):

(1) We use our instrumentation as described in Section 3.2 to identify the value ranges of variables
at specific program locations.

(2) We add markers of the form if (! (LB <= x && x <= UB)) VRMarker(); at these locations.

(3) We detect inconsistencies in the same way as with the DCE oracle, but using VR markers
instead of DCE markers.

The compiler can eliminate a VR marker only if it can infer that the corresponding variable values
are in the [LB, UB] range. An example case found with this oracle is shown in Listing 6b.

Note that the DCE oracle identifies differences in how the compiler handles dead (unreachable)
parts of the input program. In contrast, the VR oracle relies on VR markers that are placed in alive
(reachable) parts of the program (we cannot measure value ranges of variables in non-executed
locations). Also note that if a compiler simply ignores an unreachable directive, none of the oracles

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

Refined Input, Degraded Output: The Counterintuitive World of Compiler Behavior 174:9

would detect an inconsistency, as the compiler’s output on the refined program should be the same
as the original (e.g., a marker is either eliminated or not eliminated in both).

3.5 End-to-end Practical Realization
Our tool for automatically detecting optimization inconsistencies works in the following steps:

(1) Generate a program P with Csmith [34].

(2) Instrument the program with tracking code and run it to identify its dead branches and
precise value ranges. Refine P with this information into P’. If a marker based oracle is used,
markers are also inserted in P and P’.

(3) Use the oracle together with compiler C on P and P’ to identify an optimization inconsistency.
If nothing is found go to step 1.

(4) Given an older version of the compiler, C,;4, check if this is a regression, i.e., if Coj4 given
the additional information does not exhibit the identified inconsistency. If it is a regression,
bisect the compiler history to identify the offending commit/change.

(5) Use C-Reduce [34] to reduce the P’ to a minimal example that still exhibits the inconsistency
(and regression).

Reduction. The last step of our end-to-end procedure is to reduce the program to a minimal one.
This minimal program, must still exhibit the inconsistency, i.e., the oracle should detect a difference
if dead code or value range information is injected. The reduction is done directly on the refined
program P’ as follows:

(1) Preprocessing step: we remove from P’ unreachable annotations, and markers if using a
marker oracle, that are unrelated to the identified issue. We convert the remaining annotations
into macros that are enabled and disabled via command line flags, e.g., we would replace a if
('(LB <= x && x <= UB)) __builtin_unreachable(); with INJECTION_MACRO. When
compiling P we can use ~-DINJECTION_MACRO="" to disable the information injection and
-DINJECTION_MACRO="if (!(LB <= x && x <= UB)) __builtin_unreachable();" to
enable it.

(2) During each reduction step, we accept or reject a reduced program Q. Note that we obtain
the refined version Q’ by enabling the unreachable annotation via a command line flag. We
accept Q if:

(a) The macro corresponding to the annotation is still present (if not we cannot obtain Q’).

(b) The oracle still identifies the inconsistency between Q and Q’, i.e., there is a significant size
increase or a previously eliminated VR/DCE marker becomes missed (depending on which
oracle is used).

(c) If the unreachable annotation uses a value range, we also need to update the lower and
upper bounds as they may have changed in Q’. We do this by running the program and
printing the corresponding values. We insert the tracking code by defining the macro
corresponding to the INJECTION_MACRO accordingly. We do the same for VR markers.

(d) Q passes various correctness tests (e.g., compiler sanitizers).

(e) If the issue is a regression, Q" does not exhibit the inconsistency with the older compiler.

4 EMPIRICAL ANALYSIS

We evaluate the effectiveness and practical utility of our approach. We first examine the prevalence
of optimization inconsistencies in GCC (13.1.1) and LLVM (16.0.4) on a corpus of 10,000 Csmith
programs. We then discuss the variation across different optimization levels and compilers and
investigate how this prevalence evolves across compiler versions, and we explore the diversity of
these issues. Finally, we present examples of the cases that we have reported to compiler developers.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

174:10 Theodoros Theodoridis and Zhendong Su

4.1 Research Questions and Result Highlights

We aim to answer the following research questions on optimization inconsistencies:

e RQ1: How prevalent are they? (Section 4.3)

RQ2: How do they vary across optimization levels and compilers? (Section 4.4)

RQ3: How long-latent are they? (Section 4.5)

RQ4: Are they caused by changes in a diverse set of compiler components? (Section 4.6)
RQ5: How useful is our approach in practice for compiler development? (Section 4.7)

RQ6: Is refining programs effective at uncovering optimization inconsistencies? (Section 4.8)

Result Summary. Both compilers are affected by optimization inconsistencies: we detect them
in 17.00% and 8.90% of the tested programs with GCC and LLVM, respectively. Most of the de-
tected cases manifest in a single compiler, only 21.54% of the affected programs are common.
GCC'’s optimization levels are more diversely affected than LLVM’s: 43.71% of the programs with
inconsistencies for LLVM affect all of its optimization levels, but only 11.94% for GCC. Several
inconsistencies are long-latent, e.g., out of the 1,700 cases detected with GCC 13.1.1, 900 can be
traced back to GCC 9.5.0. Similarly, out of the 890 detected with LLVM 16.0.4, 647 can be traced
back to LLVM 12.0.1. We also analyzed 89 GCC regressions and 69 LLVM ones: using the commits
that introduced them, we find that they are caused by changes in 18 and 16 different compiler
components (e.g., alias analysis, loop transformations, peephole optimizations, etc.). Finally, we
have reported 59 cases to compiler developers, out of which 55 have been confirmed or fixed.

