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Abstract

Support Vector Machines (SVMs) are used to discover
method-specific compilation strategies in Testarossa, a
commercial Just-in-Time (JiT) compiler employed in the
IBM R© J9 JavaTM Virtual Machine. The learning process
explores a large number of different compilation strategies
to generate the data needed for training models. The trained
machine-learned model is integrated with the compiler to
predict a compilation plan that balances code quality and
compilation effort on a per-method basis. The machine-
learned plans outperform the original Testarossa for start-up
performance, but not for throughput performance, for which
Testarossa has been highly hand-tuned for many years.

1. Introduction

The success of dynamic programming languages such as
JavaTM relies heavily on the underlying runtime support
provided by interpreters, JiT compilers, and virtual ma-
chines (VMs). JiT compilation generates native code that
can execute directly on the host platform, while the applica-
tion is running. Modern JiT compilers implement many code
transformations to improve the execution performance of the
code generated. However, a balance must be struck between
compilation effort and code quality because the compiler
competes with the application for the same resources [1, 3].
JiT compilers operate at multiple optimization levels (com-
pilation plans) that are selected in reaction to the execution
behavior of the application. A JiT control unit spends its
compilation effort in proportion to the expected execution
time of different sections of the application. For example, a
few key methods in a Java application may be compiled at
the highest optimization level, whereas infrequent or short-
lived methods may be compiled at the lowest optimization
level or may not be compiled at all [2].

Selecting the combination of code transformations that
should be included in each compilation plan requires non-
trivial effort. The state of practice in industry is that the
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compilation plan for each optimization level is hand-tuned
by compiler experts over many years across a wide range of
platforms. When the compiler must support new platforms,
existing compilation plans may require adjustments or may
need to be completely redesigned. In addition, maintaining
the optimization levels is difficult because changes in a
compilation plan may improve the performance of some
applications while degrading others [19].

O’Boyle and Cavazos have proposed using machine learn-
ing to tailor compilation plans on a per-method basis [6].
The idea is to extract features from methods, and to present
the machine-learning algorithm with multiple variations of
the original compilation plan. The algorithm creates a model
that identifies patterns in the data presented and predicts a
method-specific compilation plan for unseen methods that
have similar features to the ones examined. For instance, the
learned model may discover: (i) transformations that lead to
slower code and should be disabled for specific methods; (ii)
alternative transformations that can deliver equivalent per-
formance at a reduced compilation cost; (iii) combinations
of transformations that improve performance.

This paper describes a complete framework that inte-
grates method-specific compilation strategies selected by a
machine-learned model in Testarossa, an enterprise-grade,
commercial Just-in-Time compiler for Java from IBM used
in the IBM J9 Java Virtual Machine. Significant contribu-
tions in this paper include:

• A data collection infrastructure that performs compila-
tion experiments using a lightweight method profiling
mechanism.

• A customized binary archive format to facilitate large-
scale data collection experiments.

• Supporting tools to convert archives into the format
required by the SVM implementation.

• A lean and versatile communication protocol that in-
tegrates the machine-learned models with the compiler
and allows different models to be easily swapped with-
out changes to the compiler.

• An extensive experimental evaluation that shows that
the models outperform an out-of-the-box development
version of Testarossa for start-up performance, but not
for throughput performance. Moreover, the models re-
duce compilation time by half.

Section 2 introduces the IBM Testarossa compiler. A brief
overview of SVM is given in Section 3. Section 4 presents the
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Figure 1. Architecture of IBM Testarossa.

data collection infrastructure. The exploration of different
compilation plans is discussed in Section 5. The process
of training an SVM model is described in Section 6. The
mechanism for integrating the machine-learned model with
the compiler is discussed in Section 7. Section 8 reports on
the experimental evaluation, and Section 9 discusses related
work.

2. IBM Testarossa

JiT compilers can be decomposed into two key components:
(a) a profiling mechanism that identifies portions of the ap-
plication that are likely to benefit from JiT compilation; and
(b) the JiT compiler itself. Profiling mechanisms keep track
of the areas in the application that are frequently executed.
An example of a profiling mechanism is per-method invo-
cation counters. The Java virtual machine (JVM) uses this
profiling information to decide whether it is worth compil-
ing a method to native code, while the JiT compiler also
uses the profiling information to decide how to optimize the
method.

Testarossa implements many optimizations [13, 17] and
features an adaptive compilation strategy with five levels
identified by adjectives related to temperature: cold, warm,
hot, very hot, and scorching. The temperature estimates how
frequently a method is executed.1 The hotter a method
is, the more compilation effort Testarossa invests in it.
Testarossa uses a combination of invocation counters and
time sampling to estimate the hotness of a method. The
goal is to anticipate the compilation of methods that spend
a significant amount of time during fewer invocations. A
method is also recompiled at a higher optimization level if
it executes frequently.

