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ABSTRACT
Modern deep learning frameworks provide imperative, eager execution programming interfaces embedded in
Python to provide a productive development experience. However, deep learning practitioners sometimes need
to capture and transform program structure for performance optimization, visualization, analysis, and hardware
integration. We study the different designs for program capture and transformation used in deep learning.
By designing for typical deep learning use cases rather than long tail ones, it is possible to create a simpler
framework for program capture and transformation. We apply this principle in torch.fx, a program capture and
transformation library for PyTorch written entirely in Python and optimized for high developer productivity by
ML practitioners. We present case studies showing how torch. fx enables workflows previously inaccessible in

the PyTorch ecosystem.

1 INTRODUCTION

Early graph mode or define-and-run (Tokui et al., 2019)
deep learning frameworks like Caffe (Jia et al., 2014),
Theano (Al-Rfou et al., 2016), and TensorFlow (Abadi et al.,
2016) defined APIs in which the user constructed a graph-
based intermediate representation (IR) of the desired com-
putation. Program transformations like program differentia-
tion, device/host partitioning and placement, quantization,
device lowering, and performance optimization could be
applied directly to this IR. One way to think of these frame-
works is as simple embedded programming languages that
are meta-programmed from a host language, predominantly
Python (Innes et al., 2017).

However, these frameworks require the user to exit the host
language and enter a domain-specific language and runtime,
which often has inferior user experience compared to the
host language. For instance, debugging requires different
tools from the typical debugging toolkits such as Python’s
pdb library.

More recent eager mode or define-by-run (Tokui et al.,
2019) frameworks such as Autograd (Maclaurin et al., 2015),
Chainer (Tokui et al., 2019), PyTorch (Paszke et al., 2019)
and TensorFlow Eager (Agrawal et al., 2019) eschew ex-
plicit graph-building APIs in favor of programming in the
host language directly. The primary program transforma-
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tion used in deep learning frameworks, program differen-
tiation, is reformulated from an ahead-of-time transforma-
tion to a just-in-time transformation, in the form of auto-
differentiation.

Most training and inference can be done using eager mode
with auto-differentiation. However, there are still trans-
formations—such as program quantization or operator fu-
sion—that are easier to write given the additional program
structure provided by an IR. To bridge this gap, an eager-
mode framework needs a way of capturing program struc-
ture from user programs to enable these transformations.

Some program capture systems are built to capture a free-
standing representation of the whole program for the pur-
poses of serialization or export. For instance, Torch-
Script (DeVito et al., 2018) includes mutable state, control-
flow, and complex data types for the purposes of faithfully
modeling the semantics of the original Python program.
Modeling Python in full generality comes at the cost of
complexity in program capture techniques and difficulty of
writing transforms on the highly-complex IR.

In contrast, it is possible to decouple the requirements of
faithfully modeling Python from the requirements needed
for transforms such as quantization or fusion. Transforms
are often formulated as modifications to a high-level directed
acyclic graph (DAG) organization of the code, with imple-
mentation details hidden within high-level blocks (such as
Convolution or Batch Normalization). Thus, simplifications
can be made to both the program capture mechanism and
the IR it produces, focusing on the high-level DAG structure
of the majority of neural network computation.
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For this use case, we present torch. fx, a high-productivity
library for capturing and transforming PyTorch programs.
torch. fx explicitly trades generality of supported pro-
grams for simplicity of program capture and representation.
torch. fx focuses on the DAG representation of deep learn-
ing programs and provides customization interfaces to adapt
programs into this representation. In doing so, torch. fx is
able to provide a program transform interface that supports
the majority of deep learning programs while providing
simple and easy-to-use APIs for implementing transforms.

We present the following contributions:

1. A practical analysis of the features of program capture
and transformation that are important for deep learning
programs.

2. A Python-only program capture library that imple-
ments these features and can be customized to capture
different levels of program detail.

3. A simple 6 instruction IR for representing captured
programs that focuses on ease of understanding and
ease of doing static analysis.

4. A code generation system for returning transformed
code back to the host language’s ecosystem.

5. Case studies in how torch. fx has been used in prac-
tice to develop features for performance optimization,
program analysis, device lowering, and more.

2 BACKGROUND

When capturing and transforming programs, both eager
and graph-mode frameworks must make choices about cap-
turing program structure, program specialization and the
design of the intermediate representation in which programs
are kept. The combination of these choices determines the
space of programs that are representable in the framework,
the ease of writing transformations, and the performance
of resulting transformed programs. In general, supporting
more programs at high performance requires a more com-
plicated capture framework and IR and subsequently makes
transformations harder to write.

2.1 Capturing Program Structure

There are several ways to capture program structure from
Python programs. The simplest way is to frace the exe-
cution of a model given some example inputs and record
the operations that occur, which is the approach used by
PyTorch’s jit. trace (DeVito et al., 2018). A slightly more
complicated variant of this approach is to perform tracing
with abstract values rather than example inputs (symbolic
tracing). MXNet’s Gluon (Chen et al., 2015), and Tensor-
Flow’s tf.function (Moldovan et al., 2018) implement this

approach. In addition to the user not having to provide ex-
ample inputs, this approach surfaces locations where Python
control flow depends on the input values, rather than collect-
ing a trace specialized to the control decisions imparted by
the example inputs.

