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Abstract
Optimizing compilers employ a rich set of transformations
that generate highly efficient code for a variety of source
languages and target architectures. These transformations
typically operate on general control flow constructs which
trigger a range of optimization opportunities, such as mov-
ing code to less frequently executed paths, and more. Regular
loop nests are specifically relevant for accelerating certain
domains, leveraging architectural features including vector
instructions, hardware-controlled loops and data flows, pro-
vided their internal control-flow is eliminated. Compilers
typically apply predicating if-conversion late, in their back-
end, to remove control-flow undesired by the target. Until
then, transformations triggered by control-flow constructs
that are destined to be removed may end up doing more
harm than good.
We present an approach that leverages the existing pow-

erful and general optimization flow of LLVM when compil-
ing for targets without control-flow in loops. Rather than
trying to teach various transformations how to avoid mis-
optimizing for such targets, we propose to introduce an ag-
gressive if-conversion pass as early as possible, along with
carefully addressing pass-ordering implications. This solu-
tion outperforms the traditional compilation flow with only
a modest tuning effort, thereby offering a robust and promis-
ing compilation approach for branch-restricted targets.

CCS Concepts: • Software and its engineering → Com-
pilers; • Computer systems organization → Single in-
struction, multiple data; • Hardware → Digital signal pro-
cessing.

Keywords: If-Conversion, Phase-Ordering, Decoupled Ac-
cess Execute, DAE, Predication, DSP, Zero Overhead Loop
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1 Introduction
General-purpose compilers optimize for arbitrary targets
using an Intermediate Representation (IR) which models
the Control Flow Graphs (CFG) of functions. Control flow
branches are a primary subject for optimization — tradition-
ally preferring to move unused code away from frequently
executed paths, replacing conditional code with uncondi-
tional code, and more.
Unfortunately, moving code around branches is liable to

hamper certain optimizations that are sensitive to memory
accesses. Figure 1 depicts an example of two loads inside an
if-then-else construct in a loop, progressing along regular
affine access patterns — advancing by an invariant incre-
ment at each loop iteration. Such accesses are amenable to a
wide range of optimizations including prefetching [22, 35],
preloading and vectorization [9], polyhedral transforma-
tions [33], and more. The compiler however may decide
to hoist such conditional loads and replace them by a single
unconditional load, as shown in the figure, thereby reducing
code size and potentially enabling subsequent optimizations.
However, such load-merging trades two regular accesses for
one irregular access to memory, which is less amenable to
further optimizations listed above, and even more-so for the
domain of our focus.
We focus on the growing domain of applications char-

acterized by three key features: (1) they process regular
memory-accesses residing in (2) “regular loop-nests”, de-
fined as a nest of countable-loops, and whose (3) internal
control-flow is largely balanced, thereby amenable to full
predication. We term this application-domain Branch Eva-
sive with Early-configuration of Regular Iterators, or BE’ERI
in short. This set of features traditionally characterized the
DSP domain, and has become even more prevalent with the
resurgence of sensing and machine-learning applications,
with their demand for efficient linear-algebra processing
in embedded low-power devices. Architectures in this do-
main have support (1) for regular memory accesses in the
form of preconfiguration [21, 27], (2) for loop (backedge)
branches in the form of Zero-Overhead Loops [31, 32], and
(3) for other (non-loop) branches in the form of predication.
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Figure 1. De-optimization around control-flow.

Figure 2. Hardware-controlled loop formation: loop-nests
with control-flow (1) are flattened into a straight-line block
of code (boldface text), with (2) loop iterations and regular
memory-accesses preconfigured and controlled by hardware
(highlighted text).

Note that irregular accesses are supported, albeit less ef-
ficiently. Such architectures tend to have wide SIMD and
VLIW or data-flow capabilities to fulfill high-performance
and power-efficiency requirements, and benefit from mecha-
nisms that can efficiently feed the processing engine with
data via preloading, prefetching, or stream preconfiguration.
Evading all branches coupled with preconfiguring regular
memory accesses helps reduce the resources consumed in
each iteration on such architectures, following the princi-
ple of Decoupled Access Execute [29] and akin to Stream
Specialized Processors [35]. TI’s C7x DSP with its stream-
ing address generator [30], and RISC-V’s Stream Semantic
Registers (SSR) Extension [27] are examples of such targets.
Figure 2 depicts an example of a loop compiled in our

domain. The two regular memory accesses in the loop are
preconfigured in advance, instead of being computed inside
the loop based on induction-variables. The two control-flow
if statements are removed by predicating if-conversion and
replaced with data flow. The conditional load and store may
have side-effects and are therefore predicated using mask-
ing 1. The first condition guarding the address bound of
the load is folded into its preconfiguration, allowing to the
load to be left unmasked. The second condition guarding the
stored value is computed and fed into a masked-store instruc-
tion each iteration. The result is a flat code sequence whose
memory-accesses are governed by the address-generation
unit.

1Unlike if-conversion in LLVM middle-end, which is not predicating; see
Section 3.1.

A dilemma arises when trying to compile regular loop
nests to a BE’ERI architecture using a general-purpose com-
piler: on one hand, such compilers employ advanced opti-
mizations including vectorization and software-pipelining
that are critical for exploiting the SIMD and VLIW or data-
flow nature of BE’ERI targets. On the other hand, other
control-flow triggered transformations of general-purpose
compilers may be tempted to exploit opportunities that are
irrelevant in this domain due to its branch-evasive nature,
and as shown in Figure 1, break the ability to preconfigure
memory-accesses.
This paper describes an innovative approach for leverag-

ing the powerful pipeline of a general-purpose compiler, in-
cluding in particular its vectorization and software-pipelining
capabilities, to optimize for targets that are Branch-Evasive
with Early-configuration of Regular Iterators. This is achieved
by eliminating branches very early, thereby preventing op-
portunities to tamper with regular accesses in the first place.
Specifically, an if-conversion pass called Early CFG-flattening
is introduced to produce a branchless version of the IR. Phase
ordering concerns are considered carefully to ensure that
performance is preserved.