Figure 1 illustrates the four major components in the
Testarossa architecture. The IL Generator converts Java
bytecodes loaded from Java class files into a tree-form inter-
mediate language (IL) that is used as both input and output
during the optimization process. The Optimizer performs
code transformations on the IL-tree, and the final tree is fed
to the Code Generator. The code generator translates the
IL-tree into native instructions for the supported platforms
(e.g.: Intel x86, MIPS, PowerPC R©, S/390 R©, and others).
The Compilation Control decides when to compile (or
recompile) a method and which optimization level should
be used. These decisions are based on dynamic execution
profiles. Optimization consumes most of the compilation re-
sources.

Each optimization level has an ordered set of code trans-
formations (a compilation plan) that are applied on the IL-
tree of a method. A plan may apply from 20 transformations
(cold) to more than 170 (scorching), including the multi-
ple application of some transformations that are used as
cleanup steps. Before applying a transformation prescribed

1 In the jargon of developers, instead of talking about the tem-
perature of a method, one talks about the hotness of the method.

by a plan, the compiler checks for method characteristics
that might make the transformation meaningless. For in-
stance, loop transformations are never applied to methods
that do not contain loops. Unless a rare dependence requires
synchronization with the execution of the application, com-
pilations are performed asynchronously in separate threads.

3. Support Vector Machines

Support Vector Machines (SVMs) are statistical learning
models that work by finding maximum separating hyper-
planes in a space formed by data instances (each represented

by a p-dimensional vector �X) and associated classes (some-
times called labels) [7, 14]. The trained SVM is used to pre-

dict the class of an unseen �X by computing the location of
�X relative to separating hyperplanes.

One key advantage of SVMs is their flexibility. They can
handle overlapping data by allowing some level of misclas-
sification in order to optimally place a separating hyper-
plane. The maximization of the separating margins provide
a high generalization power even with a small set of training
instances. An adjustable parameter, called misclassification
cost C, allows the training to be tuned by making the model
more or less flexible while preventing the overfitting of the
resulting model.

The experiments described in this paper use the multi-
class classifier implementation in LIBLINEAR [9], which
uses a version of SVM [18]. This version performs well on
large-scale classification problems that have numerous in-
stances and/or distinct classes. The learned model consists
of a p × L matrix containing real valued weights that rep-
resent the contributions of each of the p features used to
separate the distinct classes. The prediction time is propor-
tional to the size of the matrix.

4. Data Collection

The data-collection process mimics the regular operation of
Testarossa, but performs controlled changes in the compila-
tion plans to explore alternative scenarios on a per-method
basis. The data collection starts when the VM selects a
method for compilation (Figure 2 (a)). Method features are
computed and recorded before the compilation starts. A
compilation plan is chosen based on the compilation level
selected by the VM (b). A compilation-plan modifier is re-
trieved from a queue of pre-computed modifiers (c) and com-
bined with the original compilation plan, instructing the JiT
to perform a different set of code transformations (d). As is
the case with most production compilers, the order of trans-
formations cannot be easily changed without violating de-
pendencies among them (which can either cause compiler
malfunction or generation of invalid code); thus transforma-
tions may be removed from the original compilation plan but
no transformations are added and transformations are not
reordered. The freshly compiled method is inserted in the
pool of compiled methods (e). The JiT may select a method
to recompile at a higher optimization level (f). The JiT com-
pilation also instruments the method to collect dynamic in-
formation, such as execution time, at each invocation. For
data collection, recompilation requests to the JiT are gener-
ated after a fixed number of invocations of a method. Thus,
many compilation-plan modifiers are explored in a single
JVM execution.

We added a strategy control component to Testarossa to
control the exploration of modifiers during data collection. A
modifier is retired after it has been used for a certain number
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Figure 2. Data Collection during training (from [22]).

Table 1. Scalar features.
Counters Attributes

Exception handlers Constructor? Allocates dynamic memory?
Arguments Final? Unsafe symbols?
Temporaries Protected? Uses BigDecimal?
Tree nodes Public? Virtual method overridden?

Static?
Synchronized?

Many-iteration loops? Strict floating-point?
May have loops? Uses floating-point?
May have many-iteration loops?

of compilations. The method is never compiled twice with
the same modifier. A special null modifier, which does not
change the original Testarossa compilation plan, is tried with
every compiled method to ensure that the machine-learned
model will be exposed to the original compilation strategy
in the compiler.

4.1 Method Features

A feature vector �F is used to characterize a method. �F
should contain enough information about a method to allow
a machine-learned model to correlate this information to
a compilation plan that yields good performance. To be
consistent with data collection, �F is dynamically extracted
from the compiler just prior to the optimization stage.

In this implementation, �F is composed of 71 numerical
attributes (dimensions). These attributes can be organized
in two sets: scalar features consist of counters and binary
attributes for a given method without any special relation-
ship; and distributions characterize the actual code of the
method by discriminating between operand types that ap-
pear in the method and by aggregating similar operations.
The set of features is a selection of measurements already
available in Testarossa. This selection is based on developer’s
intuition. The original set of features was gradually reduced
as data collection provided evidence that some of the fea-
tures were invariant across all applications used for data
collection.