During tracing, operations are only recorded for tensors
and a small number of other data structures such as lists
of tensors. This means that tracing can only record a rep-
resentation for a subset of the Python program. Although
tracing’s visibility into the program is limited, this is often
sufficient for deep learning computations, which are most of-
ten flat sequences of tensor operations—termed basic block
programs in Section 2.3.

By overriding the execution behavior of standard Python
code, some tracing systems can capture more program struc-
ture, such as control flow, at the cost of additional complex-
ity. For instance, tf.function augments symbolic tracing
with a Lightweight Modular Staging (Rompf & Odersky,
2010) system that uses Python AST transforms to convert
imperative control flow constructs into higher-order Python
functions, which can then be traced.

An alternative way to capture program structure is to have
users write models directly in an embedded programming
language within Python. The simplest of these techniques
is to provide a graph-building API similar to TensorFlow,
which lets users build programs (graphs) by calling Python
functions. It is awkward to represent control flow in these
APIs, so PyTorch’s TorchScript (DeVito et al., 2018) instead
extracts programs directly from the Python source using a
traditional lexer-parser-compiler toolchain. TorchScript can
inspect the source syntax in full fidelity and can understand
language constructs such as structured control flow, collec-
tion types (e.g. tuple, list, dict) and user-defined types.
As opposed to tracing, which can fail silently, embedded
language approaches can report unsupported constructs as
part of compilation. On the other hand, embedded language
compilation is significantly more complicated to implement,
since it requires a full language stack. Even then, in practice
these systems will not support the full Python language,
so users still need to make their program conform to the
supported subset (albeit a larger subset than supported by
tracing systems).

Systems such as Zygote.jl (Innes, 2018) and TPU integra-
tion (Fischer & Saba, 2018) in the Julia ecosystem (Bezan-
son et al., 2017) as well as Swift for TensorFlow (Saeta
et al., 2021) provide program transformation interfaces by
way of integration into non-Python host languages. The
main drawback of such native host language integrations
in Swift and Julia is that they require the user to exit the
Python ecosystem. Python has considerable momentum and
extensive libraries in the numeric/scientific computing (and
particularly deep learning) space, and many users prefer
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to stay in the Python ecosystem. While other languages
may provide objectively better experiences in some respects,
adoption has been slow.

2.2 Specializing Programs

A Python expression such as a + b is very abstract. There
are no constraints on the types of a or b. Even if both are
Tensors, the number of dimensions and the size of the dimen-
sions might vary. When ML frameworks capture programs,
they often simultaneously specialize these expressions such
that they are only valid for specific types or tensor shapes.
The more a program is specialized, the fewer inputs it will
work on, so approaches vary in the degree of specialization,
the timing of when specialization is done (ahead of time,
just-in-time), and the safety of the specialized result.

For example, PyTorch’s TorchScript torch. jit.trace (De-
Vito et al., 2018) specializes to the shape of the example
inputs. jit.trace capture is unintrusive—that is—it records
the operations that occur during an actual execution run of
the program. One implication of this is the presence of
tensor metadata such as the ndim or shape attributes, which
can escape the traced region and be used in control deci-
sions within the Python program. This may cause the traced
representation to be shape specialized—that is—it is only
valid for the value shapes used at trace time and may fail for
other shapes.

To avoid the problem of specialization failing for some
inputs, systems such as DyNet (Neubig et al., 2017) and
LazyTensor (Suhan et al., 2021) perform tracing just-in-time,
and thus can capture specialized program representations for
every invocation. At runtime, these systems defer execution
of tensor operations, instead accumulating a program trace.
When a value must be materialized, the system will apply
transformations to the collected program representation (e.g.
automatic batching or native code lowering) and execute the
code, returning the values requested. However, this process
adds additional cost, since the program is captured on every
invocation. LazyTensor uses a caching system to reduce this
cost: optimized artifacts are stored in a cache keyed by a
hash of the collected IR. On further invocations of the same
IR, the optimized artifact can be called directly.

The performance of JIT specialization can also be improved
by proving that re-capturing the program is unneeded for
some inputs. For instance, JAX’s jit combinator (Frostig
et al., 2018) uses pure, functional Python programs as in-
put. This enforces referential transparency on non-Tensor
computation like shape expressions. When some transform
requires specialization, such as conversion to XLA (The
XLA Team, 2017) with static shapes, the system can look
at the shapes of the inputs to determine if a new capture is
required. A disadvantage of JIT specialization is that it is
more complicated to reason about code execution. For in-

stance, print or pdb statements in traced code will only be
executed on runs where re-tracing occurs. Re-tracing and re-
transformation can also cause hard-to-predict performance
bubbles as execution of the system stalls to re-specialize.

2.3 Intermediate Representation Design

ML frameworks vary in the format of their IRs, with richer
IRs capturing more programs and being more expressive at
the cost of additional complexity to write transformations
or run the code efficiently.

Language Many frameworks define their IR in a cross-
language way. For example, Caffe and TensorFlow use
the Protocol Buffers format (Xiao et al., 2008) to represent
computational graphs. PyTorch’s JIT and MXNet use C++
data structures for their IR with additional bindings into
Python. Such native representations can have better runtime
performance and may be easier to serialize. On the other
hand, these representations can impose a learning curve
above that required for programming Python.