Our approach is implemented in LLVM and experimented
with extensively, demonstrating that a drastically different
flow of early-as-possible aggressive if-conversion is able to
preserve regular accesses and outperform the traditional
compilation-flow approach for the BE’ERI domain. The con-
tributions of this paper include:

• an extensive survey of branch-associated vs. memory-
minded optimization;

• an innovative compilation approach based on early-as-
possible aggressive if-conversion, that best leverages a
general-purpose compiler for targets that are Branch-
Evasive with Early-configuration of Regular Iterators;

• a detailed description of a concrete practical imple-
mentation in LLVM, including a new optimization for
merging masked loads and stores;

• an extensive experimental analysis evaluating the pro-
posed approach, proving it is feasible andmore suitable
for target architectures of our focus.

In the rest of the paper we first present concrete examples
of problems and challenges that motivate this study, based on
traditional compilation flows (§2). Then specific compilers
employing if-conversion late and early are described (§3), fol-
lowed by their experimental evaluation which demonstrates
the feasibility of early if-conversion (§4). A discussion cover-
ing key tradeoffs, design decisions and possible alternatives
follows (§5). Finally, we compare this work with related prior
art (§6) and conclude (§7).

2 Optimization Pitfalls
Compilers usually schedule target-specialization passes late,
as part of their target-dependent backend. It would therefore
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Figure 3. De-optimizations around control-flow.

seem natural, when compiling for branch-evasive architec-
tures, to apply control-flow flattening (as in Figure 2) late.
This means that until late in the pipeline, the compiler oper-
ates on exposed control-flow, which leads to inadvertently
performing undesired transformations, as surveyed next.

2.1 Enguard Loads
Figure 3a shows a load instruction which the compiler places
under a condition, noticing that the loaded value B is used
only there, where it will hopefully execute less frequently.
On a branch-evasive target however, this optimization has
no benefit: subsequent if-conversion will turn this load into
a masked load, restricted with a mask dependence. Later
passes may not be able to undo this de-optimization as the
information that the load can execute unconditionally is lost.

Guarding the load of B in this example has another disad-
vantage, associated with the load of A: the two neighboring
unmasked loads can potentially be optimized together into
a single "Superword" vector load by SLP [13] or into a single
preconfigured access, but separating the two loads where one
is masked but the other is not, hampers such optimization.

2.2 Enguard Computations
Figure 3b shows a computation conditionally updating max
which the compiler places under the first if statement, notic-
ing it has effect only there, where it will hopefully execute
less frequently. Again, on a branch-evasive target this has
no benefit: subsequent if-conversion will remove both if
statements turning their code into a masked load and a se-
lect between the current and updated max. Being a memory-
access upper-bound mask, it can later be removed from the

load by preconfiguration, producing an unmasked load (as
in Figure 2). However, the selective updating of max will
remain tied to the bound-mask (as it is not governed by the
preconfigured memory-unit), resulting in having to compute
the mask in each iteration of the loop.

The above examples deal with unfortunate code moved un-
der conditions, needlessly inflicting it with additional masks,
only to be reversed later, if possible, at increased compile-
time and compilation complexity. The next examples deal
with unfortunate code moved out of conditions.

2.3 Excessive Merging
Figure 1 described in Section 1 shows two conditional reg-
ular loads which the compiler replaces with a single un-
conditional yet irregular load. Such code motion relieves
subsequent if-conversion from masking the loads, thereby
facilitating vectorization for targets supporting SIMD with-
out masks, for instance. This relief comes at the price of
turning the memory accesses into an irregular one, leading
to less efficient vector gather or scalar operations. Worse,
BE’ERI targets cannot preconfigure irregular accesses.

Restricting this optimization to merge only loads that are
irregular to begin with, or that access the same address,
in order to avoid de-optimization, is difficult and requires
compile-time expensive analyses (aliasing, scalar-evolution).
Such analyses are not suitable within lightweight passes that
are liable to perform such opportunistic code motion. This
is the case in LLVM’s InstCombine and SimplifyCFG passes,
that are invoked many times to cleanse the IR.

2.4 Partial Merging
Figure 3c shows one pair of conditional stores to the same
address which the compiler replaces with a single uncon-
ditional store. In contrast to the previous scenario where
such motion was overly aggressive and should be avoided
if it replaces regular accesses with an irregular one, here
merging was not aggressive enough — both pairs of con-
ditional stores should be merged, or none. This is because
accesses to adjacent addresses can be optimized together by
SLP as described in 2.1, or preconfigured together using the
same address-generation unit, or vectorized together as an
interleave-group [23] using a single wide store. Separating
these accesses by partial code motion hampers these opti-
mizations, resulting in three nonconsecutive stores that lead
to less efficient code; e.g. vectorization would have to use
scatters or masking which may not be supported at all, or as
efficiently, as a consecutive unmasked vector store.