4.1.1 Scalar Features

Table 1 illustrates how the scalar features in the feature vec-
tor �F are grouped as counters and attributes. The exception
handlers counter indicates how many exception handlers are
present in the method. Arguments and temporaries parti-
tion the set of all symbols referenced in the method into
two disjoint sets. Tree nodes is the number of nodes used to
represent the method in the intermediate language used by
Testarossa.

Table 2. Type-based distribution features.
Java Native

Scalar Non-scalar
Testarossa Learning-only

byte long Address Long double Mixed types
char float Object Packed decimal
short double Zoned decimal
int void

All attributes are binary (marked with a ? in Table 1).
The values of the first subgroup of binary attributes are ex-
plicit in the method (constructor) or denoted by keywords
(final, protected, public, static, synchronized. The next sub-
group is related to the presence of loops: may have loop
is true if the method has a backward branch; the values
of many-iteration loops and may have many-iteration loops
are based on loop-count thresholds and on the presence of
nested loops.

The next subgroup contains a diversified set of method
characteristics. Allocates dynamic memory triggers spe-
cific passes, such as escape analysis. Unsafe symbols is
true for methods that inline a method from the class sun-
.misc.Unsafe, which prevents some optimizations such as
redundant-load elimination. Uses BigDecimal indicates that
arbitrary precision computations use the core Java library
java.math.BigDecimal. Such computations may not be el-
igible for rematerialization because the code generated out-
weighs the benefits of this optimization.2 Virtual method
overridden indicates that the method has to be recompiled
because it was overridden through dynamic class loading.

The final subgroup records the use of floating-point com-
putation (Uses floating-point attribute) and whether the
JVM should enforce strict floating-point compliance.

4.1.2 Distributions

Distributions are recorded by incrementing counters until
they reach their maximum capacity. There are two kinds of
distributions: (i) distribution over types (16-bit counters)
and (ii) distribution over operations (8-bit counters). This
separation allows for (a) a simpler implementation for the
collection process, (b) a reduced set of features, and (c) a
smaller storage requirement. Table 2 presents all of the 14
types counted. Besides the Java native types, distributions
also count addresses (an array with one or more dimensions)
and user-defined objects [12]. Testarossa supports special-
ized types such as long double, a quadruple-precision 128-bit
IEEE-754 floating-point type, packed and zoned decimals
to support Binary-Coded-Decimal (BCD) representations.
BCD is used in financial applications and enables fixed-
point, arbitrary-precision computation.

Table 3 presents the 38 operations characterized by distri-
butions grouped by type of operation. In addition to instruc-
tions required by JVMs, Testarossa supports compare and
type casts for additional types (e.g.: longdouble, packed
and zoned decimals). Specialized load/store operations are
coalesced into either load, load const, or store operations. To
distinguish these operations, each type-specialized form trig-
gers a different type counter. In the JVM group, instanceof
counts the number of tests to verify whether an object
reference is of a given type; synchronization counts the

2 Rematerialization is a code transformation where the compiler
emits code that recomputes a value to reduce register pressure or
eliminate loads.
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Table 3. Operation-based distribution features.
ALU Cast Load/Store JVM

add byte load instanceof
sub char loadconst synchronization
mul short store throw
div int
rem long Memory Branch
neg float
shift double new branch
or longdouble new array call
and address new multiarray
xor object
inc packed Array operations
compare zoned

check Mixed operations

number of serializing Java instructions (monitorenter and
monitorexit instructions); and throw reflects the number
of athrow instructions used to raise exceptions. Array oper-
ations records array-specific operations — such as bounds
check, array copy, and array comparison — in the inter-
mediate representation. A modification of an element in an
array is not an array operation because it loads an element
(a load), performs a computation (an ALU operation), and
stores the result (a store).

The 52 distribution counters are computed in a single
pass over the tree-based representation of a method in Tes-
tarossa, just prior to the start of the optimization stage.

4.2 Instrumentation of Methods

The data-collection process collects the time spent compiling
each method and the execution time of each method. This
time is collected by calls to TR_jitPTTMethodEnter and
TR_jitPTTMethodExit. The exit call is inserted at any exit
point and at any block that throws an exception.

The high-resolution time measurements uses the x86 ar-
chitecture Time-Stamp Counter (TSC), a 64-bit unsigned
integer counter that is incremented at every CPU clock cy-
cle. The instructions that read this counter (rdtscp3) also
records the processor identifier. Checking that the identifier
is the same in the enter and exit measurements for a method,
and discarding the measurement when they are not, avoids
the type of imprecision caused by TSC drift, a frequent con-
dition where two cores operate at slightly different frequen-
cies.4 On Linux, the load balancer migrates threads roughly
once every 200 ms [20]. In practice, load balancing occurs
once every few seconds (≤ 10 s).