4.2 Evaluation and Implementation Setup

Methodology. For RQ1-4 and RQ6, we use the DCE oracle to identify optimization inconsistencies;
note that the goal of our systematic evaluation is to study the prevalence of optimization incon-
sistencies, but not to compare the oracles, thus we only use one. For RQ5, we use the Size, DCE,
and VR oracles. For each combination of test program, compiler, and optimization level, we use the
procedure described in Section 3.4 to detect issues. In Section 4.3, Section 4.4, and Section 4.5, we
report the number of programs that contain at least one issue, the number of additional information
entries that result in inconsistencies (e.g., how many branches marked as unreachable or how many
injected variable value ranges), and the number of DCE markers through which we can detect them.
In Section 4.6, we focus on regressions and bisect the compiler history to identify the offending
commits. In Section 4.7, we show examples of reduced cases that we have reported to compiler
developers. In Section 4.8, we evaluate the effectiveness of refining programs by comparing our
approach with a differential testing approach that does not refine programs.

Test Corpus. We use a corpus of 10,000 C programs generated by Csmith [34] for our empirical
analysis. Csmith programs are self-contained and do not require inputs, thus we can compute
precise information about them (e.g., dead code and variable value ranges). The median number
of eliminated markers per program is 54 for GCC and 55 for LLVM, the maximum is 276 and 276,
respectively. We use these markers to detect inconsistencies. The median number of injected pieces
of information (dead branches and variable value ranges) per program is 2 for GCC and 2 for LLVM,
the maximum is 53 and 56, respectively. Note that the generated programs are not guaranteed to
contain dead code. However, the majority does, as by construction, most Csmith programs do.

Implementation. We have implemented our approach using LLVM’s LibTooling and a small
Python library that handles test case generation, the actual testing, reduction, and bisection by
orchestrating the various related programs (the compilers under test, Csmith, C-Reduce, etc.).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

Refined Input, Degraded Output: The Counterintuitive World of Compiler Behavior 174:11

Table 1. Detected optimization inconsistencies for GCC and LLVM on a corpus of 10,000 Csmith programs.
We consider only injected value range information, only injected dead code information, and both kinds.

Opt Value Range Info Injected Dead Code Info Injected Both

Lvl GCC LLVM GCC LLVM GCC LLVM

programs with detected optimization inconsistencies

01 412 381 243 384 589 628
02 525 399 730 346 1,043 601
03 472 397 755 348 1,008 599
Os 493 393 779 359 1,095 607
Union 1,168 627 971 503 1,700 890

injected information annotations revealing inconsistencies

01 787 1,236 529 835 1,316 2,071
02 1,717 1,427 1,770 776 3,487 2,203
03 1,722 1,378 1,808 779 3,530 2,157
Os 1,443 1,320 1,813 761 3,256 2,081
Union 4,149 2,406 2,787 1,212 6,936 3,618

DCE markers originally eliminated — missed

01 1,254 1,001 520 1,157 1,656 1,919
02 1,324 1,005 1,510 1,017 2,565 1,799
03 1,128 944 1,561 972 2,362 1,697
Os 1,236 963 1,486 1,008 2,573 1,743
Union 3,562 1,753 2,364 1,601 5,342 2,958

Experimental Setup. We used a 64-core AMD Ryzen Threadripper 3990X and Arch Linux (6.3.9
kernel) based system. We tested GCC 13.1.1 and LLVM 16.0.4 at -01, -02, -03, and -0s? for the
experiments in Section 4.3 and Section 4.4. We tested previous major versions up to GCC 9.5.0 and
LLVM 12.0.1 for Section 4.5, and we used the upstream versions for Section 4.6 and Section 4.7.
All our empirical analysis experiments (10,000 test programs X 2 compilers X 5 versions X 4
optimization levels) took around two weeks, including the time needed for generating the corpus,
refining it, testing on all compiler versions and optimization levels, and generating the results.

4.3 Prevalence in GCC and LLVM

We measure the prevalence of optimization inconsistencies in GCC and LLVM on our test corpus.
Both compilers at all optimization levels are affected (Table 1):

e We detect issues in 17.00% of the tested programs with GCC and in 8.90% with LLVM.

e The percent of injected facts causing inconsistencies is 2.33% for GCC and 1.96% for LLVM.

o The percentage of markers identifying issues is 0.94% for GCC and 0.54% for LLVM.

o Injecting value range information results in more detected issues than dead code information.
The former causes 1,168 programs to have issues with GCC and the latter 971; for LLVM the
numbers are 627 and 503. One reason for this difference is that there are typically many more
opportunities for value range annotations (due to the many variables a program has) versus
dead code ones.

2We used the standard optimization levels for our testing. 00 would unlikely produce interesting results as most optimizations
are disabled at 00. We omitted Oz and Ofast because they are not as widely used as the others.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

174:12 Theodoros Theodoridis and Zhendong Su

4.4 Variance across Compilers and Optimization Levels
The detected inconsistencies vary both across compilers and optimization levels.
Across Compilers. Most issues are compiler-specific (Figure 2):

e Only 21.54% of the programs with detected inconsistencies is common to both compilers,
58.24% is exclusive to GCC, and 20.23% to LLVM.

o Only 3.68% of the injected information causing inconsistencies affects both compilers, 64.46%
affects only GCC, and 31.86% only LLVM.

e Only 4.86% of the markers through which issues are detected are common, 62.63% reveal
issues only for GCC, and 32.51% only for LLVM.

Programs with

inconsistencies Injgcte_d infor_mation DCE Ma.rkersl missed
causing inconsistencies on refined inputs
1241 459 431 6561 375 3243 4957 385 2573
LLVM LLVM
LLVM Gce GCC

GCC

Fig. 2. Most issues are compiler-specific: 78.46% of the affected programs, 96.32% of the issue-causing injected
information, and 95.14% of the DCE markers that become missed.