Control flow Most neural networks are expressible as
flat sequences of tensor operations without control flow
such as if-statements or loops—a definition we refer to as
a basic block program. Basic block programs are often
represented as a directed acyclic graph (DAG) data struc-
ture. Multilayer Perceptrons (MLPs), Convolutional Neural
Networks (CNNs) such as ResNet (He et al., 2015) and per-
sonalization/recommendation models (Naumov et al., 2019)
are easily expressed this way. Similarly, Transformer net-
works (Vaswani et al., 2017) can also be expressed in this
way, barring the loop needed for sequence generation on the
decoder portion of the network.

Recurrent Neural Networks (RNNs) such as the Elman
RNN (Elman, 1990), LSTM (Hochreiter & Schmidhuber,
1997), and Gated Recurrent Unit (GRU) (Cho et al., 2014)
are not immediately expressible in this way, as the recurrent
network computation is applied repeatedly across elements
of a sequence with (typically) dynamic length. RNN struc-
tures can be represented in an imperative language as a loop
with tensor computation applied in the loop body and tensor
values carried across loop iterations. However, in practice,
these RNN structures are typically provided as wholesale
tensor operations. Thus, an entire RNN application over a
sequence appears in code as a call to an RNN function or
module. Therefore, these network architectures often also
appear as basic block programs.

Nevertheless, many frameworks support capturing and rep-
resenting control flow in their IR. TorchScript built control
flow support into all of its components first-class due to
anticipation for workloads to become more complex, par-
ticularly in sequence processing domains. JAX uses higher-
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order functions such as jax.lax.scan to allow functional-
style control flow (Frostig et al., 2018). MLIR represents
control flow with basic blocks that end in tail calls (Lattner
et al., 2020). In addition to adding complexity to the IR,
more general control flow also makes transforms such as
common sub-expressions more complicated to implement.

State Deep learning models contain state in the form of
the trainable model weights used in different layers. Apart
from these parameters, most networks operate as pure func-
tions of their inputs. ML frameworks take different ap-
proaches to handling how this state is mutated.

PyTorch allows values to be mutated and tensors can be
views of each other. For example, the slicing syntax x[i]
(where x is a Tensor value) does not produce a new Tensor
value, but rather returns a view aliasing the subset of tensor
x indexed by i. Views can also be mutated. For example,
the expression x[i] = y will write the value of y into the
portion of x indexed by i.

Since PyTorch supports these aliasing and mutation seman-
tics, modifications to programs must be done in the context
of an analysis that proves that the modification is safe (An-
dersen, 1994). TorchScript implemented such alias analysis
for the purpose of reasoning about the safety of transforms
over the TorchScript IR. However, this comes at a high cost:
all operations in the program must be annotated with infor-
mation specifying their aliasing and mutation behavior. In
practice, many functions (opaque calls or ones that have not
been annotated with relaxed semantics) are treated with a
conservative assumption that the callee mutates global mem-
ory, causing the operation to act as a barrier and hindering
optimization. Needing to reason about aliasing and mutabil-
ity complicates pass authoring, adds additional maintenance
burden to the framework, and can limit optimization oppor-
tunities, but enables the user to apply the full generality of
the PyTorch tensor language.

JAX’s functional approach moves the burden of tracking this
state outside of the framework. Instead the model must be
turned into a pure function where the parameters are passed
as inputs. Typically, this is done with wrapper libraries
such as Haiku (Hennigan et al., 2020) or Flax (Heek et al.,
2020). Any transforms that have to modify both state and
code, such as folding batch norm scaling to a weight tensor,
are made more complicated because these components no
longer live together in the same framework.

3 DESIGN PRINCIPLES

Many of the different designs for program capture and trans-
formation used in existing frameworks favor the ability to
represent more deep learning programs at the cost of the
complexity of their implementation. When captured pro-

grams are the only way to run a program, the ability to
capture a program in full fidelity is crucial. But PyTorch is
primarily used as an eager execution framework and pro-
gram capture is only used for some specific transforms; It
does not need to work for an entire program. Furthermore,
most PyTorch programmers who want to transform models
are machine learning practitioners who prefer to work in
Python and may have less knowledge of compiler design.

By designing for typical deep learning models rather than
the long tail, it is possible to create a framework that is much
easier to use and simpler to implement. This philosophy is
captured by torch. fx’s design principles:

* Prefer making program capture and transformation
easy for typical models at the cost of working for all
possible programs. Avoid complexity to support long-
tail, esoteric use cases.

* Work with tools and concepts that ML practitioners are
already familiar with such as Python data structures
and the publicly documented operators in PyTorch.

* Make the process of program capture highly config-
urable so users can implement their own solutions for
long-tail uses. Allowing users to make one-off config-
urations is simpler than handling the general case.

4 TORCH.FX OVERVIEW

In the spirit of simplicity, torch.fx captures programs
via symbolic tracing, represents them using a simple 6-
instruction python-based IR, and re-generates Python code
from the IR to execute it. To avoid the complexities of re-
capture for JIT specialization, torch. fx makes no attempt to
specialize programs itself, instead relying on the transforms
to decide what specializations they want to perform during
capture. The process of symbolic tracing can be configured
by users to work for more esoteric uses.

Figure 1 shows an example of capturing code with torch. fx.
symbolic_trace takes a function or torch.nn.Module and
captures its structure in a Graph object. That Graph object is
combined with module parameters in a GraphModule, which
is a subclass of torch.nn.Module whose forward method
runs the captured Graph. We can print the Nodes of this
Graph to see the IR that was captured. placeholder nodes
represent inputs and a single output node represents the
result of the Graph. call_function nodes have a reference
directly to the Python function they would call. call_method
nodes directly invoke a method on their first argument. The
Graph is reconstituted into Python code (traced.code) for
invocation.