The instrumentation also sends recompilation requests
to the JiT compiler when the number of executions of the
current version of the methods reaches a threshold. This
recompilation threshold: depends on the execution time of
the method; is computed during the first eight invocations
of the method when it is compiled for the first time; and can
vary between 50 and 50, 000. The goal is for the method to
accumulate the equivalent of 10 ms of running time between
compilations.

The data gathered in collection mode is stored in care-
fully designed data structures in memory and is only trans-
ferred to compact binary archives after the execution of the
application terminates. Designing a compact representation
for the data gathered was crucial because additional I/O

3 Stands for read time stamp counter with processor identifier.
4 The alternative, synchronizing the TSC across multiple cores,
has significant overhead.

operations during the execution of the application would
interfere with the dynamic execution and with JiT compila-
tions. The creation of a dictionary of method signatures is
key for a compact representation of the data collected [21].
The customized infrastructure for data collection features
low overhead, compact storage and high-resolution.

5. Compilation-plan Modifiers

A compilation-plan modifier is a sequence of bits. Each
bit determines whether a code transformation is enabled.
Modifiers are used both during data collection and when
the machine-learned model is used during execution. Tes-
tarossa’s strategy control module uses a given modifier to
disable transformations. A modifier does not change the or-
der in which the transformations are applied. Two methods
are used to generate compilation-plan modifiers: (i) a pure
randomized search with aggressive exploration; and (ii) a
progressive randomized search that gradually diverges from
the original optimization plan used by Testarossa.

For randomized search, M random modifiers are gener-
ated ahead of time for each optimization level. Each mod-
ifier is used for 50 compilations (of different methods) and
is then expired. This slow rate of exploration allows many
methods to be compiled with the same plan and is adequate
given that there is significant variation between modifiers.
The third modifier used is always the null modifier, which
does not change the original Testarossa compilation plan.

The progressive randomized search adds a strong con-
trolled bias to the exploration. The idea is to start with
the null modifier and then progressively increase the chance
that a given transformation is disabled. The probability that
a given transformation will be disabled in the i-th modifier
is given by:

Di = i×
0.25

L
, 0 ≤ i ≤ L. (1)

where L is the number of modifiers generated for a given
compilation level. Thus the probability that each individual
transformation is disabled evolves from D0 = 0 to DL =
0.25 as the data collection progresses. The upper limit of
0.25 balances the generation of plans that are increasingly
dissimilar to the original plans in Testarossa, but not so
different as to be equivalent to plans generated using the
randomized approach.

L was experimentally set to 2000 to generate enough
modifiers for all the applications submitted to data collec-
tion with only a small excess of modifiers. If an application
executes long enough for a method to be recompiled more
than L times, that method is no longer recompiled while
still allowing other methods to be recompiled. If all meth-
ods eligible to be compiled reach L recompilations, the data
collection is gracefully terminated, and the application is al-
lowed to execute normally, without further recompilations.

The increase rate of 0.000125 per round makes the search
gradually diverge from the original compilation plan in Tes-
tarossa. Thus the search for alternative compilation plans
is likely to be concentrated over plans similar to the origi-
nal ones in Testarossa. The premise is that the compilation
plans included in Testarossa should be good for most meth-
ods in most applications, with some applications requiring
small modifications to some specific methods. In practice,
modifiers that diverge too much from the original compila-
tion plan (e.g.: 50% or more transformations disabled) tend
to exhibit poor performance.
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Theoretically, each distinct feature vector representing
a distinct method5 has a space of 2L possible modifiers to
explore. In this implementation, there are 58 distinct code
transformations that are controllable, leading to a search
space of 258 ≈ 2.88 × 1017. In practice, most of these
modifiers will not create better optimization plans. Thus
a heuristic-based search that evaluates the performance for
modifiers during data collection may focus the search on
promising regions within the space of possible modifiers. The
implementation of such a search is left for future work.

6. Learning a Model

The training of a machine-learned model involves process-
ing the data collected and selecting appropriate parameters
for the SVM. The data processing involves: (i) unarchiv-
ing collected data into intermediate data sets; (ii) optional
merging of intermediate data sets; (iii) ranking the data;
(iv) adjusting the data set to meet training requirements.
For example, the data set size must match the resources
available for training. This balance is also achieved by se-
lecting parameters for the SVM, such as the misclassification
cost and the kernel function to be used.

Unarchiving extracts information from the compact
archives and stores it in a format that is suitable for fur-
ther processing. Merging of intermediate data sets allows
for the selective use of data sets of interest to enable cross-
validation and leave-one-out cross-validation. The following
function is used to compute the ranking of the i-th record
in a data set:

Vi =
Ri

Ii

+
Ci

Th

(2)

where Ri is the accumulated running time of the method
compiled using the respective modifier, Ii is the invocation
counter, Ci is the compilation time, and Th is the triggering
value used by Testarossa for recompiling at compilation level
h (h is used to reflect the hotness or optimization level).6

Thus, Vi is the normalized cost for the i-th record, combining
the average time spent in a single invocation of the method
and the compilation cost normalized based on the expected
behavior of the loops in the method (if any). Compilation
plans that have smaller Vi are better. After ranking, each
unique feature vector has a set of pairs 〈Mi, Vi〉, where Mi

is a modifier and Vi is the value of the ranking function for
that modifier when applied to a method with the feature
vector. There will be at least one such pair for each unique
feature vector.