N 29.5%
w
< 400
2 00| 122 6 o 13.6% s 11.0%
(] 0 .
£ o1 () :
02 ° s
03 ° S
Os @

(a) Programs: 37.94% are affected by only a single level

Q
N o,
8 21.5% e 18.6%
S 1000 129% 13.8% o
5 8.8%
& . % L0% 019 . , % L% L7%
g o 0.3% 6 0.1% 0.2% 0.0% 0.3% L7%
£ 01 [}
g : s 11 ¢ A
03 [] 3
Os @

(b) Injected information: 57.01% affects only a single level.

20.7% 19.8%
1000 116.6%

500 1889 869 8.5%

47% § 3.7%
02% [l mm 0.1% 06% 0.1% L0%

N N A I A

(c) Markers: 56.50% become missed only in a single level.

N
N

o
N

Intersection size

Fig. 3. GCC: Inconsistencies across optimization levels. (Empty sets are omitted.)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

Refined Input, Degraded Output: The Counterintuitive World of Compiler Behavior 174:13

43.7%

N
o
o

200 20.9%

13.9%
o) B 3.0% 12% . 03% 18% 43% 26% 0.8% 06% NP o2% 10% 0.8%

PR R EE R

(a) Programs: 29.78% are affected by only a single level

Intersection size

1000 25.3%

17.3%

6.9% 519 9 7.4%

o 1 e 01% 24% | 15% 02% 03% 0.3% 0.5%

01 []

24 & 2 s [1P g)8
Os @ :

(b) Injected information: 40.99% affects only a single level.

Intersection size
w
o
o

28.2% 31.2%

4.7% 3.8% 2.9%
| -o —

Intersection size
w
o
o o
o
)
S
N
Iz
>
Y
o |
=
N
]
>
o
=
X
o
)
>
—
o
N
=
-
2
X
=
¥
>
aead |

2. e ® 1
Oos @ s
(c) Markers: 39.59% become missed only in a single level.

Fig. 4. LLVM:Inconsistencies across optimization levels. (Empty sets are omitted.)

Across Optimization Levels. The variance across optimization levels is different for the two
compilers (Figure 3 and Figure 4). In GCC we observe that inconsistencies are more specific to
optimization levels than in LLVM. For example, 11.94% of programs with detected issues affect
all of GCC’s optimization levels but 43.71% affect all of LLVM’s. A potential explanation for this
difference is that LLVM’s optimization pipelines differ less than GCC'’s.

4.5 How Long-Latent are the Inconsistencies?

We evaluate how the inconsistencies that we detect evolve. To that end, we analyze our test corpus
with the last five releases of GCC and LLVM. Several of the detected issues are latent, i.e., they are
present in all tested versions (Table 2). For example, 1,700 programs have detected issues with the
latest GCC version, of which 900 also have issues in all previous versions. Similarly, for LLVM,
we detect 890, 647 of which are latent. Each compiler version also introduced regressions, e.g., the

Table 2. Evolution of optimization inconsistencies over the last five releases of GCC and LLVM. For each
compiler we show the number of programs with detected inconsistencies across all optimization levels.

GCC 950 1050 1140 1230 1311 LLVM 1201 13.01 1406 1507 16.04
All 1,383 1,475 1,477 1,345 1,700 All 1,884 923 913 892 890
Latent - 1,297 1,253 938 900 Latent - 800 738 681 647
Regressions - 178 51 221 331 Regressions - 123 43 36 26
Fixed - 86 55 381 74 Fixed - 1,084 79 82 61

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

174:14 Theodoros Theodoridis and Zhendong Su

latest GCC version introduced 331, and LLVM 26. We also observe that several issues are fixed with
each version, e.g., GCC 13 fixed 74, and LLVM 16 fixed 61.

4.6 Varied Compiler Components Causing Inconsistencies

The detected inconsistencies are caused by changes in a wide range of compiler components (Table 3).
We bisected 89 GCC and 69 LLVM regressions to their offending commits; these include all the
unique regressions in our test corpus and the ones found during our testing efforts (Section 4.7).
Based on the modified files, we group them into logical compiler components, e.g., alias analysis,
loop transformations, peephole optimizations, etc.. There are 18 and 16 components touched by these
regressions for GCC and LLVM, respectively. This finding highlights our approach’s effectiveness
at detecting issues in a diverse set of compiler components.

Table 3. Diversity of detected optimization inconsistencies: 18 components in GCC and 16 in LLVM were
modified by 89 and 69 regression commits, respectively.

GCC Components # Commits

Branch Prediction 9 LLVM Components # Commits
CFG Transformations 9 Alias Analysis 1
Constant Propagation 5 Assumption Handling 1
Data Dependence Analysis 1 CFG Transformations 4
Dead Code Elimination 2 CSE 1
Dead Store Elimination 2 Dead Store Elimination 1
IR Data Structures 3 Dominance based optimizations 1
Inlining 1 Escape Analysis 1
Jump Threading 11 Global Value Numbering 2
Loop Analysis 1 Interprocedural Analysis 2
Loop Transformations 12 Interprocedural Optimization 1
Pass Management 7 Jump Threading 1
Peephole Optimizations 16 Loop Transformations 11
Profile Guided Optimizations 2 Pass Management 4
Redundancy Elimination 2 Peephole Optimizations 34
Value (Range) Analysis 17 Value (Range) Analysis 9
Value (Range) Propagation 12 Value (Range) Propagation 3
Value Numbering 3

