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Abstract—Compilers use a wide range of advanced optimiza-
tions to improve the quality of the machine code they generate.
In most cases, compiler optimizations rely on precise analyses
to be able to perform the optimizations. However, whenever a
control-flow merge is performed information is lost as it is not
possible to precisely reason about the program anymore. One
existing solution to this issue is code duplication, which involves
duplicating instructions from merge blocks to their predecessors.

This paper introduces a novel and more aggressive approach
to code duplication, grounded in loop unrolling and control-flow
unmerging that enables subsequent optimizations that cannot be
enabled by applying only one of these transformations.

We implemented our approach inside LLVM, and evaluated its
performance on a collection of GPU benchmarks in CUDA. Our
results demonstrate that, even when faced with branch divergence,
which complicates code duplication across multiple branches and
increases the associated cost, our optimization technique achieves
performance improvements of up to 81%.

Index Terms—compiler, code duplication, LLVM, GPU

I. INTRODUCTION

GPU architectures are widely deployed on HPC computing

centers, cloud computing installations, and even embedded

devices, for high performance and power efficiency. They

greatly accelerate execution of a wide variety of applications,

including HPC scientific codes and AI/ML workloads. Compiler

optimization on GPU codes is essential for achieving the

performance potential of those architectures. However, compiler

optimization for these architectures has unique challenges given

their unique characteristics: massive parallelism in the form

of SIMT hierarchies, lockstep execution limited by branch

divergence, and a complex memory subsystem. To account for

those challenges, compilers, such as LLVM [1], modify their

compiler optimization pipeline to introduce transformations

explicitly targeting optimized code generation for GPUs.

Nevertheless, devising new compiler optimizations to generate

faster code on GPUs is an open problem, with significant

possible impact given the multitude of applications necessitating

GPU execution for high performance.

"Don’t repeat yourself" (DRY) is a core principle in software

development that emphasizes reducing redundancy and reusing

code to improve maintainability, efficiency, and readability.

Although this principle undoubtedly offers advantages from a

software developer’s point of view, introducing redundancy or

duplicating code can prove beneficial from a performance point

of view. Compilers use a wide range of advanced optimizations

to improve the quality of the machine code they generate.

Compiler optimizations often depend on the availability of

precise analyses to be effective. Whenever a control-flow merge

is performed, information is lost as it is not possible to precisely

reason about the program anymore.

Furthermore, existing approaches [2]–[4] for optimizing GPU

code generation intensely prioritize basic block and control-

flow merging targeting to reduce performance degradation

due to branch divergence. In brief, GPUs follow the Single-

Instruction Multiple Threads (SIMT) execution model. Threads

are organized into groups, called warps using NVIDIA’s

terminology, and all threads of a warp execute an instruction in

lockstep. If threads in a warp evaluate a condition differently

and therefore branch to different basic blocks, execution is

serialized, with each subset of threads on the same path

executing consecutively. Although such approaches address

the performance problems by reducing branch divergence, they

further obscure the compiler’s view and analysis precision on

the code.

By contrast, we propose a new optimization approach

targeting complex loops, which are common hotspots in

execution, that include branching in their bodies. Our ap-

proach combines unmerging control flow with unrolling, to

effectively recover control-flow provenance information and

facilitate precise analyses for additional, subsequent com-

piler optimizations. Control-flow unmerging leverages code

duplication, i.e., moving instructions from merge blocks to

their predecessors, which has been shown [5]–[8] to enable

optimization, such as branch removal, constant propagation,

and redundancy elimination. Further, combining it with loop

unrolling amplifies its effectiveness by increasing the scope of

analysis and optimization. Applying both those transformations

in conjunction enables compiler optimizations that otherwise
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are missed if only one these transformations is applied in

isolation.

1 while( length > 1 ) {

2 mid = lowerLimit + ( length / 2 );

3 if(A[mid] > quarry)

4 upperLimit = mid;

5 else

6 lowerLimit = mid;

7 length = upperLimit - lowerLimit;

8 }

9 return lowerLimit;

Listing 1. The binary search loop in XSBench.