Figure 2 shows an example transform using torch. fx. The
transform finds all instances of one activation and replaces
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import torch
from torch.fx import symbolic_trace, GraphModule

def my_func(x):
return torch.relu(x).neg()

# Program capture via symbolic tracing
traced : GraphModule = symbolic_trace(my_func)
for n in traced.graph.nodes:
print(f’{n.name} = {n.op} target={n.target} args={n.args}’)

x = placeholder target=x args=()

relu = call_function target=<built-in method relu
neg = call_method target=neg args=(relu,)

output = output target=output args=(neg,)

...> args=(x,)

print(traced.code)

def forward(self, x):
relu = torch.relu(x); x = None
neg = relu.neg(); relu = None
return neg

Figure 1. torch. fx captures programs using symbolic tracing into
a simple IR and generates Python code from that IR.

from torch.fx import Graph
def replace_activation(g: Graph, old, new):
for n in g.nodes:
if n.op == ’call_function’ and n.target == old:
# create IR to call new activate
with g.inserting_after(n):
new_n = g.call_function(new, n.args)
n.replace_all_uses_with(new_n)
g.erase_node(n)
# or for this simplified case: ‘n.target = new‘

replace_activation(traced.graph, torch.relu,
torch.nn.functional.gelu)
traced.recompile()

Figure 2. Transforms, like this one that replaces activation func-
tions, are written directly in Python.

them with another. We use it replace relu with gelu in our
example.

4.1 Program Capture

torch. fx’s symbolic tracing mechanism uses a Proxy data
structure to record operations on values flowing through the
program. Proxy is a duck-typed Python class that records at-
tribute accesses and method calls on it, acting as an abstract
value that stands in for the concrete program values. Proxy
uses the __torch_function__ protocol (Abbasi et al., 2020)
to intercept and record the dispatch of PyTorch operators,
which are free functions. Finally, torch.fx overrides Py-
Torch’s Module abstraction to record calls to Modules using
proxied values. The process of symbolic tracing is config-
urable via a Tracer class whose methods can be overridden
to control what values are kept as Proxys and which are
partially evaluated during the trace.

4.2 Intermediate Representation

torch. fx represents programs in a DAG-based IR, which
is amenable to the basic block programs common in deep
learning. Programs are represented as a Graph object, which
contains a linear series of Node objects representing opera-
tions. Nodes have a string opcode, describing what type of
operation the Node represents (the semantics of the opcodes
can be found in Appendix A.1). Nodes have an associated
target, which is the call target for call nodes (call_module,
call_function, and call_method). Finally, Nodes have args
and kwargs, which together represent the arguments to the
target in the Python calling convention as witnessed during
tracing' (the semantics for args and kwargs for each opcode
can be found in Appendix A.2). Data dependencies between
Nodes are represented as references to other Nodes within
args and kwargs.

To simplify the IR, torch. fx’s IR does not have primitive
operations that model the construction or mutation of data
structures. Nevertheless, args and kwargs support immedi-
ate values: Python built-in types such as int and float and
recursive collection types like tuple and list can appear as
Node arguments without separate object construction Nodes.
Because Nodes support immediate values, the IR is clean
and Nodes are approximately 1-to-1 with Tensor operations.

torch. fx stores the state of the program in the GraphModule
class. GraphModule is the container for transformed pro-
grams, exposing the transformed, generated code as well
as providing the familiar parameter management APIs of
nn.Module. GraphModule can be used anywhere a normal
nn.Module can be used, providing interoperability between
transformed code and the rest of the PyTorch ecosystem.

torch. fx’s IR provides two opcodes for accessing state in
the Module hierarchy: call_module, which invokes a sub-
Module’s forward method, and get_attr, which fetches a
parameter from the Module. Transformed code can interact
with the Module hierarchy in much the same way normal
PyTorch code can via these opcodes. In addition, trans-
formations can manipulate the mutable state in the Module
hierarchy simultaneously with transformations over code.
This provides a natural separation between the mutable pa-
rameters and the functional Graph that interacts with them
via call_module Nodes, while still keeping them together in
a single object for doing transformations that work on both.

4.3 Source-to-Source Transformation

The final stage in the torch.fx transformation pipeline is
code generation. Rather than exiting the Python ecosys-
tem and entering a bespoke runtime, torch.fx generates

'No normalization is applied to args or kwargs; They are pre-
served as the user wrote them. This facilitates further backward-
compatibility of the generated code
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class SampleModule(torch.nn.Module):
def forward(self, x):
return self.act(x + math.pi)

sm = SampleModule()

sm.act = traced # from previous figure
traced : GraphModule = symbolic_trace(sm)
print(traced.code)

def forward(self, x):
add = x + 3.141592653589793; x = None
gelu = torch.nn.functional.gelu(add);
neg = gelu.neg(); gelu = None
return neg

add = None

Figure 3. torch. fx generates Python code as its output, so it can
be reused in further capture and transform steps.

valid Python source code from the transformed IR. This
transformed code is then loaded into Python, producing a
callable Python object, and installed as a forward method
on the GraphModule instance. Using code generation allows
the results of torch. fx transforms to be installed in models
and still used in further transforms. For instance, in Figure 3
we take the result of tracing our original program and install
it as the activation in a new module. Then, we symbolically
trace the result for further transformation.