4.7 Reported Cases

Table 4. Status of the reported cases

Confirmed Fixed Won’t Fix Unconfirmed Total
GCC 27 12 0 1 40
LLVM 13 3 3 0 19

We reported 40 optimization inconsistencies for GCC and 19 for LLVM, of which 39 and 16
are confirmed or fixed. Table 4 shows the status of the reported cases. We focused on reporting
regressions, i.e., inconsistencies that were not present in previous compiler versions but manifest
on the current upstream. This approach enables bisecting those issues to a specific commit; by
only reporting cases that bisect to different offending commits, we did not encounter any reported

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

Refined Input, Degraded Output: The Counterintuitive World of Compiler Behavior 174:15

cases marked as duplicates. Each reported case is a minimal example that we have reduced with
C-Reduce. Roughly, a reduction typically shrinks an original program with thousands of lines of
code to about dozens, a reduction ratio of about 100, and it often finishes under a couple of hours.
A few reported issues (3) were marked as wontfix by the developers because they were caused by
phase ordering issues that are difficult to fix, however, this is a small fraction of the reported cases
which can be further triaged and ignored by the compiler developers. Listing 4 and Listing 5 show
examples of reported cases which were identified with the DCE oracle for each compiler:

e In Listing 4a, LLVM cannot simplify cond = x == -11; assume(cond == true); rem =
-11 % x; return rem == @;, the operants of the modulo operator are essentially constant,
but LLVM could not leverage this. (The —11 value is the result of casting 24821 to an 8-bit
integer, which is then used in the h = j % k; statement.)

e In Listing 4b, the issue is that different LLVM passes (SimplifyCFG and EarlyCSE) handle
type-based alias analysis information differently (because the IR reference does not specify
which behavior is correct). The call to dead is no longer eliminated because a recent commit
caused a phase ordering change.

e In Listing 5a, GCC’s new value range propagation framework could not handle address
equality checks followed by __builtin_unreachable(). Fixed with f828503eeb7.

e In Listing 5b, GCC misses a jump threading opportunity and cannot simplify the following
condition: j = PHI <&i, &c>; cond= j == &c || &i == j; tocond = true;. This issue
was caused by a change in how value ranges are stored throughout the compilation pipeline,
which in turn had an unforeseen interaction with jump threading.

static int a, d, xb, *e = &a;
static int *xc = &b, *xxf = &c;
static int xh() { *c = e;
if ((10*a) == @) *b = 0;
else return 0;
if (b == & || b == 0) {
if (b == 0 || b == &a)

__builtin_unreachable();

static int a = 24821, d;
static int xb = &a, **c = &b;
static int xe(short f, short g) {
char h;
if (f) {
if (g != 24821) __builtin_unreachable();
int *i = &d;
unsigned char j = g, k = f;

h =3 % k; else dead();

if (h) i = 0o; }

if (b); return &d;

else __assert_fail(); }

if (b || i); else dead(); static void g(int k) {

3 int xxxi = f; *c = h(); &i || k;
return 0; b

static void j() { g(@); 3

} int main() { jO; }

int main() { *c = e(a, a); }

(a) https://github.com/llvm/llvm-project/issues/ ~ (b) https://github.com/llvm/llvm-project/issues/
63330 : LLVM -02 could not simplify the expression ~ 63124: LLVM -0s no longer removes the call to
h = j % keven though the RHS arguments are dead due to uncertainty on the semantics of alias
known constants. Fixed with 7cfc82f. metadata and how different passes handle it.

Listing 4. LLVM regression examples found with the DCE oracle. In both cases, the upstream version of

LLVM regressed and cannot eliminate the call to dead if additional information is provided (highlighted in
red). Previous versions of LLVM could eliminate it.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

https://github.com/llvm/llvm-project/issues/63330
https://github.com/llvm/llvm-project/issues/63330
https://github.com/llvm/llvm-project/issues/63124
https://github.com/llvm/llvm-project/issues/63124

174:16

static int a, c;

static int xb = &a;

static int **d = &b;
__attribute__ ((__noreturn__))
void assert_fail();

int main() {

int *e = *d;

if (e == &a || e == &c);

else {

__builtin_unreachable();

assert_fail();

}
if(e == &a || e == &c);
else dead();

(a) https://gec.gnu.org/bugzilla/show_bug.cgi?id=
109546: GCC’s new value range framework missed
cases with address equality checks followed by un-
reachable code. Fixed with f828503eeb7.

Theodoros Theodoridis and Zhendong Su

static int b, d, f, *c, *e = &d;
static unsigned g;

void a();
int main() {
g = -19;

for (; g; ++8) {
int h = g, *xi = &b, **j = &i;
if (d) {
int *xk = &i; j = &c; *k = &f;
} else { *e = 0; }
if (I (Ch >= -19) && (h <= -1)))
__builtin_unreachable();
if (i); else a();
if (j==&i || j==&c); else dead();
3
}

(b) https://gce.gnu.org/bugzilla/show_bug.cgi?id=
110538: GCC -02 does not simplify the parent
if-statement of dead. Changes in value range storage
cause missed jump threading opportunities.