As a motivating example consider the program in Listing 1.

This is the binary search loop, taken from the HPC mini

application XSBench [9], which illustrates how information

lost through a control-flow merge prevents the compiler from

performing additional optimizations. In Line 7, if the compiler

could infer that the condition in Line 3 evaluated to true,

thus Line 4 executed, it could avoid the subtraction operation

because in this path upperLimit is equal to mid, which is

equal to lowerLimit+(length/2), hence the subtraction result

is length/2, i.e., length is assigned length/2, which is pre-

computed for the assignment in Line 2. Code duplication from

control-flow unmerging enables this optimization opportunity

by duplicating Line 7 in both branches of the if-condition.

Additionally, applying loop unrolling further exposes similar

optimization opportunities by expansion. In this example, our

unroll and unmerge approach achieves 1.36× speedup over a

baseline O3 pipeline (more details in section IV). In summary,

the contributions of our paper are:

• We present a new optimization approach, unroll and unmerge

(u&u), that performs loop unrolling and control-flow unmerg-

ing in tandem, to enable subsequent compiler optimizations

that otherwise will not be enabled by performing only one

of those transformations alone.

• We present a heuristic that decides on which loops to apply

our optimization to increase performance while keeping code

size and compile time inflation under control.

• We provide an LLVM-based implementation of our transfor-

mation, integrated in the recent version of LLVM 16, freely

available to the community [10], to validate our claims by

extensive experimentation using a production-level compiler.

• We perform a rigorous experimentation campaign using

16 GPU benchmarks from various application domains in

HecBench [11], a benchmark suite carefully curated by the

HPC community. Our extensive evaluation using CUDA

implementations of those benchmarks on a state-of-the-art

NVIDIA V100 GPU shows that our approach achieves

speedups of up to 81%, while experimenting with different

loops and unrolling factors.

• We provide in-depth analysis to explain how our transfor-

mation affects LLVM’s compilation pipeline and programs’

execution behaviour and derive new insight for compiler

optimization on GPUs. Our analysis reveals that the observed

significant performance improvements from our approach

are thanks to unlocking aggressive redundant instruction

elimination, crucially including data movement instructions,

despite increased branch divergence in several cases.

The paper is structured as follows. Section II discusses

related work. Section III presents our optimization and its

implementation. Section IV shows the results of applying our

optimization to a set of GPU benchmarks while Section V

performs an in-depth analysis of representative results and dis-

cusses the strengths and limitations of our approach. Section VI

concludes the paper and presents ideas for future work.

II. RELATED WORK

This section briefly discusses related work and introduces

necessary concepts required by the rest of our paper.

a) Loop Unrolling: Loop unrolling [12]–[14], a compiler

optimization technique, reduces the overhead of loop control

structures, such as the costs of incrementing the loop counter,

evaluating the loop condition, and branching. Depending on

the characteristics of a loop, there are different methods [15] of

unrolling it, such as full, partial, or runtime. Loop unrolling ex-

poses additional opportunities for instruction-level parallelism

(ILP), allowing modern, superscalar, out-of-order processors

to execute multiple instructions for enhanced performance.

Modern compilers often employ heuristics or profile-guided

information [16] to determine when and how much to unroll

a loop. Our approach employs the concepts of loop unrolling

and unfolds control flow graph branching inside the body of

the loop, which we refer to as unmerging.

b) Function Inlining: Function inlining [17], a compiler

transformation with similar motivation, enables subsequent op-

timizations like constant propagation or dead code elimination.

Inlining can increase code size significantly and potentially

reduce the application performance by negatively impacting

instruction cache hit rates. Therefore, advanced heuristics have

been implemented to decide whether inlining a function is

profitable [18]–[21]. There are also approaches that use profile-

guided information to decide whether it is worthwhile to inline

a function. The heuristics used by these techniques can be

modified and applied in our proposed method as our method

can potentially increase code size.

c) Branch Divergence: GPUs employ a hierarchical

Single Instruction Multiple Threads (SIMT) execution model.