5 DESIGN DECISIONS

torch. fx mixes and extends approaches from previous work
to deliver an easy to use, simple to implement, and config-
urable library. We highlight a few of these decisions here.

5.1 Symbolic Tracing

torch. fx uses symbolic tracing with Proxy objects rather
than embedded language techniques because they are easier
to implement directly in Python using its flexible object
model. The implementation is simple enough that users
can read and step through the source when tracing behaves
unexpectedly.

Tracing also helps eliminate control flow in a model not
dependent on inputs such as the loop over sequential mod-
ules in a torch.nn.Sequential. PyTorch models are written
pervasively with these abstractions, with many users also
using third party libraries that contain their own model im-
plementations, so it is important to be able to trace through
these abstractions to get to the actual operators running.

Symbolic tracing works well for common models at the cost
of not being able to capture long-tail models that actually
contain input-dependent control flow. We make up for this
limitation by making the tracing process customizable to
work around one-off issues.

5.2 Configurable Program Capture

torch. fx’s symbolic tracing is customizable. A Tracer class
controls the behavior of fx.symbolic_trace. Its methods
can be overridden to change the tracing process’s behavior.

The is_leaf_module method can be overridden to spec-
ify which PyTorch Module instances should be treated as
opaque calls during tracing. By default, torch.fx keeps
PyTorch built-in Modules such as nn.Conv2d intact while
tracing through user-defined Modules, since this creates a
trace of standard, understandable primitives. Customizing
this behavior can block out portions of a model that con-
tain unsupported language features or modify the level of
representation used for transformations.

create_proxy is a method that can be overridden to cus-
tomize the behavior of creating a Node in the Graph and the
associated runtime Proxy value. This can be used to, for
example, install custom metadata onto Nodes for the purpose
of transformation or to support custom data structures as
traceable values. A custom Tracer could, for instance, spe-
cialize the sizes and shapes of Tensors and use these values
to capture a program that would otherwise not be traceable
without specialization.

5.3 AoT Capture without Specialization

While ahead-of-time tracing limits the space of programs
that can be captured (e.g. arbitrary control flow is not sup-
ported), it provides a more predictable and more observable
capture, transformation, and code generation process that
fits into the PyTorch developer experience and works well
in practice.

Unlike example-based tracing, symbolic tracing cannot inci-
dentally specialize program flow because the information
needed to make data-dependent control flow decisions is not
present at trace time. Common Tensor attributes used in con-
trol decisions such as shape and ndim are returned as Proxy
values during symbolic tracing. Operations on these values
can then be recorded. On the other hand, when these Proxy
objects are used in a context where untraceable operations
(such as a cast to Python built-in types like int or bool)
occur on them, the user receives an error message describing
the problem and a stack trace indicating the location of the
issue.

5.4 Python-based IR and Transforms

Rather than use a cross-language format such as proto-
col buffers, torch. fx IR is entirely represented and imple-
mented Python. Users can call, read, or override it easily.
There is no need to understand Protocol Buffers or C++ (or
set up either of their build environments), which present
barriers to ML engineers familiar with working primarily in
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Python. Transforms are written in Python as well.

Furthermore, the result of transformations is also Python
code. This makes it easy to inspect for correctness, debug
with pdb, feed to libraries, and pass on to further transforms.
Transformed code is encapsulated in a GraphModule that
can be used in PyTorch just like any other nn.Module. For
instance, a user can TorchScript compile the model for de-
ployment or use it in PyTorch’s DistributedDataParallel
library. Users can also save the generated code as a source
file via the experimental GraphModule. to_folder APIL.

Code generation further integrates torch. fx into the Python
ecosystem rather than sequestering transformed code into a
bespoke and harder-to-use runtime.

5.5 No Control Flow Inside IR

With Transformers (Vaswani et al., 2017) increasingly re-
placing sequential recursive neural networks with larger
scalable attention modules, the use of host language control
flow in deep learning is becoming more rare. Many models
can be expressed without it, and even for programs with
some control flow (e.g. a beam search decoder), there are
large blocks of the model without control flow (the encoder
and the step of the decoder).

However, the presence of control flow in an IR adds signif-
icant complexity regardless of whether a particular model
uses it. Most analyses on the IR must be expressed as fix-
point data-flow (Kildall, 1972) over the program rather than
simple forward propagation. The author must define a lat-
tice, transfer function, and join function for the analyzed
property in the program and prove monotonicity and finite-
ness thereof. While familiar to compiler writers, we have
found that writers of ML transforms often introduce bugs in
transforms such as having join functions that are not mono-
tonic or failing to iterate until converged. In contrast, for a
basic block IR, only a transfer function is needed.

An example of the complexity of fix-point analysis can be
found in shape propagation: shapes can be trivially propa-
gated forward through a basic block program (barring a few
operations with value-dependent output shapes). However,
when control flow is added, shape propagation does not
satisfy the finiteness property—a value carried across a loop
iteration can take on an infinite number of shapes, as shown
in Figure 4. The analysis will typically reach a “dynamic’
value in such situations. Shape analysis would then provide
under-specified data, which would hinder further transfor-
mations that require concrete shape information, such as
ASIC lowering.