Listing 5. GCC regression examples found with the DCE oracle. In both cases, the upstream version of GCC
regressed and cannot eliminate the call to dead if the additional information is provided (highlighted in red).

static int b, ¢ = 8, d, e, f, g = 9;
static char h = 3;
static void a(int, unsigned i) {
if (1(@ >= 1) && (i <= 3421036188)))
__builtin_unreachable();
}
int main() {
for (; h; --h) {
for (; f <= 9; f++) {
if (d) g = 0;
if (e) continue;
a(b, g && c¢);

3
e=d=0;
a(0, 3421036188);

(a) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
112508: a recent change in jump threading causes
GCC at -Os to generate a binary that is almost twice
as large for this test case.

static short b = -1;
static int c, e, *xf = &c;
static char g;
static char a(char h, int i) {
if (1((1 >= -1) && (i <= 0)))
__builtin_unreachable();
return h || i ? h : h < 0;
}
static void d(unsigned h) {
if (1(Ch >= 0) && (h <= 4095017279)))

VRMarker () ;
}
int main(){ *xf = b == 0; g=a(c,c);
d(g); d(4095017279);
if (e) { b =20; }
a(o, b);
3

(b) https://gcc.gnu.org/bugzilla/show_bug.cgi?id=
112542: a recent change in peephole optimizations
made GCC at -03 unable to infer the value range of
h and eliminate the VRMarker () call.

Listing 6. Example regressions found with the Size and VR oracles. In both cases, the GCC regression
manifests if the additional information (highlighted in red) is injected.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=109546
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=109546
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110538
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110538
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=112508
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=112508
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=112542
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=112542

Refined Input, Degraded Output: The Counterintuitive World of Compiler Behavior 174:17

Listing 6 shows examples detected with the size oracle and the value range based oracles:

e In Listing 6a, GCC -0s generates an almost twice as large binary given the injected value
range. This is caused by a recent change in a jump threading cost heuristic.

e In Listing 6b, we use the value range oracle to detect whether GCC -03 can infer the value
range bounds of h in function d. The value range is inferred correctly (and the call to
VRMarker () is eliminated) if no additional information is injected, but it is not if the high-
lighted value range is injected. This is caused by a recent peephole optimization change.

All of our reported cases contain the __builtin_unreachable() directive by the design of our
approach. However, the root causes of our identified issues are typically orthogonal to the use
of __builtin_unreachable(), which we utilize as a convenient mechanism for providing extra
information to the compiler. We note the following:

e Our approach can be implemented in alternative ways. For example, in Listing 4a, we can detect
the same issue (the dead call is not eliminated) by replacing the use of the builtin with a variable
assignment, namely g = 24821;.

o The root cause analyses and fixes of our reported cases confirm that the majority of the detected
issues are indeed not related to the unreachable directive, which merely helps uncover them
(thanks to our approach). For example:

— The fix for Listing 4a improves LLVM’s “Correlated Value Propagation” pass to better handle
modulo operations whenever LHS >= RHS.

— The root cause analysis of Listing 5b (performed by a GCC developer) distilled the issue down
to the fact that in the GCC’s GIMPLE IR below:
j_24 = PHI <&i(7), &c(3)>
_2 = j_24 == &c;
22 = &i == j_24;
_23 = _2 | _22; // <= This is always true because j_24 = &i or j_24 = &c
GCC 13 can deduce that _23 is always true via dominance analysis and jump threading, but
the upstream version cannot.

The active discussions on our reported issues and the detailed analyses by the compiler developers
indicate that these issues (1) have diverse root causes (unexpected behaviors between passes,
improperly handled cases, etc.), and (2) affect a variety of different passes (peephole optimizations,
jump threading, partial redundancy elimination, etc.). Some of our reports also prompted the
compiler developers to uncover and report additional issues because additional shortcomings
became evident when they were triaging or fixing our reported issues. One developer commented
for example: “I think they [the reports] are useful and help developers to see how changes affect
other passes later on. Or if they miss something obvious.”

4.8 Comparison with DCE Marker Based Differential Testing

One important question is whether refining programs by injecting dead code and value range
information assists in detecting more and different issues. That is, can we detect the same issues
without the refinement step? One way to answer this question is to compare our approach with
the differential testing approach proposed by Theodoridis et al. [31] that uses DCE markers. We do
this by attempting to detect the issues reported in Section 4.7 using only DCE markers without
refining the input programs.

Ours is a metamorphic testing approach, thus we cannot directly compare the two methods.
However, we bisected each regression in Section 4.7 to the commit that introduced it, i.e., we have
two compilers for each issue: Cpqq that the exhibits the regression and Cyooq that does not. While

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

174:18 Theodoros Theodoridis and Zhendong Su

not guaranteed, since Cpqq and Cyooq are one commit apart, if we detect an issue with them via
differential testing, then it is likely that it is the same regression that we detected with our approach.
For each regression and its corresponding Cpqq and Cyooq, We perform two tests:

(1) We use the Csmith program that triggered the issue with our approach. We remove all injected
information and only add DCE markers. If Cy4q eliminates fewer markers than Cyooq, We
have identified the regression.

(2) If the previous test fails, we use an additional corpus of 10,000 Csmith programs (we generate
a new corpus for each regression), which we instrument with only DCE markers and perform
the same differential test.

If we find a difference in either of the two tests, then we have detected the issue, i.e., DCE marker
based differential testing suffices to detect it and no refinement is needed. Out of the 59 reported
cases, we found that 11 can be detected using only DCE markers. This demonstrates that, in practice,
our approach detects issues that DCE marker based differential testing does not. Thus, besides
being conceptually different and orthogonal, refining programs with additional information is also
clearly beneficial for detecting many additional optimization-related issues.

4.9 Discussion

Takeaways. In this work, we systematically investigate the problem of optimization inconsistency
in compilers and devise an effective approach for identifying such issues. We also provide concrete
evidence of the usefulness of our approach: the inconsistencies that we report are not just contrived
examples related, e.g., to magic constants in heuristics, but relevant issues that compiler developers
appreciate and fix. Our approach helps reveal unexpected interactions between the various analyses
and transformations in compilers, and identifies many missed optimization opportunities.