Threads are grouped in blocks and within a block, threads

are structured in warps. Warps are the scheduling unit of

execution. Threads in the warp execute instructions in lockstep,

i.e., all threads execute the same instruction in parallel. If

threads in the warp evaluate a condition differently and branch

to different basic blocks, execution is considered diverged.

During diverged execution, threads on the taken path execute

first, while the remaining threads are idle until scheduled next.

Branch divergence results in increased computation latency

due to under-utilization of the hardware resources.

Branch divergence negatively impacts performance, thus

several techniques propose mechanisms to mitigate it, such as

dynamic warp formation [22], branch re-convergence [2]–[4],

and predication [23]. By contrast, our approach aggressively
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Fig. 1. A simple loop.
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Fig. 2. Loop with unmerged control
flow.

expands instead of merging control-flow, through unmerging

and unrolling transformation, hence it possibly induces deeper

diverged execution paths that increase branch divergence.

Other techniques, such as tail merging [2], branch fusion [3]

and control-flow melding [4], identify same/similar instructions

inside branches and meld basic blocks in order to reduce branch

divergence. Our approach follows the opposite direction, as

it includes additional branching to provide opportunities to

the compiler for aggressive optimization. Despite the possible

increases in branch divergence our evaluation in section IV

indicates performance benefits.

d) Code Duplication: Code duplication techniques [8],

[24] enable compiler optimizations in CPUs. The approaches

target GraalVM [25] on Java/JVM benchmarks which have

different requirements as they use just-in-time compilation.

In [8] a duplication technique similar to the proposed one,

unmerges only the direct successor basic block instead of

a sequence of basic blocks as we do. Unmerging only the

direct successor block limits the code size increase and branch-

divergence inefficiencies. However, our evaluation shows more

optimization opportunities to appear when unmerging more

than just the direct successor block.

In [24] they present a technique for unrolling only the hot or

fast path of a loop. They apply their technique to non-counted

loops, i.e., loops for which the iteration count can neither be

determined at compile time nor at run time. We think that

we can apply similar ideas to our approach where we do not

unroll and unmerge the whole loop, but those parts that are

amenable for further optimizations or frequently executed.

III. DESIGN AND IMPLEMENTATION

A. High Level Design

Our optimization consists of two steps: loop unrolling and

subsequent unmerging of control-flow paths. Figure 1 shows

the control flow of a simple loop containing a branch in its

body. Control flow branches from basic block B to either basic

block C or D. The control flow is subsequently merged in

basic block E. At E, it is not possible to know whether C or

D was executed previously, as E has two predecessors.

1) Control Flow Unmerging: Our approach aggressively

eliminates such merging blocks. Briefly, unmerging duplicates

the basic block E, and sets the successor of C and D to

A

B

D

E

C

exit A'

B'

D'

E'

C'

Fig. 3. Loop unrolled.
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Fig. 4. Loop both unrolled and unmerged.

separate E basic blocks. We apply unmerging in the example

Figure 1 and, Figure 2 depicts the transformed control flow.

The resulting control flow enables subsequent compiler

optimizations to eliminate redundancies, specifically: (i) in both

E basic blocks it is known whether C or D was previously

executed, and (ii) it is known how the condition in B was

evaluated based on the branching decision leading to its path.

This knowledge enables subsequent optimizations, such as

constant folding and read elimination.

2) Loop Unrolling: Figure 3 shows the loop of Figure 1

after unrolling it with an unroll factor of 2, i.e., the new loop

body now consists of two copies of the original loop body.

Unrolling a loop is done in three steps: (1) create copies of the

basic blocks of the loop; (2) rewire the backedge from E to A
to point to the copied loop header A′; (3) rewire the backedge

from E′ to point to the original loop header A instead of A′.