3 Compilers for BE’ERI Targets
Compiling code containing control-flow and memory con-
structs for BE’ERI targets requires that all branches be evaded
by predication or hardware-control of loops, and that reg-
ular memory accesses be optimized by preconfiguration. It
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Figure 4. Pass-sequence diagram. Gray blocks on top row denote existing LLVM passes (from https://polly.llvm.org/docs/
Architecture.html) with Extension-Points for target customization (EPs). White blocks on bottom row denote passes introduced
for BE’ERI targets. All 3 BE’ERI compilers use Form Device Loop stage, where: base compiler employs (2)CFG Flattening
late as part of Form Device Loop stage at OptimizerLastEP; early compiler employs (1) and (2)CFG Flattening early, with
(4)HandleMasksBeforeVect at VectorStartEP; early-tuned compiler employs all white blocks with improvements to CFG Linearize
and HandleMasksBeforeVect.

also requires attending to the de-optimization of memory
accesses caused by optimizations around branches, surveyed
in the previous section. This Section outlines three compilers
for such targets, distinct in how they try to prevent LLVM
passes from performing these undesired transformations:

• base: a compiler that tries to evade each de-optimization
while using the traditional approach of employing ag-
gressive if-conversion late;

• early: a compiler that prevents de-optimizations by
invoking aggressive if-conversion early, and

• early-tuned: a compiler that adds improvements to
the early compiler.

The unconventional phase-ordering employed by the latter
two compilers is the main subject of our experimental evalu-
ation, aiming to examine if, in the context of branch evasive
targets, their early-flattening based approach is feasible and
competitive with the former — a robust and optimized com-
piler based on a standard compilation flow.

3.1 Optimized Late If-Conversion: base
An optimized LLVM-based compiler targeting a BE’ERI ar-
chitecture serves as a baseline for evaluation, referred to as
base. The compiler leverages LLVM’s standard optimization
pipeline, shown schematically in Figure 4, customized by
plugging additional passes in Extension Points (EPs).
The base compiler introduces passes into the Optimiz-

erLast EP. These passes, denoted Form Device Loop in the
Figure, convert loop-nests into hardware-controlled blocks,
along with preconfigured memory accesses as shown in
Figure 2, similar to mapping nested-loops into a Stream-
Semantics Region (SSR) [27]. These passes operate on a loop-
nest that consists of up to four levels (parametric on the
number of dimensions the streaming unit supports), where

each level can contain a single SESE loop whose iteration-
count is invariant in all enclosing loops. 2 Each loop-level
can potentially also contain non-loop code and control-flow.
The passes assume a target that has a streaming unit capable
of modelling a multi-dimensional access-pattern with the
ability to predicate side-effects. They consist of loop-nest
collapsing, streaming-unit configuration, and CFG-flattening,
and result in one loop of a single BB, whose termination and
strided accesses are controlled by the streaming unit. Such
target-dependent transformations effectively lower the IR
restricting subsequent passes, so are naturally applied late.
Loop-nest collapsing converts the loop-nest into a per-

fectly nested-loop; Starting from the outermost loop level, it
sinks all code from outer-levels into the innermost loop with
proper predication to ensure side-effects and updates carried
across-iterations preserve order of execution. Streaming-
unit configuration uses LLVM’s Scalar-evolution analysis
(SCEV) to configure min/max/stride of each dimension in the
streaming unit according to the access-pattern (start/end/ad-
vancement) of a memory-access. Addresses of respective
loads/stores are replaced with those produced by the stream-
ing unit.

CFG-flattening is a predicating if-conversion pass. The if-
converting passes that exist in LLVM either treat side-effect-
free code only using Selects, or predicate the side-effects
of vector loads and stores using their masked variants as
part of loop vectorization. The vectorized code produced by
loop vectorization may, however, contain branches whose
conditions are known to be uniform [20] or if the instructions
they guard remain scalar. Furthermore, code vectorized by

2Future improvements can relax these limitations by extending the passes
to support loop-levels with multiple loops, conditional loops, and by em-
ploying loop-transformation (distribution, collapsing) to address excessive
dimensions and other target limitations.
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CFG_flatten(loop-nest L) {
// Stage1: Calculate edge and basic-block predicates.
for each basic-block BB in loop-nest L, in top-down order {
if BB is a loop-header
block_predicate[BB] = true; // Loops are unconditional.

else
block_predicate[BB] = OR {edge_predicate[P_i, BB]}

over all predecessors P_i of BB;
for each successor S_i of BB
edge_predicate[BB,S_i] =
AND {block_predicate[BB], condition(BB->S_i)};

}

// Stage2: Bruteforce linearization of the code.
for each basic-block BB, in the desired linearized order {
// 2.1: replace each phi with selects using edge_predicates.
for each phi in non-header BB {
val = phi_arg(P_0); // value coming from predecessor P_0.
for every predecessor P_i, i>0
val = select edge_predicate[P_i,BB] ? phi_arg(P_i) : val;

}
// 2.2: mask side-effects.
for each load/store instruction in non-header BB
replace with masked load/store using mask=block_predicate[BB];

// 2.3: linearize branches.
if BB ends with a non-loop conditional branch
replace branch with an unconditional branch to the next BB;

}
}

Figure 5. CFG Flattening algorithm. Input: a loop-nest with
internal control-flow, consisting of SESE countable loops
in simplified form - with pre-header and single back-edge.
Output: a loop-nest without internal control-flow.

other means such as supported by OpenCL may also contain
branches. Therefore a new if-conversion pass called CFG-
Flattening was introduced, whose simple algorithm follows
that found in LLVM’s loop vectorizer, extended to handle
loop nests, as listed in Figure 5. This pass eliminates all
non-loop branches by predicating vector code as well as
scalar code — using masked single-element vector loads
and stores. The base compiler places CFG-flattening also at
OptimizerLast in order to eliminate all branches unsupported
by the target.
Many passes that exist in LLVM and appear before Op-

timizerLast EP apply control-flow transformations. These
passes include InstCombine and SimplifyCFG, which appear
in Figure 4 as part of the Canonicalization and Scalar Simpli-
fication stages, but repeat many more times in later stages
as well. In order to try and prevent these passes from per-
forming undesired transformations, outlined in Section 2, the
baseline compiler includes numerous “bandages” as superfi-
cial forms of mitigation, following duct-taping programming
approach: these local fixes are introduced in response to
specific incidents as they arise, rather than an architected
systematic solution. Limitations of this approach are further
discussed in Section 5. Lastly, note that the OptForSize com-
pilation mode is used, in order to steer optimizations away
from versioning code across multiple alternatives, only to
be folded by if-conversion. The next sections propose alter-
natives aiming to trade these bandages for a more robust
solution based on moving CFG-flattening earlier.