Figure 3 illustrates the ranking work flow, which is very
simple but CPU-intensive. Intermediate data sets are loaded
and progressively sorted in lexicographical order, based on
the feature vector of each record. This sorting aggregates all
experiments performed on the same feature vector. Three
alternative strategies are used to select the set of modifiers
that will be used to train the model for each unique feature
vector: (i) use only the best modifier; (ii) use the top N
modifiers; (iii) use the top M% best modifiers.

5 In this study, methods are as distinct as their respective feature
vectors.
6 For each optimization level, Testarossa uses three distinct com-
pilation triggers: one for methods without loops, a second one for
methods likely to have loops, and a third one for methods con-
taining many-iteration loops. The default setting in Testarossa is
to compile methods that contain loops sooner than those meth-
ods without loops, and even sooner if the method may contain
many-iteration loops.

Intermediate
Data Sets

Lexicographical
Sorting

Ranking

Plan
Selection

Normalization
Final

Data Set

Figure 3. Processing of intermediate data sets

Class label Feature vector components

Li 1:Fi,1 2:Fi,2 . . . m:Fi,m

Li+1 1:Fi+1,1 2:Fi+1,2 . . . m:Fi+1,m

...
...

...
. . .

...
Ln 1:Fn,1 2:Fn,2 . . . m:Fn,m

Figure 4. Data set format used by LIBLINEAR

Each component of each feature vector is normalized to
the [0, 1] range using

Cnorm =
Cj − Cmin

ΔC
0 ≤ Cnorm ≤ 1, (3)

where Cj is the j-th component of the feature vector, Cmin

the minimum value seen during data processing, and ΔC
the difference Cmax − Cmin (where Cmax is the maximum
value of the j-th component). This normalization eliminates
the dominant effect of larger numerical ranges over smaller
ones when an SVM is trained [18].

The format of the final data obeys the rules required
by LIBLINEAR. The data sets use a textual sparse-matrix
format, where each line is a data instance used as input when
training the machine-learned model.

Figure 4 illustrates the format symbolically. The data set
is composed of n data instances, each on a single line of
the file. Each i-th data instance is described starting with
the respective class label, followed by m components of the
feature vector. Features with value zero can be omitted and
all non-zero components must be preceded by its component
index. For example, 10:0.5625 indicates that the 10-th
component of the feature vector has value 0.5625. The
LIBLINEAR implementation requires class labels in the
[1, 231−1] range. Thus, the compilation plan modifier space
is remapped into this smaller space.

In order to train a machine-learned model based on SVM,
two parameters must be defined: (a) the weight C used by
the model to deal with (inevitable) misclassifications, and
(b) the SVM kernel that will be used. In this study, a value
of C = 10 was empirically selected to balance the quality of
the model generated and the training time. When selecting a
kernel, there is a trade-off between the ability of the model
to adapt to correlations within the training data and its
capability to both train and perform predictions in a timely
fashion. There are two factors to consider in kernel selection:
(a) dimensionality of the feature space, and (b) time budgets,
consisting of the time available for training a model, and the
time constraints when performing a prediction. This study
discovered experimentally that the non-linear kernel radial
basis function (RBF) had low training times (around 20%
of the training time of the linear model), but its prediction
speed was very low — a learned RBF model can take up to
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660 ms to compute a prediction.7 It should not take longer
to find out which transformations to apply to a method than
to compile that method at the highest optimization level.8

On the other hand, a linear kernel leads to longer training
time, but the time to compute a prediction can be as low
as 48 μs (4 orders of magnitude faster than the non-linear
kernel).

7. Integrating Compiler and Model

The operation of learning-enabled Testarossa, whose archi-
tecture is shown in Figure 5, is similar to the data collection
process. The initial decision to compile a method remains
unchanged from the current Testarossa (a). When such de-
cision is made, the VM instructs the JiT to compile the
chosen method (b). Next, the JiT selects the appropriate
optimization level (c). When the compilation is about to
start the optimization stage, the Strategy Control extension
computes the features for the method being compiled and
transmits them to the learned model (d) (the thicker arrow
indicates that the Control unit provides more information to
the model). The model computes a compilation plan mod-
ifier and sends it to the Control extension (e). Control in-
stalls the compilation-plan modifier (f) to disable some of
the transformations that would otherwise be applied (g). Af-
ter the compilation, the newly compiled method is installed
in the pool of compiled methods (h). As the application ex-
ecutes, the JiT eventually decides to recompile methods (i),
repeating the process.