Similarly to unmerging the control flow, more information

becomes available. For the copied basic blocks, the compiler

knows that A, B and E have executed before, hence it can

use this information to apply extra optimizations, such as read

elimination and strength reduction.

3) Unrolling And Unmerging (u&u): Figure 4, illustrates

the transformed control flow of our proposed approach, where

the control-flow in the unrolled loop is also unmerged. The

transformation provides additional information to the compiler

which is absent when solely using either unmerging or unrolling.

Specifically, u&u provides additional information to identify

(post-)dominators and extract information from the evaluated

conditions. Our approach aggressively duplicates the entire path

leading to the initial loop header, instead of only duplicating the

direct merge basic block. This design decision reveals as many

previously obscured (partial) redundancies for elimination as

possible in subsequent optimizations.

The aggressive duplication may result in substantial code

size increase, however, this is rare. Our evaluation results

empirically indicate that subsequent optimizations enabled by
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Fig. 5. Loop in bezier-surface after applying our optimization with unrolling factor of 2 and running −O3 LLVM default optimizations. Solid lines represent
True or unconditional edges, while dotted lines represent False ones. Black dots represent loop exits. Each node in the graph includes a label indicating the
provenance information on the two conditions of the node. Character X indicates no information for the condition at the respective position of the character, T
or F indicate that the condition has evaluated to True or False, respectively.

1 while(nn >= 1) {

2 blend *= nn;

3 nn--;

4 if(kn > 1) {

5 blend /= kn;

6 kn--;

7 }

8 if(nkn > 1) {

9 blend /= nkn;

10 nkn--;

11 }

12 }

Listing 2. Loop in the bezier-surface application.

our approach result in dead code elimination opportunities from

conditions that evaluate always true or false. Nevertheless, the

worst case code size increase can be analytically computed.

If p is the number of paths, s the size of the unmerged loop,

and u the unroll factor, the size of the loop after unrolling and

unmerging is f(p, s, u) =
∑

u−1

i=0
(pi ∗ s).

Unrolling and unmerging creates longer continuous execution

paths in the control flow of the application enabling the

compiler to apply additional optimizations. Besides the code

size increase, these longer execution paths can limit the

parallelism efficiency of GPU warps since the optimization ag-

gressively removes merging blocks. Although counter-intuitive,

our approach benefits performance despite this inefficiency,

by reducing the number of miscellaneous instructions and

increasing instructions per cycle (IPC) overall.

B. Detailed Example

Listing 2 shows a code snippet of a loop of the bezier-

surface program to motivate the effectiveness of the designed

optimization. Once conditions kn > 1 (Line 4) and nkn > 1
(Line 8) are False, they remain False, since kn and nkn are

only modified when these conditions are True. Consequently,

the compiler can avoid re-evaluating them, once the compiler

identifies these values to be set to False. Our transformation

empowers the compiler to perform such transformations,

reducing execution time by 30% in this example.

Figure 5 shows the CFG of the loop after applying LLVM

compiler optimizations including ours. LLVM automatically

removed the redundant condition checks in unrolled code due

to our transformation. Essentially, u&u creates 4 duplications

of the original loop, since the 2 conditions in the loop define

4 different, unmerged paths with an unrolling factor of 2. In 3

of those duplications, the compiler eliminates the redundant

evaluation of conditions. For example, if kn > 1 is False,

evaluating kn > 1 is avoided in unrolled code (see nodes

in Figure 5 with labels FT or FF). Analogously, if nkn > 1
is False, re-evaluating this condition in unrolled code is

eliminated (see nodes marked with labels TF or FF). If both

of these conditions are False (node with label FF), then the

unrolled loop body consists only of the initial assignments

avoiding the evaluation of both conditions. Note that those

eliminations mitigate the code size increase from unrolling.

Nevertheless, it is possible to further reduce code size by

redirecting the edge that targets the loop header label with TT
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TABLE I
OVERVIEW OF BENCHMARKS (L = #LOOPS, %C = % OF TIME SPENT IN COMPUTE KERNELS, RSD = RELATIVE STANDARD DEVIATION).