>

Furthermore, some transformations proposed in the ML
community are not well defined in the presence of control
flow, such as the quantization transform described in Section
6.2.1.

def loop_shapes(x, itr):
# x is an input tensor of size [1, N]

for _ in range(itr):
x = torch.cat((x, x), dim=0)

# Depending on the number of loop iterations, x may have an
# arbitrary leading dimension i.e. x \in [*dynamicx, N]
return x

Figure 4. A demonstration of dynamic shapes due to loop-carried
dependencies

The fact that the IR does not contain control flow itself does
not prevent transforms from working on sub-graphs of basic
blocks within a larger model; We leave the details of how
this composition works to the writer of the transform or the
user applying the transform.

5.6 Functional Graphs but Stateful Modules

As described in Section 2.3, aliasing and mutability seman-
tics in a language can necessitate complex analyses to prove
that a program transformation is legal. torch.fx omits such
analysis, instead defining mutating operations as undefined
behavior with the option to raise errors when it is captured
during tracing.

Avoiding mutability in the IR simplifies analysis and trans-
formation of deep learning programs greatly. Most models
do not suffer from this restriction since most mutation is
localized to the parameters of the model.

torch. fx still preserves the hierarchical nn.Module structure
from PyTorch and can represent module calls and attribute
fetches from this structure. Modules like torch.nn.Conv2d
are well understood by users, have well-documented argu-
ments, and hide the stateful use of parameters within the
module, so preserving these objects makes writing transfor-
mations easier. For instance, a torch.nn.BatchNorm module
will actually contain mutable state, but that state is well
understood by ML practitioners.

6 CASE STUDIES AND EVALUATION

torch.fx has been used by PyTorch users both in the open-
source ecosystem as well as as a critical component of
the deep learning stack at a major software company. We
study the complexity of torch.fx’s IR and various use cases
of torch.fx, including performance optimization, program
analysis, and device and runtime export.

6.1 IR Complexity

One of the goals of torch. fx is to simplify the IR produced
for ML models and make it easier for ML practitioners to un-
derstand. We can compare torch.fx IR to the IR produced
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by the two TorchScript (DeVito et al., 2018) front-ends
(jit.trace and jit.script), since all start from the same
input programs. Figure 5 shows some example IR from the
start of a ResNet model. The IR produced by TorchScript
is very rich, including tensor operations, scalar operations,
control flow, data structures, hierarchical module structure,
and aliasing and mutability semantics. Support for these
features makes it much more verbose for simple models,
resulting in 2614 operations from jit.script and 860 from
jit.trace. The same ResNet model consists of 445 oper-
ations in torch.fx IR. Most of the reduction comes from
eliminating control flow irrelevant to the captured trace. But
torch. fx IR also benefits from inlining simple constants
and data structures, so is almost half the size of the IR the
captured with torch. jit.trace, which similarly eliminates
control flow.

The complex IR from the TorchScript front-ends induces
complexity in the program transform authoring process, re-
quiring more care to write transforms correctly and leading
to longer and less maintainable transform code. torch.fx
addresses this by greatly simplifying its captured represen-
tation, facilitating transforms that are easier to write and
maintain.

6.2 Performance Optimization

PyTorch’s tensor language provides good performance in
many cases, but architectural details of the underlying hard-
ware create opportunities for further optimization. We in-
vestigate techniques by which torch.fx enables runtime
performance improvements.

6.2.1 Quantization

Quantization (Jacob et al., 2017) is a technique used to
increase the efficiency of neural network computation by
reducing the size of Tensor data elements. Smaller data
elements require less memory bandwidth, less storage, and
can often be processed faster by modern processors. Neural
network computation has relaxed sensitivity to numerical
perturbations, so quantization is a canonical performance
optimization.

Performing Post-Training Quantization or Quantization-
Aware Training requires access not only to parameter values
but also to the activation values that flow through the pro-
gram (Krishnamoorthi, 2018). For instance, quantization-
aware training needs to measure the distribution of floating
point values in the output of a tensor addition operation to
calculate a scale and bias value under quantized numerics.
Such introspection is generally not available in PyTorch
eager mode. However, torch. fx provides a lightweight way
to capture such a program representation.

The Post-Training Quantization procedure entails the fol-

lowing stages:

1. A preparation phase, which instruments the program
with “observer” objects that record statistical informa-
tion about the floating-point values contained in Tensor
values at various points in the program.

2. A calibration phase, where the user feeds batches of
data through the network to populate the observers.

3. A conversion phase, where the collected statistics are
used to down-cast weight values and convert operations
in the model to quantized operations with embedded
scale and zero-point information.

Quantization makes use of torch.fx’s graph and
GraphModule representation to simultaneously modify the
program code and weight values. The process for
Quantization-Aware Training is analogous to phases (1)
and (2) in the above but with “fake quantize” observers that
snap floating point values to the corresponding values under
quantized numerics.