3.2 Basic Early If-Conversion: early
Applying bandages to block various compilation passes from
making detrimental branch-related decision, in the context
of late if-conversion, is inherently cumbersome and arguably
unscalable. A preventive alternative eliminates all potentially
misleading branches before any such potentially harmful
pass is invoked. In the pass diagram of Figure 4 this immu-
nization point corresponds to the first PipelineStart extension
point, next to the pointer icon, prior to any InstCombine and
SimplifyCFG pass. Such an alternative compiler is called early
— it invokes if-conversion as early as possible, as the 2nd CFG
Flattening stage in Figure 4, compared to the base compiler
which places it as late as possible — in the OptimizerLast
extension point at Form Device Loop stage.
Few additional passes are invoked early along with CFG-

flattening due to their ability to promote or simplify memory
accesses before they are masked, without having harmful
effects on other accesses. These passes include Scalar Replace-
ment Of Aggregates (SROA) and Common Subexpression
Elimination (CSE), which in turn call for earlier invocations
of Loop Invariant Code Motion (LICM), Dead Code Eliminate
(DCE), function inlining, and complete loop unrolling. These
passes constitute the 1st Early Simplifications stage denoted
in Figure 4, which early invokes in PipelineStartEP prior to
the 2nd CFG Flattening stage.
One case drastically affected by early if-conversion in

LLVM is vectorization. The auto-vectorization passes of
LLVM [15], both its Loop Vectorizer (LV) and Superword-
Level-Parallelism vectorizer (SLP [13, 25]), process scalar
control-flow code and refrain from vectorizing masked
operations — as produced by CFG-flattening. Scheduling
the Vectorization passes before CFG-flattening at Optimiz-
erStartEP is not suitable for such cost-based sensitive op-
timizers. They are best applied late on optimized IR, and
extended to process masked operations. This aligns with
LV’s roadmap [16], but involves extensive refactoring to
separate predication from vectorization. Extending SLP to
process masked operations is also a noteworthy endeavor,
which may provide additional advantages [6, 24].

Until these efforts mature, a simple Reverse-If-Conversion
pass was introduced and placed in the VectorStart extension
point to enable the vectorizers (and can be removed once
they are taught to operate onmasked code). Given a flattened
IR with masked loads and stores, the Reverse-If-Conversion
pass transforms them back into regular unmasked loads and
stores guarded by branches [36]. The simple implementation
of this pass in early scans the input IR top-down, replacing
each masked load/store with a (unmasked) load/store in a
new BB guarded by a conditional branch, with the mask
as its condition. Applying reverse if-conversion before
vectorization is followed by an invocation of CFG-flattening
afterwards, in case vectorization generated branches or did
not take place.
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Figure 6. Merge Loads/Stores optimization on masked flattened IR.

Lastly, note that the OptForSize compilation mode applied
by base helps early ensure that no new control-flow will be
introduced after it applies if-conversion early.

3.3 Optimized Early If-Conversion: early-tuned
Invoking CFG-flattening as early as possible by early re-
vealed performance deficiencies that may be attributed to
few root causes, including (1) missed mergings of masked
loads and stores, (2) convoluted masks due to overly simpli-
fied if-conversion, and (3) convoluted control-flow due to
overly simplified reverse-if-conversion. Several fixes were
devised and applied on top of early to produce early-tuned:

Improved load/store merging: The common-code trans-
formations of LLVM are able to optimize multiple loads or
stores that access a common address, as in Figure 6a, but
they depend on control-flow. Applying CFG-flattening early
eliminates control-flow by masking such loads and stores
separately, as in Figure 6b. To compensate for this missed
optimization, a newMergeMaskedLoadsStores pass was intro-
duced into early-tuned at the 3rd Mask Opts stage in Figure 4
in order to merge such masked loads or stores into a single
masked load or store using combined mask and value, as
in Figure 6c. The pass scans the code recording groups of
loads (stores) that access the same location. For each group,
if the loads (stores) can be placed together (no dependences
intervene), they are replaced by a single masked load (store)
to that memory location, whose mask is produced by OR-ing
the masks of the original loads (stores). The value feeding
the store is selected from the original values of the original
stores based on their masks.
Merging masked loads is generally profitable, but merg-

ing masked stores incurs the cost of combining both mask
and value, which are subject to further optimization, as in
Figure 6d. The InstCombine pass of LLVM is often able to
perform this simplification, but a complementary Simplify-
Masks pass was added to better optimize cases where mul-
tiple masks share common parts, such as cond1 in Figure 6.
Despite this effort there are still cases where store merging
best be avoided, as shown in Section 4.4.
Improved flattening: early-tuned improves the phi-to-

select linearization of the CFG-flattening algorithm (Stage
2.1 in Figure 5) by noticing that when all predecessors P_i
of BB have a common single predecessor, there is no need to
include the predicate of the common-predecessor; Simplified

selection predicates can be produced using only the branch-
condition from that common-predecessor to its successors,
instead of the entire edge_predicates. Such improvement
already exists in LLVM’s SimplifyCFG Pass and has also
been described more generally [6].

Improved Vectorization of Masked Code: The reverse-if-
conversion implemented in early is rather straight-forward:
it un-masks each memory access separately. This fragments
the code into many small basic-blocks, leading to poor SLP-
vectorization and suboptimal loop-vectorization of interleave-
groups. Multiple loads and stores that share a common mask
are grouped and un-masked together in an improved version
of reverse-if-conversion included in early-tuned.