Name Category Command Line L % C Baseline Heuristic

Mean (ms) ± RSD Mean (ms) ± RSD

bezier-surface CV and image processing -n 4096 3 67.18% 78.75 ± 4.07% 66.16 ± 3.47%

bn Machine learning result 11 97.28% 1322.07 ± 1.52% 1042.53 ± 1.47%

bspline-vgh Simulation no CLI input 1 11.69% 137.49 ± 6.46% 77.04 ± 6.64%

ccs Bioinformatics -t 0.9 -i Data_Constant_100_1

_bicluster.txt -m 50 -p 1 -g 100.0 -r 100 9 99.98% 1629.32 ± 0.2% 3462.97 ± 0.02%

clink Machine learning no CLI input 5 27.23% 1058.04 ± 0.12% 870.99 ± 0.03%

complex Math 10000000 1000 1 99.91% 2199.23 ± 0.26% 2730.95 ± 0.1%

contract Data compression/reduction 64 5 46 99.61% 5470.18 ± 0.76% 6570.50 ± 0.11%

coordinates Geographic information system 10000000 1000 6 92.63% 744.91 ± 0.06% 744.33 ± 0.07%

haccmk Simulation 2000 1 99.83% 5823.46 ± 0.01% 5105.43 ± 0.01%

lavaMD Simulation -boxes1d 30 1 66.52% 33.28 ± 0.08% 30.65 ± 0.07%

libor Finance 100 8 99.99% 1422.20 ± 0.07% 1345.94 ± 0.03%

mandelbrot CV and image processing 100 1 14.47% 15.60 ± 0.08% 13.21 ± 0.07%

qtclustering Machine learning no CLI input 19 99.14% 176.3 ± 1.9% 165.92 ± 0.2%

quicksort Sorting 10 2048 2048 15 80.36% 518.19 ± 0.29% 502.68 ± 0.28%

rainflow Simulation 100000 100 3 99.55% 7395.28 ± 0.18% 7089.02 ± 0.17%

XSBench Simulation -s small -m event 210 87.62% 137.21 ± 0.12% 121.72 ± 0.14%

to point to the initial loop header labeled with XX, since there

are no redundancies to eliminate on that path. Though there are

more ways to hand-optimize this specific loop, it is important

that u&u automatically creates optimization opportunities.

C. Implementation

We implement our transformation as a LoopPass in LLVM,

invoked on all loops discoverable through LLVM’s loop

analysis. For each loop, our pass inspects its body and identifies

whether there exists control flow to unmerge. In the absence

of such control flow, it immediately returns without applying

any transformation. When it applies, our pass uses the existing

loop information to re-flow transformed loops by duplicating

basic blocks and rewiring control flow1 on the new paths.

We modify the default pass manager and add our unroll

and unmerging pass in the Clang optimization pipeline. The

user, using command line parameters, can either include or

exclude loops from our optimization pass. The pass assigns

consistent, deterministic unique ids to loops in the code, which

the user can use to transform specific loops. In the case of loop

nests, the pass by default unrolls only the outer loop while

inner loops are only unmerged, not unrolled. Unrolling only

the outer loop still leads to optimization opportunities in the

inner loops and we purposefully do not unroll inner loops to

capture such effects. However, using configuration options, the

pass is capable of unrolling nested loops as well.

Finally, we handle all loop types besides the ones containing

convergent operations, such as syncthreads(), which

cannot be made control-flow dependent. We use LLVM’s

1We handle phi instructions due to the SSA [26] LLVM IR by unraveling
control-/data-flow to match the re-flowed loop or replacing them if control
decays to a single predecessor block.

convergence analysis to find out if a loop contains convergent

operations, and do not apply our pass to such loops, as we

cannot safely duplicate convergent operations.