We evaluate the performance of a DeepRecom-
mender (Kuchaiev & Ginsburg, 2017) model with
Post-Training Quantization applied on a server-class Intel
Xeon Gold 6138 CPU @ 2.00GHz using FBGEMM (Khu-
dia et al., 2021) quantized operations. Figure 6 shows
that torch.fx-enabled quantization confers up to a 3.3x
runtime performance improvement compared to the
floating point model, with low variance highlighting the
predictable performance characteristics of ahead-of-time
transformation. Correctness testing of quantization is not
straightforward since it is a semantics-changing transform,
but the applicability of numerics on this workflow has been
validated on several model architectures via evaluation set
testing. Numeric data for the experiment can be found
in Appendix B. The preparation phase takes 44 ms, the
calibration phase takes 590 ms, and the conversion phase
takes 3.8 seconds. The majority of the time in the latter two
phases can be attributed to tensor operations during model
execution or value quantization, respectively.

Not only does torch.fx-based quantization provide the
expected performance increases, but the tool’s develop-
ment saw an order-of-magnitude productivity increase com-
pared to an implementation on the TorchScript platform.
By reducing the amount of complexity in the representa-
tion, exposing transformation APIs in Python, and embed-
ding into the native PyTorch ecosystem, torch. fx provides
a high-productivity environment for semantics-changing
transforms like quantization.

6.2.2 Fusion Optimizations

Operator Fusion is a class of optimization that merges pat-
terns of tensor operations together into a single compute
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graph(%self : torchvision.models.resnet.ResNet,

%x.1 : Tensor):

%13 : str = prim::Constant[value="AssertionError: "]()
%14 : bool = prim::Constant[value=0]()

%15 : float = prim::Constant[value=1.0000000000000001e-05]1()
%16 : float = prim::Constant[value=0.100000000000000011()
%17 : str = prim::Constant[value="..."]()

%19 : bool = prim::Constant[value=1]()

%20 : int = prim::Constant[value=2]()

%21 : int = prim::Constant[value=3]()

%23 : int = prim::Constant[value=-1]1()

%24 : ...Conv2d = prim::GetAttr[name="conv1"](%self)

%25 : Tensor = prim::GetAttr[name="weight"](%24)

%26 : Tensor? = prim::GetAttr[name="bias"](%24)

%27 : int[] = prim::ListConstruct(%20, %20)
%28 : int[] = prim::ListConstruct(%21, %21)
%29 : int[] = prim::ListConstruct(%19, %19)
%x.5 : Tensor = aten::conv2d(%x.1, %25, %26, %27, %28, %29, %22)

(a) TorchScript IR

def forward(self, x : torch.Tensor) -> torch.Tensor:
convl_weight = self.convl.weight
conv2d = torch.conv2d(x, convl_weight, None,

2, 2), 3,3, 0, H, D

(b) torch.fx IR

Figure 5. torch.fx traces through non-varying control flow and can embed constants as arguments in its Nodes. This substantially
simplifies the IR for typical models. For a canonical ResNet50 model, torch.fx IR contains 445 operations compared to 2614 for

torch. jit.script and 860 for torch.jit. trace.
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Figure 6. Normalized inference runtime (lower is better) for
torch. fx-based quantization.

kernel. Fusion can save operator dispatch cost, memory
bandwidth cost, and memory space cost.

One example of operator fusion is Convolution-BatchNorm
fusion. During inference, a Convolution-BatchNorm opera-
tor sequence can be merged by applying the batch normal-
ization weights to the convolution weights (Markus, 2018).

We evaluate this transformation on a PyTorch ResNet50
model on an NVIDIA Tesla V100-SXM2 16GB with CUDA
version 11.0 and an Intel Xeon Gold 6138 CPU @ 2.00GHz.
Figure 7 shows approximately a 6% latency reduction for
the GPU case, a 40% latency reduction on CPU with default
intra-op parallelism, and a smaller 18% latency reduction
with intra-op parallelism disabled (i.e. OMP_NUM_THREADS=1).
Numerical correctness is confirmed via an epsilon equiva-

lence comparison (rtol=1e-05, atol=1e-08) of the outputs
of the fused and unfused implementations. Numeric results
for this experiment can be found in Appendix C. The run-
time of the transformation itself was 81 ms, the majority
of which consists of the arithmetic operations to fuse the
parameter tensors together.

torch. fx provides the necessary non-local program con-
text and state modification facilities needed for this trans-
formation with its ahead-of-time, graph-based nature (He,
2021). The whole transformation and test harness amount
to fewer than 150 lines of Python, demonstrating the power
of torch.fx’s APIs in enabling concise, fast-to-develop pro-
gram transformations over PyTorch code.
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Figure 7. Normalized inference runtime (lower is better) with
torch. fx-based Convolution/Batch-Norm fusion.
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6.2.3 Program Scheduling

Large PyTorch models sometimes contain blocking remote
procedure calls to fetch values from parameter servers. For
clarity these calls are written right before the parameters are
used. However if a model contains several such calls, better
utilization is achieved by overlapping these networks calls
with other local work. With torch. fx, we provide a pass that
replaces the blocking network calls with non-blocking ones
and a separate wait call. We then hoist the non-blocking
call as early as possible in the program. On large distributed
training jobs, we have found this optimization can increase
QPS by up to 9%.

6.3 Program Analysis

torch.fx has been applied in various ways for program
analysis.

torch. fx has been used to implement a framework for sim-
ulation of deep learning inference at scale on various hard-
ware devices at a major software company. torch. fx enables
the estimation of FLOPs, memory bandwidth usage, and
data value sizes of the workload, allowing for estimation of
the program runtime and memory consumption. This sys-
tem allows for rapid development of deep learning systems,
enabling quick iteration in simulation rather than on real
devices.

torch.fx has also been used for various forms of shape
analysis. The canonical fx.passes.shape_prop package pro-
vides a naive implementation of shape analysis by interpret-
ing the graph and recording the observed shapes. Additional
systems, including shape propagation via symbolic expres-
sions and shape propagation via gradual typing semantics,
are in development. torch. fx provides a representation on
which such analyses can be done, opening opportunities
for type system and inference innovations to be applied to
PyTorch models.