Several practical issues must be dealt with in the imple-
mentation. Each feature vector has to be renormalized using
the same parameters that were used for normalization in the
data collection (the shift and scale parameters are saved in a
scaling file). The output of the machine-learned model is in
the [1, 231 − 1] range and has to be mapped back to the full
binary pattern that represents a modifier before the model
responds to Testarossa. This mapping is done using a lookup
table that associates known identifiers in the model with a
compilation plan modifier, loaded during the initialization
of the model.

The machine-learned model is in a separate process and
the communication between Testarossa and the model uses
named pipes [23]. This approach leads to a flexible prototype
enabling the machine-learned model to be replaced without
any change to the rest of the infrastructure. The disadvan-
tage is that, compared to a dynamic library, named pipes

7 The time spent computing a prediction is platform-dependent.
8 Compilation time is method dependent, but in the experimental
platform used in this study, Testarossa can compile many meth-
ods in the highest optimization level in about 100 ms to 220 ms.

introduce some overhead. However, we found that, in prac-
tice, this overhead is negligible.

8. Experimental Evaluation

This evaluation compares the start-up performance, through-
put performance, and compilation time of the machine-
learned compiler with the unmodified Testarossa compiler.

8.1 Experimental Setup and Methodology

Data collection and performance measurements use a blade
server with 16 nodes, each featuring two 2 GHz Quad-Core
AMD Opteron processors (model 2350), with 8 GB of RAM
and 20 GB of swap space, running CentOS GNU/Linux ver-
sion 5.2. No other applications are running. Each JVM in-
vocation was run 30 times to account for disturbances (e.g.:
scheduling policies in the operating system, garbage collec-
tion in the JVM), and a 95% confidence interval is presented
along with the average of each measurement. A JVM invo-
cation is the complete execution of an application. Some
benchmarks allow for an arbitrary amount of internal itera-
tions within a single JVM invocation to reduce measurement
noise caused by start-up effects. A development version of
Testarossa is used for all measurements.

Separate models are trained for three optimization lev-
els (cold, warm, hot). The model used for a given compila-
tion is based on the level selected by Testarossa’s heuristics.
The scorching level uses its own instrumentation of methods
to enable feedback-directed optimization and that instru-
mentation conflicts with the instrumentation used to collect
data for learning. Therefore, a learned model was not gen-
erated for scorching. When Testarossa selects scorching, the
original compilation plan is used. The evaluation uses the
SPECjvm98 benchmark suite and most benchmarks from
DaCapo 9.12 [4] with their largest input.9

The collection of data for training stresses the compiler
in ways that are not supported by the development team.
Therefore, data collection was limited to five SPECjvm98
benchmarks that successfully compiled with all the modified
compilation plans and whose outputs matched the expected
outputs. To enable leave-one-out cross-validation, five sets
of models were trained with the SVM, each including four
benchmarks. Each set consists of three models, one for each
optimization level except the scorching level. In the graphs,
two letters identify each benchmark included in a model
as follows: co for _201_compress, db for _209_db, mp for
_222_mpegaudio, mt for _227_mtrt, and rt for _205_ray-
trace. Data generated (i.e., compilation-plan modifiers) in
a session that crashed is not included in the training data
sets.

Table 4 presents the average size of the data sets obtained
through data collection and used for training for each level
of compilation. The training data merges the data from the
randomized search and the progressive randomized search
data collections. Separate models for each search strategy
were also trained and measured, but they did not perform
as well as the models that combine both strategies. The
Data-Instances column is the size of the training data set.
The number of unique classes indicates the diversity of
compilation-plan modifiers used for data collection. The
number of unique feature vectors represents the number of
distinct methods seen by the machine-learning algorithm.

9 Benchmarks tradebeans and tradesoap had to be excluded be-
cause of errors related to the execution environment, regardless
of the compiler used.
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Table 4. Average data set sizes used for training the machine-learned models.

Merged Data Ranked Data

Compilation Data Unique Unique Vector:Instance Training Training Training Vector:Instance

Level Instances Classes Feature Vectors Ratio Instances Classes Feature Vectors Ratio

Cold 1,551,545 1,421,717 1,175 1:1,320 2,326 949 1,094 1:2.12

Warm 1,577,157 1,455,947 1,153 1:1,368 2,213 1,590 1,108 1:1.99

Hot 2,543,564 2,229,364 1,201 1:2,118 2,073 1,379 1,069 1:1.94
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Figure 6. Start-up performance results (single iteration)
for SPECjvm98 relative to Testarossa, where higher bars
are better.

Ratio is the ratio of data instances per unique feature
vector. The ranking process selects at most 3 compilation-
plan modifiers for each unique feature vector. To be selected,
a modifier must have a ranking value of at least 95% of
the best performing modifier. The size of the data sets are
shown in the ranked-data columns. In total, 15 machine-
learned models were trained using LIBLINEAR. Each model
took 30 to 90 seconds to train with a misclassification cost
parameter of C = 10.