4 Experimental Evaluation
Applying early-flattening to the scenarios of Section 2 con-
firms that it can achieve our main goal: this flow prevents de-
optimizations while preserving regular accesses throughout
the compilation process up to vectorization and Device-Loop
formation, when applied to these scenarios.
Next we evaluate how a large testsuite consisting of a

wide range of tests responds to the radically different flow
of early-flattening. We use the full OpenCL benchmark suite
of our compiler, without changes, which contains hundreds
of Deep Learning and Computer Vision tests covering many
computational kernels and few full applications. Many tests
leave most of the optimization to the compiler, which helps
evaluate how well optimization capabilities are preserved.

Performance is measured in number of cycles using a sim-
ulator modelling a realistic BE’ERI target, featuring wide
VLIW and SIMD capabilities, with ZOL support, and regular
masked loads and stores governed by a streaming address-
generation unit, complemented with a gather-scatter unit.
We measure the total number of cycles executed by each
loop offloaded to the target. All operations, including mem-
ory accesses, take a fixed number of cycles. We measured
and present the performance achieved by each of the three
compilers described in Section 3: base, early and early-tuned.
Note that the improvements added to early to produce early-
tuned also apply to base but are ineffective there, due to its
traditional and highly tuned flow.

Figure 7 shows the cycle-counts of early and early-tuned,
both normalized to the cycle-count of base, where lower is
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Figure 7. Impact of early CFG-flattening: early and early-tuned cycle counts are shown relative to base, lower is better. Gray
bars are cut off at 1.8x, but reach up to 177x.

Figure 8. Impact of early CFG-flattening: bars are in number
of cycles, in units of 105 and 106 cycles for the first and last
three tests, respectively.

better. The former reflects the effect of basic phase-reordering
while the latter illustrates the relative performance of addi-
tional improvements.
Many tests of the benchmark were agnostic to changes

in the compiler and are thus omitted. All tests that were
affected are shown, filtering only repetitions of identical
behavior, i.e., due to slight variations of the same basic test.
The results are sorted according to the relative performance
of early-tuned, from largest speedup on the left to largest
slowdown on the right. Bars (of early) are cut-out at 80%
degradation for brevity.

Figure 8 brings a “magnified view” for a few of the larger
tests of Figure 7, comparing the same three compilers but

showing their absolute cycle-counts, for long running full
applications that consist of a large loop or multiple loops:
pointsTracker tracks movement of points between frames;
rangeHisto is a utility that computes a histogram of ranges
used for tonemapping, harrisSample and harris compute Har-
ris Corner Detection, and NHWCQuantizeOpt and NHWC-
Quantize are two versions of a Deep-Learning test computing
convolutional layer NHWC quantization — the former moves
loads and stores manually whereas the latter leaves this op-
timization to the compiler. The performance of these tests is
analyzed below along with all tests of Figure 7.

4.1 Overall Behavior
On average, early-tuned is on-par with and even better than
base — reaching 9% performance improvement across all 87
affected tests. This required modest effort of about 6 person-
months, to implement improvements outlined in Section 3.3,
eliminating an 8x average degradation of early compared
to base. This demonstrates that while the initial impact of
the new flow is significant, it suffices to address few key
weaknesses to quickly close the gap with the regular flow.

Note that the overall performance improvement, while
being an encouraging outcome, was not the primary goal
of the early compilers; The primary goal was to demon-
strate that the more robust measures employed by the early
compilers do not incur a performance penalty despite the
drastically different compilation-flow that these measures
involve. This improved robustness manifested itself in both
early and early-tuned successfully compiling 17 tests that
base failed to compile. Most failures were due to excessive
merging (§2.3) resulting in missed SROA opportunities and

32



CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Dorit Nuzman, Ayal Zaks, and Ziv Ben-Zion

loop-vectorized random gathers exceeding resources. The re-
maining couple of failures were due to control-flow blocking
SLP vectorization, resulting in excessive register pressure.
These pitfalls were avoided in the early compilers.

The rest of this section dives into detailed analysis of
specific cases, which provides opportunities for further im-
provements of both base and early-tuned.

4.2 Gains from Phase-Ordering
The first group of tests on the left of Figure 7 are tests that
early-tuned improves compared to base. It consists of 33 tests
(38% of all tests depicted), almost all of which are improved
by early as well, implying that nearly all improvements stem
from early flattening and pre-flattening phases alone. Sur-
prisingly, only few improvements resulted directly from pre-
serving regular memory accesses — in a couple of tests that
exhibit the issues illustrated in Figure 1 and Figure 3c. These
issues were addressed by early-tuned, leading to 50% and 17%
improvements over base.

Most improvements are attributed indirectly to later passes
working better after flattening. Some improvements aremore
casual than causal, resulting from changes in early canoni-
calization decisions that happen to better suit later passes;
but in other tests, as we show later, these changes resulted
in slowdowns. The main improvements observed fall into
the following four cases.
The largest improvement originates from loop invariant

code motion (LICM) optimizing a loop provided its body
had been flattened. This opened opportunities for further
optimization, including LoopDeletion which determined that
an innermost loop in one test needed its last iteration only,
leading to 97% (30x) improvement.
Another large improvement comes from loop vectoriza-

tion (LV) optimizing a loop provided it is free of switch
statements, which are potentially created from branches by
CFG-Simplification unless they are flattened first. For targets
that support neither branches nor switch statements, this
if-to-switch transformation is largely redundant if not detri-
mental. Note that base does not intercept this transformation
because doing so would involve excessive refactoring. This
led to 91% (11x) improvement in the test at hand.

Several tests improved because SLP vectorization is more
effective in the absence of control-flow [6, 28]. This led to
a 45%–87% (1.8x–7.5x) gain in a handful of tests, depending
on the size of the resulting vectors, between 2–8 elements.