Finally, torch.fx provides an fx.graph_drawer package,
which gives the user the ability to visualize torch.fx graphs
with Graphviz (Ellson et al., 2002). This provides a
commonly-requested way of understanding a deep learn-
ing program via a visual representation of its DAG.

6.4 Device and Runtime Export/Compilation

PyTorch is primarily designed for modern GPUs, which pro-
vide a great deal of flexibility and dynamism and thus are
very amenable to PyTorch’s eager mode execution model.
However, GPUs can still benefit from ahead-of-time com-
pilation of model code through tookits like NVIDIA’s Ten-
sorRT (NVIDIA).

More specialized processors (such as the TPU (Jouppi et al.,
2017)) promise higher performance, better power efficiency,

and reduced cost via specialized functional units, special-
ized number formats, and new memory architectures. These
processors often require static analyses and optimizations
including operator scheduling, code generation, memory
planning/scheduling, and architecture-aware quantization.
Similarly to the optimizations in 6.2, such analyses typically
require greater program context than the per-operator kernel
launches provided by PyTorch during eager mode execution.
torch. fx provides a pathway for such compiler stacks to
integrate with PyTorch by providing a program representa-
tion extracted ahead-of-time. torch.fx is used at a major
software company for ASIC lowering.

We evaluate lowering a PyTorch ResNet50 model and a
LearningToPaint model (Huang et al., 2019) to NVIDIA
TensorRT on an NVIDIA Tesla V100-SXM2 16GB GPU
with CUDA version 11.0 using an experimental torch. fx-
to-TensorRT lowering system. Figure 8 shows that Ten-
sorRT provides a predictable 3.7x runtime speed-up across
30 trials compared to baseline PyTorch for ResNet50 and
a 1.54x speed-up for LearningToPaint. Numerical correct-
ness is confirmed via an epsilon equivalence comparison
(rtol=1e-05, atol=1e-08) of the outputs of the TensorRT
and non-TensorRT implementations. Numerical data for
this experiment is available in Appendix D.

In addition to providing the platform for runtime speed-up
through TensorRT, torch.fx also provided high developer
productivity for this component. The project was quickly
developed using torch.fx’s Python APIs as well as Ten-
sorRT’s Python APIs, creating a translation layer between
the two. The project was also able to quickly build compo-
nents such as automatic splitting of the model based on Ten-
sorRT’s supported operators and automatically scheduling
unsupported operations in non-optimized blocks. Finally,
the ultimate user APl is very easy to use, inspect, and debug,
as it conforms to Python coding practices.
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Figure 8. Normalized inference runtime (lower is better) with
torch. fx-based TensorRT lowering
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7 CONCLUSION

We presented torch.fx, a Python-only system for captur-
ing and transforming PyTorch programs. We analyzed
the factors that complicated related systems—including
control flow, mutability, and data model-—and show how
torch.fx avoids complexity by focusing on common use
cases and customizability. We investigated various use cases
of torch. fx across optimization, analysis, and device lower-
ing, and show how these results are enabled by torch.fx’s
API design.
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A TORCH.FX NODE SEMANTICS

A.1 Opcode Meanings

Opcode
placeholder
call_method
call_module
call_function
get_attr
output

Meaning

Function Input

Call method on args[@]

Call module specified by target

Call function specified by target
Retrieve attribute specified by target
Return statement; return args[0]

A.2 args/kwargs Behavior

Opcode args/kwargs Behavior

placeholder Empty or args[0] = default value

call_method Python calling convention; args[e] is
self

call_module Python calling convention; target is
self

call_function | Python calling convention; target is
self

get_attr Empty

output args[0] is the return value
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B QUANTIZATION EVALUATION NUMERIC

DATA

Batch Runtime | stdev Runtime | stdev

Size Unquan- | Unquan- | Quan- Quan-
tized tized tized tized

1 0.0777 0.00079 0.0222 0.0008

16 0.1980 0.0104 0.0639 0.0057

64 0.3995 0.0204 0.2585 0.0129

128 0.6717 0.0228 0.5369 0.0413

256 1.2307 0.0874 1.1157 0.0686

C FUSION EVALUATION NUMERIC DATA

Device | Fusion | Threads Average | stdev
run- run-
time time
(sec)

GPU Unfused | N/A 0.1887 | 0.00048

GPU Fused N/A 0.1777 | 0.00049

CPU Unfused | Threaded 0.2996 0.02835

CPU Fused Threaded 0.2129 0.03491

CPU Unfused | Unthreaded | 2.0231 0.23050

CPU Fused Unthreaded | 1.7166 0.25091

D TENSORRT EVALUATION NUMERIC

DATA

Configuration Avg Stdev
Run- | Run-
time time
(sec)

PyTorch RN50 0.2443 | 0.00119

torch. fx TensorRT RN50 0.0662 | 0.00022

PyTorch LearningToPaint 0.0068 | 0.0003

torch. fx TensorRT LearningToPaint | 0.0044 | 0.0001