Using Different Kinds of Information. Our current approach leverages __builtin_unreachable
as a general mechanism to annotate two types of properties: dead branches and value ranges. We use
this to demonstrate our general concept and technique, which can be extended in various ways. For
instance, we can express different classes of properties via the if (C) __builtin_unreachable();
construct. Example properties include whether two pointers never refer to the same address (C: ptr1
== ptr2), relationships among program variables (such as C: v1 > v2), whether a variable is a power
of 2 (C: __builtin_popcount(v) != 1), explicit loop bounds (C: loop_iter > LOOP_BOUND), etc..
Besides using __builtin_unreachable, there are other alternatives. For example, given a variable
v with a singleton value, say 10, we may capture this information in the refined program as x = 10.
Note that how to refine a program is orthogonal to how to detect whether or not a refined program
manifests any optimization inconsistencies.

Alternative Oracles. Our approach is general and parametrizable over any oracle that can compare
two compiler’s outputs. An interesting oracle would be runtime performance, i.e., detecting cases
where a refined program is slower than the original. In this work, we instantiated our approach
with several oracles to demonstrate its effectiveness and utility. To this end, we focused on oracles
that are deterministic, compile-time, and workload-independent, while runtime performance is
both workload- and platform-dependent, which we leave for interesting future work.

Using Non-closed Programs. Our approach can also be used on non-closed programs given
fixed inputs. Similarly to the case with closed programs, we can derive additional information via
program execution (Section 3.2). The derived additional information is only guaranteed to be valid
for the given fixed inputs, however, this does not invalidate our approach. Injecting the derived
information “instructs” the compiler that we only expect the program to work on these inputs.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

Refined Input, Degraded Output: The Counterintuitive World of Compiler Behavior 174:19

5 RELATED WORK

Automated Testing for Missed Compiler Optimizations. Several works that focus on automati-
cally finding missed compiler optimizations exist. CIDetector [29] operates directly on binaries
and detects dead stores and redundant loads and stores. Barany [3] proposed a differential testing
method that relies on hand-written assembly matchers that identify cases where one compiler
generates better code than another. The work of Theodoridis et al. [31], another differential testing
approach, uses dead code elimination as an oracle to identify missed optimizations between compil-
ers. Our work also uses dead code elimination as an oracle, but unlike the mentioned works, we do
not use differential testing to identify issues, our approach is a metamorphic testing [5] one: we use
a single compiler and test its behavior by injecting additional information about the input program.

Automated Compiler Testing for Miscompilations. Most work on automatic compiler testing
focuses on finding miscompilations [4]. Random program generators such as Csmith [34] and
YarpGen [19] have been extensively used to find correctness bugs via differential testing. Several
approaches have been proposed to improve the effectiveness of randomized testing such as EMI [16]
which mutates programs in a semantic preserving way given fixed inputs. Similarly to our approach,
Sun et al. [28] investigate dynamically identifying variable properties at specific program locations
to enable transformations that don’t alter the program’s overall behavior. Another example of using
program dynamic information to improve compiler testing is the work of Even-Mendoza et al. [12]
which identifies and removes safe math wrappers generated by Csmith. The goal of our approach
is to find optimization inconsistency issues that are unrelated to miscompilations.

Providing Additional Information to the Compiler. Doerfert et al. [10] proposed a framework
that explores the performance impact of providing additional static analysis annotations to the
compiler. Similar to our work, the hints are provided via builtins. However, those hints are optimistic
and are not necessarily correct, whereas the information we provide is guaranteed to be correct.
Moreover, the aims of the two works are different: improving performance via additional information
versus identifying optimization inconsistencies due to additional information.

Hiding Information from the Compiler. Siso et al. [27] proposed a framework for evaluating
the auto-vectorization capabilities of compilers by hiding information such as loop bounds and
array attributes. They showed that hiding information is usually detrimental to auto-vectorization,
however, they also found cases where less information led to better code. Another example of
hiding information from the compiler is inserting “dead by construction” code blocks [17] to enable
EMI-based testing for OpenCL compilers. Our work is orthogonal to these approaches; we do not
hide information from the compiler, but rather provide additional information.

6 CONCLUSION

We have developed an automated testing approach for detecting optimization inconsistencies, i.e.,
cases where given additional information about an input program, a compiler generates worse
code. Our approach derives additional information by running an input program, refines it using
the derived information, and tests if the compiler’s output is worse on this refined version. Our
systematic analysis shows that optimization inconsistencies are prevalent in compilers such as
GCC and LLVM, and that they are caused by a wide range of their components. We uncovered and
reported a diverse set of such cases: out of the 59 reported issues, 55 were confirmed or fixed. We
expect our methodology to open up a new direction for understanding unexpected interactions
between compiler components and improving compilers.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

174:20 Theodoros Theodoridis and Zhendong Su

ARTIFACT

Our archived artifact on Zenodo [32] contains all the necessary code and tools for identifying
optimization inconsistencies. It also contains instructions, scripts, and the dataset needed for
reproducing the paper’s systematic evaluation. The code implementing the tracking and refinement
processes (as explained in Section 3) is also available in the program markers GitHub repository.

REFERENCES

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison-Wesley Longman Publishing Co., Inc., USA.