8.2 Experimental Results

When working with the SPECjvm98, Testarossa develop-
ers tune the compiler for throughput performance. We define
throughput to be the running time of a single invocation of
the JVM that repeats the execution of the same benchmark
10 times.10 This study also measures start-up performance,
which consists of running a single iteration of each bench-
mark in each JVM invocation. Start-up performance is more
representative of the experience of an actual user of these
programs but may not benefit as much from the adaptive
compilation system in Testarossa, which is designed mainly
for programs with longer running time. For servers, im-
proving start-up performance allows for faster compile-edit-
debug cycles, as well as reducing delays where the server is
initializing prior to application execution.

Figure 6 presents the start-up performance relative to
Testarossa. For benchmarks included in the training set,
leave-one-out cross-validation is used — hence the single bar

10 Some of the benchmarks run for a short time and therefore the
concern is that the process of starting up the JVM may dominate
the execution time for a single execution of those programs.
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Figure 7. Start-up compilation time (single iteration) for
SPECjvm98 relative to Testarossa, where lower bars are
better.

for those benchmarks. The performance for all five models is
measured for the benchmarks in the reservation set. Model
H3, which leaves out mpegaudio, produces significant per-
formance improvement for javac. Figure 7 shows that this
model also takes much less compilation time. This might be
evidence that the learned model can prevent the execution
of unproductive code transformations. The variation in the
performance gain across the models in the reservation set
indicates that the learning process is sensitive to the bench-
marks included in the training set. The average performance
improvement varies from 10% to 22% while the compilation
time is less than half of the compilation time in the unmod-
ified Testarossa. In some instances, such as jess, a five-fold
reduction in compilation time is observed.

The DaCapo benchmarks are significantly different from
the SPECjvm98 benchmarks and thus it is interesting to
study the performance of models trained only with bench-
marks from SPECjvm98 and evaluated on DaCapo.11 Pos-
itive results will indicate that the SVM-based models are
able to generalize for this task. Also, DaCapo benchmarks
are not normally used to test the compiler during the devel-
opment of Testarossa. The relative start-up performance for
DaCapo using the five models is shown in Figure 8. Inter-
estingly, the H3 model now has the worse performance and
the least reduction in compilation time (see Figure 9). The
highest performance gain is measured on luindex, a bench-
mark that indexes a set of documents. The worse is on h2,
which executes transactions using the model of a banking

11 Attempts to generate models using a large number of DaCapo
benchmarks failed because the use of unsupported combinations
of code transformations resulted in compilation errors.
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Figure 8. Start-up performance results (single iteration)
for DaCapo.
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Figure 9. Start-up compilation time (single iteration) for
DaCapo.

application. A careful comparison of Figures 8 and 9 indi-
cates a correlation between the performance improvements
and the compilation-time reductions, which suggests that
the learned models are disabling unproductive transforma-
tions. The highlight is that even when presented with a sig-
nificantly different set of benchmarks, the models delivered
a modest performance gain for start-up performance.

The learned models are not as successful when through-
put performance is measured as shown in Figures 10 and 11.
The comparison is with an unmodified Testarossa that in-
corporates many years of experience from the development
team in the tuning of the compilation plans for each op-
timization level. When 10 iterations of a (small) bench-
mark are run within a single JVM invocation, the adap-
tive heuristic in Testarossa has the opportunity to gather
the information that it needs to make good decisions about
the compilation level for the benchmark and the compiled
methods are run long enough to reap the benefits of the
compilation. Still, for a few benchmarks, namely javac in
the SPECjvm98 and tomcat in DaCapo, the trained models
outperform the adaptive Testarossa. Moreover, there is less
performance variation between models than in the case of
start-up performance.

The significant reduction in the compilation time is con-
sistent when throughput performance is measured as shown
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Figure 10. Throughput performance results (10 iterations)
for SPECjvm98.
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Figure 11. Throughput performance results (10 iterations)
for DaCapo.
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Figure 12. Relative compilation time for SPECjvm98.

in Figures 12 and 13. Again an interesting case is luindex
where model H3 spends the most time in compilation (re-
ducing it by about 22% in relation to Testarossa) but is the
only model to approach the performance of Testarossa. This
result indicates that the other models may be disabling code
transformations that are actually beneficial to performance.
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Figure 13. Relative compilation time for DaCapo.

9. Related Work

In the framework that led to MILEPOST GCC, Fursin et
al. initially focused on evaluating permutations in the opti-
mization space [10]. Later they developed a complete iter-
ative compilation framework that can self-tune on different
platforms [11]. The heuristics in the compiler are adjusted
for a set of applications on a target platform, depending
on the goal of the user: improved execution performance or
lower power consumption on embedded platforms, for exam-
ple. Similar to the approach described in this paper, they fix
the order of code transformations, and the machine-learned
model is external to the compiler. One key difference is that
their models are created on a per-application basis while our
models attempt to generalize for multiple applications.