Various tests improved because of different decisionsmade
by InstCombine. In one case folding of type-conversions into
loads, performed by base, was prohibited in early because it
masks the loads. This however resulted in 49% improvement
due to subsequent improved code generation. In two cases
different reassociation decisions improved the ability of
the later SLP pass to vectorize operations, leading to roughly

30% improvement. Early-flattening improved the canonical-
ization of compare-select logic in one test resulting in 27%
improvement.

4.3 Resolved Degradations
The second group of tests at the center of Figure 7 consists of
47 tests (54% of all tests depicted) having a performance gap
between early and base which early-tuned manages to close.
These include several tests which early failed to compile due
to excessive resources, depicted alongside severe degrada-
tions exceeding 1.8x slowdown. Four main improvements
were applied in order for early-tuned to close this gap.

Improved Flattening. The CFG-flattening implemented
in early is rather straight-forward, producing predicates in
a straight-forward manner, similar to that employed by LV.
A dozen tests were more efficiently if-converted in base by
LLVM’s CFG-Simplication pass, before reaching its late CFG-
flattening pass. The simple improvement added to early-
tuned eliminated the 2%–26% degradations of these tests
compared to base. Future work can further improve CFG
flattening such as presented in recent work [26].

Repercussions of a Different Flow. Changing the flow
exposed a few latent shortcomings of later passes unprepared
to optimize different patterns. Two tests revealed suboptimal
instruction-selection in our backend, contributing 30% and
47% improvements over early when fixed. One case involved
an InstCombine phi optimization — folding constants into
phi-nodes — which created a pattern that scalar-evolution
analysis (SCEV) failed to handle, directly effecting memory
access computations and resulting in degradations of five
tests. Fixing this issue improved two tests by 42% and 70%,
turning three tests from failure-to-compile by early to suc-
cess on parwith base. One of these three tests is pointsTracker,
shown also in Figure 8. Lastly, seven tests failed to vector-
ize a loop due to an unexpected type conversion within an
accumulation pattern, exposing a known latent deficiency
of LV. The early invocation of Loop Rotation in prepara-
tion for flattening caused InstCombine to chose a different
canonicalization of type conversion. These tests suffered
huge performance loss — fixing the issue brought 9x–177x
speedups, even though their loops are free of control-flow,
i.e., no flattening actually took place.

Vectorizing Masked Code. The simple enhancement to
reverse-if-conversion in early-tuned provided 36%–91% im-
provements by enabling improved SLP/loop-vectorization
thanks to reduced fragmentation into small basic-blocks. In
rangeHisto (shown also in Figure 8), this fixed an initial 55%
degradation.
A secondary issue involves an internal optimization that

operates before LV and lacked support formasked operations.
Fixing it improved ten tests by 5%–86%. This demonstrates
how a permuted flow can help stress-test a compiler, uncover
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latent unsupported cases, and improve the compiler’s overall
robustness.

Merging Masked Loads and Stores. This optimization
fuses groups of masked loads and stores together. It improves
the performance of early for a few tests by 8%–35%, thereby
closing their gaps with base. It also helps further accelerate
a few other tests which early improves over base, reaching
18%–25%, with NHWCQuant of Figure 8 among them. The
control-flow merging of loads and stores employed by base
may thus have opportunities for improvement, but so does
the merging of masked loads and stores employed by early-
tuned, as we show next.

4.4 Remaining Degradations
The remaining few degradations, on the right of Figure 7, fall
into two main categories: under-optimized memory-accesses
and sub-optimal handling of new IR patterns.

Merging masked loads and stores employed by early-tuned
produces inferior results to control-flow merging employed
by base, on two tests. Early CFG-flattening of another test ob-
structs a LICM opportunity involving an invariant selection
of base addresses, leading to twomasked loads instead of one,
which early-tuned is unable to merge. The patterns exposed
by these tests provide opportunities for further tuning and
improvement of early-tuned.
The remaining performance losses are associated with

poorer canonicalization of early-tuned compared to base,
due to transformations described earlier (§4.2), that resulted
in gains for other tests: missed folding of type-conversions
into loads due to masking and lack of if-to-switch conversion.
For example, HarrisSample (shown also in Figure 8) suffered
a 36% degradation due to a blocked canonicalization of data-
types around loads, and NHWCQuantizeOpt suffered a 14%
degradation due to improved optimization of mask-logic in
base following if-to-switch simplification.

5 Discussion
Several alternatives to applying if-conversion early are sur-
veyed next, along with tradeoffs and design-decisions that
motivated and guided our proposed approach.

5.1 Alternative Mitigations and their Drawbacks
Section 2 examines four scenarios where memory accesses
became more difficult to optimize because of optimizations
around branches. Several alternative approaches to early
if-conversion can be applied to try and remedy this predica-
ment, but have significant drawbacks:

Fix potentially offending Passes: treat the root cause
— go after passes liable to “pessimize” memory-accesses
and teach them to be “smarter” by equipping them with
cost-models that can guide them towards more informed

decisions. Such cost-models, however, involve compile-time-
consuming analyses including Scalar Evolution (SCEV), mem-
ory aliasing, and fusion of strided accesses into interleave-
groups, which are not suitable to apply within cleanup Passes
that are invokedmany times. Furthermore, these cost-models
may depend on opportunities and preferences of later passes
that may consider a wider context, so fit better within them,
rather than within local opportunistic simplifications.
A more modest approach could try to block such occur-

rences categorically, without expensive cost models. How-
ever even such “bandages” require the ability to separate
the profitable transforms from the destructive ones. In prac-
tice, code-motion scenarios around control-flow are not en-
capsulated within separate Passes that can be controlled
by target-specific switches in LLVM, but rather dispersed
among many Passes. For example, the scenarios of Section 2
are caused by Jump Threading, various InstCombines, several
CFG-Simplifications, as well as other dedicated sink/hoist and
merge loads/store Passes. These occurrences are unbounded
and inseparable from the overall optimization Passes they
participate in. This lesson is learned from extensive work
with the base compiler and its “bandages”.