[2] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. 1994. Compiler Transformations for High-Performance
Computing. ACM Comput. Surv. 26, 4 (dec 1994), 345-420. https://doi.org/10.1145/197405.197406

[3] Gergo Barany. 2018. Finding Missed Compiler Optimizations by Differential Testing. In Proceedings of the 27th
International Conference on Compiler Construction (Vienna, Austria) (CC 2018). Association for Computing Machinery,
New York, NY, USA, 82-92. https://doi.org/10.1145/3178372.3179521

[4] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and Lu Zhang. 2020. A Survey of
Compiler Testing. ACM Comput. Surv. 53, 1, Article 4 (feb 2020), 36 pages. https://doi.org/10.1145/3363562

[5] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H. Tse, and Zhi Quan Zhou. 2018.
Metamorphic Testing: A Review of Challenges and Opportunities. ACM Comput. Surv. 51, 1, Article 4 (jan 2018),
27 pages. https://doi.org/10.1145/3143561

[6] Khushboo Chitre, Piyus Kedia, and Rahul Purandare. 2022. The Road Not Taken: Exploring Alias Analysis Based
Optimizations Missed by the Compiler. Proc. ACM Program. Lang. 6, OOPSLAZ2, Article 153 (oct 2022), 25 pages.
https://doi.org/10.1145/3563316

[7] Keith D. Cooper, Mary W. Hall, and Linda Torczon. 1992. Unexpected Side Effects of Inline Substitution: A Case Study.
ACM Lett. Program. Lang. Syst. 1, 1 (mar 1992), 22-32. https://doi.org/10.1145/130616.130619

[8] Christian Couder. 2008. Fighting regressions with git bisect. Online: The Linux Kernel Archives 4, 5 (2008). https:
//www.kernel.org/pub/software/scm/git/docs/git-bisect-1k2009.html

[9] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. 1998. Type-Based Alias Analysis. In Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and Implementation (Montreal, Quebec, Canada) (PLDI
’98). Association for Computing Machinery, New York, NY, USA, 106-117. https://doi.org/10.1145/277650.277670

[10] Johannes Doerfert, Brian Homerding, and Hal Finkel. 2019. Performance exploration through optimistic static program
annotations. In 34th International Conference, ISC High Performance 2019, Frankfurt/Main, Germany, June 16-20. Springer,
247-268. https://doi.org/10.1007/978-3-030-20656-7_13

[11] Timur Doumler. 2022. P1774R8: Portable assumptions. https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/
p1774r8.pdf

[12] Karine Even-Mendoza, Cristian Cadar, and Alastair F. Donaldson. 2021. Closer to the Edge: Testing Compilers
More Thoroughly by Being Less Conservative about Undefined Behaviour. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering (Virtual Event, Australia) (ASE "20). Association for
Computing Machinery, New York, NY, USA, 1219-1223. https://doi.org/10.1145/3324884.3418933

[13] Zhangxiaowen Gong, Zhi Chen, Justin Szaday, David Wong, Zehra Sura, Neftali Watkinson, Saeed Maleki, David
Padua, Alexander Veidenbaum, Alexandru Nicolau, and Josep Torrellas. 2018. An Empirical Study of the Effect of
Source-Level Loop Transformations on Compiler Stability. Proc. ACM Program. Lang. 2, OOPSLA, Article 126 (oct
2018), 29 pages. https://doi.org/10.1145/3276496

[14] William H. Harrison. 1977. Compiler analysis of the value ranges for variables. IEEE Transactions on software engineering
3(1977), 243-250. https://doi.org/10.1109/TSE.1977.231133

[15] Ken Kennedy. 1979. A survey of data flow analysis techniques. IBM Thomas J. Watson Research Division.

[16] VuLe, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via Equivalence modulo Inputs. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (Edinburgh, United Kingdom)
(PLDI ’14). Association for Computing Machinery, New York, NY, USA, 216-226. https://doi.org/10.1145/2594291.
2594334

[17] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson. 2015. Many-Core Compiler Fuzzing. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR,
USA) (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 65-76. https://doi.org/10.1145/2737924.
2737986

[18] Zhibo Liu, Dongwei Xiao, Zongjie Li, Shuai Wang, and Wei Meng. 2023. Exploring Missed Optimizations in We-
bAssembly Optimizers. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and

—

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

https://github.com/DeadCodeProductions/program-markers
https://doi.org/10.1145/197405.197406
https://doi.org/10.1145/3178372.3179521
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3143561
https://doi.org/10.1145/3563316
https://doi.org/10.1145/130616.130619
https://www.kernel.org/pub/software/scm/git/docs/git-bisect-lk2009.html
https://www.kernel.org/pub/software/scm/git/docs/git-bisect-lk2009.html
https://doi.org/10.1145/277650.277670
https://doi.org/10.1007/978-3-030-20656-7_13
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1774r8.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1774r8.pdf
https://doi.org/10.1145/3324884.3418933
https://doi.org/10.1145/3276496
https://doi.org/10.1109/TSE.1977.231133
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/2737924.2737986

Refined Input, Degraded Output: The Counterintuitive World of Compiler Behavior 174:21

Analysis (Seattle, WA, USA) (ISSTA 2023). Association for Computing Machinery, New York, NY, USA, 436-448.
https://doi.org/10.1145/3597926.3598068

[19] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2023. Fuzzing Loop Optimizations in Compilers for C++ and Data-
Parallel Languages. Proc. ACM Program. Lang. 7, PLDI, Article 181 (jun 2023), 22 pages. https://doi.org/10.1145/3591295

[20] Rahim Mammadli, Marija Selakovic, Felix Wolf, and Michael Pradel. 2021. Learning to Make Compiler Optimizations
More Effective. In Proceedings of the 5th ACM SIGPLAN International Symposium on Machine Programming (Virtual,
Canada) (MAPS 2021). Association for Computing Machinery, New York, NY, USA, 9-20. https://doi.org/10.1145/
3460945.3464952