Cavazos et al. train a program-specific machine-learning
model with a feature space composed of the 60 performance-
monitoring events [5]. The learning process applies an un-
ordered set of code transformations to a program used as
training input, and samples the performance events. By it-
erating, the model is exposed to transformations that have
a positive or negative impact in the performance counters.
When a new, unseen program is fed to the model, it first
samples the performance counters to make an initial pre-
diction of which code transformations should be enabled.
The process is repeated a few times (depending on the com-
pilation budget set by the user), and the best set of code
transformations is applied. Dubach et al. use a trained Ar-
tificial Neural Network (ANN) to speed up the process of
searching for better optimization transformations for a given
program [8].

Eeckout et al. propose an automated compilation-plan
tuning based on multi-objective evolutionary search that
uses Jikes as a testbed [16]. The idea is to fine tune the
compiler for specific scenarios: a given hardware platform,
a set of applications, or a set of inputs for applications of
interest. The tuning starts with an exploration of compila-
tion plans to discover those that are Pareto-optimal, and
then a subset of those are assigned to the JiT. The goal is
to reduce the number of compilation plans evaluated during
the second step. Earlier, they had used a similar approach
for the GCC compiler [15]. The key difference between this
paper and the work of Eeckout et al. is that their goal is
to adjust the compilation plans in the compiler, which is a
coarser approach when compared to method-specific compi-
lation. Their methodology has the advantage of not incur-
ring the overhead of a machine-learned model whenever a

compilation is carried out. However, their models need to
be retrained to new sets of applications and their plans may
not be as fine-tuned for each method as in a method-specific
approach.

Vaswani et al. use learning to predict the execution time
of a program given a set of code transformations, in the
GCC compiler, and find that the ideal compilation plan
varies from program to program, which is consistent with
the findings in this paper [24].

The approach described in this paper uses fine-grained
learning in which a model is built to find a good compila-
tion plan for a portion of a program, such as an individual
method or a loop. The related work that is closest to our
work is by Cavazos and O’Boyle [6]. They trained machine-
learned models based on logistic regression to learn com-
pilation strategies for the Jikes Research Virtual Machine
(RVM), which includes a multi-level adaptive JiT Java com-
piler. The models select code transformations to be applied
to each method. They use a set of 26 features to describe
methods in the form of counters (e.g.: length of the method
in Java bytecodes), attributes, and distribution of Java byte-
codes. In addition, three models are trained, one for each op-
timization level. For the lower optimization levels (-O0 and
-O1), data is collected for all possible permutations, respec-
tively, 16 and 512 compilation plans. As the transformation
space for -O2 would be impractical to exhaust (there are 220

possible plans), they collect data for 1000 randomly gen-
erated plans. The training data sets are created by ranking
data samples on a per-method basis and selecting those sam-
ples within 1% of the best performing method-specific plan.
They report improvements both on compilation and running
time for the fixed scenarios, i.e., when the compiler is set to
compile methods at a specific optimization level (-O0, -O1,
and -O2). However, they have limited success when compar-
ing with the adaptive strategy in the Jikes compiler.

Their work differs from ours in the following aspects: (i)
the number of code transformations available in Jikes is sig-
nificantly smaller than the number of code transformations
in Testarossa (the models in this paper could control 58 code
transformations leading to a search space that is several or-
ders of magnitude larger log(258/220) ≈ 11.4); (ii) in this pa-
per separate models are trained for each optimization level,
and Testarossa has an additional optimization level;12 (iii)
the dimensionality of the feature vector in this study is con-
siderably larger; (iv) they use a logistic-regression model,
which may output compilation plans not seen during the
training, as opposed to a multi-class SVM; (v) Jikes is a re-
search compiler while Testarossa is a full-fledged and broadly
deployed commercial compiler.

10. Conclusion

This paper describes the use of machine-learned models
for method-specific compilation in Testarossa, a commer-
cial JiT compiler from IBM. The framework includes (i) a
lightweight profiling mechanism; (ii) a binary archive for-
mat for large-scale data collection; (iii) tools to process the
data collected to train machine-learned models; and (iv) a
lightweight communication protocol to integrate the com-
piler and the machine-learning algorithms.

12 When compared to Jikes, Testarossa has, in fact, two addi-
tional optimization levels, but one of those is a special-purpose
optimization level (ahead-of-time compilation), not used in this
paper.
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The experimental evaluation revealed that the learned
models outperforms out-of-the-box Testarossa on average
for start-up performance, but underperforms Testarossa for
throughput performance, one of the key metrics used to
measure performance during development, and that thus
received significant development attention over many years.
A surprising result is the significant reduction in compilation
time across two benchmark suites. A pleasantly positive
result was the ability of the model to generalize, for start-
up performance, from learning in SPECjvm98 benchmarks
to DaCapo benchmarks.
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