Fix potentially offended Passes: treat the effect — teach
later Passes to deal with patterns that earlier code-motion
transformations had complicated, possibly by undoing them
first. This often involves reverse-engineering, a pattern-based
approach which is not systematic nor robust; the selection
patterns that can result from scenarios depicted in Figures 1
and 3c for example are boundlessly diverse, and also depend
on information being preserved. In the example of Figure 3a
however, semantic information on whether the load can be
executed speculatively is lost. Lastly, this special handling
needs to be added to each Pass that may be effected: Vector-
ization, SROA, and more, each would need to be extended to
deal with the implications of control-flow optimizations.

Fix the source programming language: prevent harm-
ful situations before their inception by forbidding the use of
control-flow in the source language level, e.g., using a Do-
main Specific Language. Note that the front-end should re-
frain from expanding source-level constructs such as ternary
operators into branches. This approach effectively restricts
the programmer or burdens her with the branch elimination
task. Control-flow is however a most natural way to express
programs with a dynamic nature, and the burden of predica-
tion best be automated. Our proposed approach to eliminate
branches as early as possible after the front-end, achieves
the same goal but without affecting the programmer.

5.2 Benefits of Early-Flattening
Removing the trigger for the potential detrimental optimiza-
tions by early flattening creates a “safe-zone” for optimiza-
tion: the flattened IR allows a general-purpose optimizing
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compiler to avoid branch-related pitfalls that can compli-
cate things for subsequent optimizers, and offers in addition
several important advantages.

Robustness and Scalability: a major advantage is to
have a single concise architectural solution in one place
rather than devising multiple different fixes across various
parts of the compiler for each individual branch-related sce-
nario that arises, or that may arise in the future. Early flat-
tening makes for a much more comprehensive, robust and
scalable solution than the aforementioned alternatives.

Compilation efficiency: compile-time is saved from be-
ing spent on irrelevant optimization paths or attempts to
undo them later. Compile-time is better served by focusing
on optimizing a more relevant representation of the pro-
gram, than employing time-consuming analyses through the
rest of the compiler, trying to predict if certain code mo-
tion opportunities across branches are potentially helpful
or harmful, or trying to reverse-engineer transformations
after the fact. Indeed while a few more passes were added to
early and early-tuned, compile time hasn’t increased 3, which
may attest to the fact that flattening early has made anal-
yses of subsequent passes simpler and avoided redundant
optimization paths.

Practical: the alternatives entail a long-term refactoring
effort, because there isn’t always a clear separation between
canonicalizations and optimizations, nor is there always a
good way for targets to control these canonicalizations.

Empowering Other Optimizations: straight-line code is
more amenable to optimization because many analyses and
transformations are confined to single-basic-block bound-
aries, and therefore limited by control-flow. This welcome
side-effect was indeed responsible for most of the gains of
the new phase-ordering (§4.2).

Aligned with other projects: the early-flattening based
approach is aligned with ongoing projects that promote the
use of a predicated IR for optimization, such as the Vector-
Predicate project [18], VPlan [16] and advanced SLP vector-
ization [6], as discussed above, as well as the seminal work
of August, Hwu and Mahlke [3].

5.3 Shortcomings of Early If-Conversion
Invoking if-conversion early has several shortcomings with
potential mitigations.

Repercussions of a different flow: any drastically differ-
ent flow may have miscellaneous effects caused by arbitrary
passes encountering new IR patterns. These “fuzzing” side-
effects usually indicate an overfitting of passes to specific

3Only 5 out of over 2000 tests exhibited measurable compilation time effects,
4 of which for better and one for worse.

patterns. Note that such effects go both ways — distinct op-
timization paths may lead to slowdowns (§4.3,§4.4) but may
also lead to speedups(§4.2). In any case, such effects reveal
latent opportunities to improve the robustness and quality
of the compiler in general.

Resurrection of control-flow: early-flattening is based
on the assumption that control-flow will remain flat through-
out subsequent passes. This is in well aligned with current
general compiler pipelines whose canonicalization efforts
tend to simplify control-flow rather than complicate it. Spe-
cific optimization passes may however potentially introduce
new control-flow constructs, most notably code-versioning
employed by loop vectorization and loop unswitching. Turn-
ing on OptForSize optimization mode can prevent passes
from introducing control-flow, because it typically increases
the code size. In addition, rare occurrences of passes that
introduce new control-flow tend to be controversial, off by
default, and provide dedicated switches to control them.

Missed Optimizations: general purpose compilers in-
cluding LLVM consider arbitrary targets that support bran-
ches rather than predication, especially of scalar operations,
in their IR and passes. Therefore, applying if-conversion
early risks missing fruitful optimizations. This is the case for
several passes, including common-code sinking, SROA, CSE,
LV and SLP. Optimizations inhibited by predication can be
recovered by either invoking them earlier, extending them
to operate on predicated code, complementing them with
new passes, or preceding them with reverse if-conversion.
Passes inhibited by predication are good candidates for

early invocation, prior to if-conversion, provided they re-
frain from irregulating memory accesses, and operate well
on unoptimized IR. For example, some InstCombine canon-
icalizations are hampered by predications, but this pass is
liable to sink code in uninformed and potentially harmful
ways. Vectorization passes are disabled by predication but are
cost-based and so best operate on optimized IR rather than
be invoked early. On the other hand, simplification passes
such as SROA and CSE as well as cleanups such as LICM
and DCE, can be invoked early to leverage control-flow, and
assist early if-conversion by simplifying its input.