[21] Dror E. Maydan, John L. Hennessy, and Monica S. Lam. 1991. Efficient and Exact Data Dependence Analysis. In
Proceedings of the ACM SIGPLAN 1991 Conference on Programming Language Design and Implementation (Toronto,
Ontario, Canada) (PLDI '91). Association for Computing Machinery, New York, NY, USA, 1-14. https://doi.org/10.
1145/113445.113447

[22] Ankush Phulia, Vaibhav Bhagee, and Sorav Bansal. 2020. OOElala: Order-of-Evaluation Based Alias Analysis for
Compiler Optimization. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 839-853.
https://doi.org/10.1145/3385412.3385962

[23] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. 2012. Test-case reduction
for C compiler bugs. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (Beijing, China) (PLDI ’12). Association for Computing Machinery, New York, NY, USA, 335-346.
https://doi.org/10.1145/2254064.2254104

[24] Manuel Rigger, Stefan Marr, Bram Adams, and Hanspeter Mossenbock. 2019. Understanding GCC Builtins to Develop
Better Tools. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing
Machinery, New York, NY, USA, 74-85. https://doi.org/10.1145/3338906.3338907

[25] Paul B. Schneck. 1973. A survey of compiler optimization techniques. In Proceedings of the ACM Annual Conference
(Atlanta, Georgia, USA) (ACM °73). Association for Computing Machinery, New York, NY, USA, 106-113. https:
//doi.org/10.1145/800192.805690

[26] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A Fast
Address Sanity Checker. In 2012 USENIX Annual Technical Conference (USENIX ATC 12). USENIX Association, Boston,
MA, 309-318. https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany

[27] Sergi Siso, Wes Armour, and Jeyarajan Thiyagalingam. 2019. Evaluating Auto-Vectorizing Compilers through Objective
Withdrawal of Useful Information. ACM Trans. Archit. Code Optim. 16, 4, Article 40 (oct 2019), 23 pages. https:
//doi.org/10.1145/3356842

[28] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding Compiler Bugs via Live Code Mutation. (2016), 849-863.
https://doi.org/10.1145/2983990.2984038

[29] Jialiang Tan, Shuyin Jiao, Milind Chabbi, and Xu Liu. 2020. What Every Scientific Programmer Should Know about
Compiler Optimizations?. In Proceedings of the 34th ACM International Conference on Supercomputing (Barcelona, Spain)
(ICS °20). Association for Computing Machinery, New York, NY, USA, Article 42, 12 pages. https://doi.org/10.1145/
3392717.3392754

[30] Jubi Taneja, Zhengyang Liu, and John Regehr. 2020. Testing Static Analyses for Precision and Soundness. In Proceedings
of the 18th ACM/IEEE International Symposium on Code Generation and Optimization (San Diego, CA, USA) (CGO 2020).
Association for Computing Machinery, New York, NY, USA, 81-93. https://doi.org/10.1145/3368826.3377927

[31] Theodoros Theodoridis, Manuel Rigger, and Zhendong Su. 2022. Finding Missed Optimizations through the Lens
of Dead Code Elimination. In Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS °22). Association for Computing
Machinery, New York, NY, USA, 697-709. https://doi.org/10.1145/3503222.3507764

[32] Theodoros Theodoridis and Zhendong Su. 2024. PLDI 2024 Artifact for "Refined Input, Degraded Output: The Counterin-
tuitive World of Compiler Behavior". https://doi.org/10.5281/zenodo.10808465

[33] Sid-Ahmed-Ali Touati and Denis Barthou. 2006. On the Decidability of Phase Ordering Problem in Optimizing
Compilation. In Proceedings of the 3rd Conference on Computing Frontiers (Ischia, Italy) (CF ’06). Association for
Computing Machinery, New York, NY, USA, 147-156. https://doi.org/10.1145/1128022.1128042

[34] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San
Jose, California, USA) (PLDI ’11). Association for Computing Machinery, New York, NY, USA, 283-294. https:
//doi.org/10.1145/1993498.1993532

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 174. Publication date: June 2024.

https://doi.org/10.1145/3597926.3598068
https://doi.org/10.1145/3591295
https://doi.org/10.1145/3460945.3464952
https://doi.org/10.1145/3460945.3464952
https://doi.org/10.1145/113445.113447
https://doi.org/10.1145/113445.113447
https://doi.org/10.1145/3385412.3385962
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/3338906.3338907
https://doi.org/10.1145/800192.805690
https://doi.org/10.1145/800192.805690
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1145/3356842
https://doi.org/10.1145/3356842
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/3392717.3392754
https://doi.org/10.1145/3392717.3392754
https://doi.org/10.1145/3368826.3377927
https://doi.org/10.1145/3503222.3507764
https://doi.org/10.5281/zenodo.10808465
https://doi.org/10.1145/1128022.1128042
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 An Optimization Inconsistency Example
	3 Detecting Optimization Inconsistencies
	3.1 High-level Overview and Background
	3.2 Extracting Additional Program Information
	3.3 Refining Programs with Additional Information
	3.4 Detecting Optimization Inconsistencies
	3.5 End-to-end Practical Realization

	4 Empirical Analysis
	4.1 Research Questions and Result Highlights
	4.2 Evaluation and Implementation Setup
	4.3 Prevalence in GCC and LLVM
	4.4 Variance across Compilers and Optimization Levels
	4.5 How Long-Latent are the Inconsistencies?
	4.6 Varied Compiler Components Causing Inconsistencies
	4.7 Reported Cases
	4.8 Comparison with DCE Marker Based Differential Testing
	4.9 Discussion

	5 Related Work
	6 Conclusion
	References