Another important missed optimization is merging condi-
tional accesses to the same location (§4.3). The profitability of
merging depends on many factors, including simplification
of masks (§3.3), and as evident by remaining opportunities
(§4.4), it can be further tuned. Merging can be applied early,
prior to flattening, leveraging dominance analysis to simplify
masks. It can alternatively be applied late, on straight-line
predicated code, potentially at Form Device Loop stage, where
resource utilization can be more accurately estimated. E.g,
the code in Figure 6d can be produced by processing the
control-flow of Figure 6a or the predicated code of Figure 6b.
Whether applied early or late, merging should be done only
in dedicated, informed, passes; The key is to prohibit any

35



If-Convert as Early as You Must CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

opportunistic merging elsewhere in the compiler. This is
what early CFG-flattening guarantees.

6 Related Work
If-conversion has been a topic of compiler research for over
four decades [1]. There is, in general, an inherent tension
between applying if-conversion early in the compilation pro-
cess and applying it late [3, 10]. On one hand, by increasing
the size of blocks, if-conversion potentially increases oppor-
tunities for all subsequent optimizations, motivating its early
application. On the other hand, branches eliminated by if-
conversion trade their target-specific cost with other costs
including register pressure, a tradeoff best evaluated late. The
common practice of contemporary general-purpose optimiz-
ing compilers is therefore to apply limited if-conversion early
or apply aggressive if-conversion late, retaining control-flow
in the IR through most of their compilation flow.

August, Hwu andMahlke [3] proposed to apply aggressive
if-conversion early for predicated superscalar architectures
ignoring most scheduling concerns, coupled with partial re-
verse if-conversion [2] applied late during instruction sched-
uling to mitigate overly predicated results. Jordan, Kim
and Krall [10] investigated the tradeoffs between applying
if-conversion early in LLVM-IR versus late in machine-IR.
They targeted a predicated VLIW architecture with SIMD
and hardware loops. Applying if-conversion early provided
them with greater optimization opportunities at the risk of
increased register pressure. Their conclusion suggested that
both may be desired along with better cost models. Our work
also leverages LLVM for predicated architectures and high-
lights the potential of early if-conversion. In contrast to
prior over-predication concerns, we focus on preserving the
ability to optimize memory-accesses, vectorize, and software-
pipeline, by aggressively if-converting as early as possible.

Onemajor use of if-conversion has been tomitigate branch
misprediction penalties, albeit the difficultly for compilers
to identify which branches are destined to mispredict. Wish
Branches [11], for instance, proposed to delay this decision
to runtime, by encoding a branch along with its if-converted
version. Our work focuses on full if-conversion for branch-
evasive architectures, where such penalties are less relevant.
Full reverse if-conversion was introduced by Warter et

al. [36]. We use a fairly straightforward implementation in
order to facilitate LLVM’s loop and SLP vectorization passes,
which are currently control-flow-based. Chen, Mendis and
Amarasinghe [6] applied if-conversion in order to facilitate
(an enhanced version of) LLVM’s SLP vectorization pass,
followed by reverse if-conversion. Their work introduced a
more sophisticated SSA IR which allows vectorizing instruc-
tions across loops, and their reverse if-conversion is capable
of materializing new loops. Ding and Önder [7] presented
an approach which may improve upon if-conversion using

SSA with Future Values. Our work focused on leveraging
LLVM’s existing SSA IR and passes.
Zimmerman [40] used profiling information to drive if-

conversion in LLVM for superscalar microprocessors, and
Kong et al. [12] did so using GCC for the Sunway processor.
Moll [18] proposed to predicate LLVM’s IR to cover all vector
instructions. We use a fairly straightforward implementa-
tion of full if-conversion which uses LLVM’s existing select
instruction along with its masked (single element) vector
load and store intrinsics.

Vectorization can employ partial if-conversion where uni-
form branches are retained [19, 20]. Vectorizing for branch
aversive targets require that all branches be if-converted.
Software-pipelining andModulo scheduling are strongly con-
nected with if-conversion and reverse if-conversion of loop
bodies, in the context of VLIW targets [8, 17, 34, 38, 39], and
CGRA’s [37]. We leverage LLVM’s existing modulo scheduler
which operates on loops with if-converted bodies [14].

Generalized Index-Set Splitting was proposed to optimize
multi-basic-block loops into single-basic-block ones [4], but
creates multiple loops and only moves the control-flow from
inner to outer loops in the loop-nest. Recognizing affine
memory accesses is vital for many compiler optimizations in-
cluding polyhedral transformations [33], vectorization [23],
utilization of local memories [5, 9], and more. We focus on
preserving such accesses and optimizing them through early
if-conversion.

7 Conclusion
Architectures averse to branches and irregular memory ac-
cesses include a wide range of accelerators having support
for hardware-controlled loops, preconfigured streams, soft-
ware prefetching, scratchpad memories, VLIW, SIMD, data-
flow processing, and more. General-purpose compilers are
capable of targeting such architectures but tend to suffer
from premature optimization. Intermediate representations
that expose control-flow constructs create a false impression
of optimization opportunities for compilers of such targets,
leading their transformations to make detrimental decisions.
Instead of teaching all relevant transformations how to

best optimize for such targets, we propose to effectively
modify the intermediate representation prior to any relevant
transformation. Introducing an if-conversion pass as early as
possible provides a robust and modular implementation of
this approach, revealing several phase-ordering related defi-
ciencies. A few additional preparatory and post processing
passes suffice to preserve and even accelerate performance
across a wide range of tests. This innovative compilation
flow of LLVM is feasible and promising for BE’ERI targets,
and can hopefully steer powerful general-purpose compilers
in this direction for similar targets.
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