We develop a heuristic that decides whether to u&u a loop

and the unrolling factor. The heuristic takes into account the

size of the loop s and its number of paths p to estimate the size

of the loop after unrolling and unmerging, assuming a specific

unroll factor u, using the formula f(p, s, u) from Section III-A.

The size of the loop is calculated by using LLVM’s cost model,

simlilarly to LLVM’s loop unroll pass. The heuristic decides

to u&u a loop if there is an unrolling factor u′ ≥ 2 such that

f(p, s, u′) < c, where c is a parameter of the heuristic. If

such a u′ exists, the heuristic chooses the largest u′ ≤ umax

where umax is another parameter of the heuristic. Enforcing

a maximum unroll factor umax and an upper bound c on the

size of the loop limits potential instruction cache issues while

keeping into check code size and compile time increases. For

nested loops, we first try to u&u innermost loops and only u&u

outer loops if the heuristic decided not to u&u any of its inner

loops. The heuristic refrains from u&u loops annotated with

explicit unrolling pragmas to not interfere with user-requested

optimizations.

IV. EVALUATION

A. Hardware and Software Setup

We evaluated our transformation on a machine with an

NVIDIA V100 GPU on a set of 16 applications from

HeCBench [11], which contains a collection of GPU bench-

marks curated by the HPC community. We deploy the CUDA

implementations of those benchmarks, compiled with the mod-

ified Clang/LLVM version 16.0.1 including our transformation.

Clang/LLVM internally uses CUDA version 11.6.1 toolchain
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to create a machine executable. Table I gives an overview of

the applications we experiment with.

B. Methodology

We perform measurements with 5 different configurations

of the compilation optimization pipeline for comparison:

• baseline: compiled with default -O3.

• unroll: -O3 + just loop unrolling (without unmerging).

• unmerge: -O3 + just unmerging (without loop unrolling).

• u&u: -O3 + loop unrolling and unmerging.

• u&u heuristic: -O3 + heuristic u&u (c = 1024, umax = 8).

The baseline configuration measures performance by using

compiler defaults without any modification. For unroll we

use LLVM’s existing loop unroll pass, for unmerge we use

our pass setting the unroll factor to 1. Comparing unroll,

unmerge against u&u shows the effects of applying those

transformations in isolation, by contrast to our combined

approach, to help reasoning that the effect of applying both

transformations is greater than applying just one of them. All

u&u, unroll, and unmerge are added at the same position,

early in the compilation pipeline to maximize subsequent

optimizations enabled through those transformations. Our pass

enables subsequent optimizations to apply, hence a late position

in the pipeline is ineffective, unless the whole pipeline is

restarted which would untenably increase compilation time.

We use Nvprof [27] to perform our measurements, which

reports the time spent for memory transfers (device to host

and vice versa) and the time spent executing GPU kernels. Our

transformation does not affect memory transfer time, so we

use the sum of all GPU kernel execution times to calculate

speedup. Table I shows the fraction of time spent in GPU

kernels2 to weigh in for calculating Amdahl’s law end-to-end

speedup. We apply our pass to one loop at a time to precisely

measure the effect of applying our pass and comparators to

each loop. For each application, loop, unrolling factor, and

configuration, we run the application 20 times and report the

median of the sum of all kernel execution times.

Note that the baseline compiler also performs loop unrolling

if it deems it worthwhile. Besides full loop unrolling, it can also

partially or runtime unroll a loop depending on its tripcount.

Those ideas could also be applied to u&u and further improve

the performance of our optimization. For full unrolling, LLVM

employs a profitability based analysis which takes into account

simplifications that may be performed after full unrolling. A

similar approach may be helpful to help our heuristic decide

whether it is profitable to u&u a loop.

C. Experimentation Results

We structure our evaluation into 3 research questions (RQ):

RQ1 Does u&u achieve speedup over -O3 compilation?

RQ2 How does u&u affect compilation times and code size?

RQ3 Does u&u perform better than just unroll or unmerge?

We first summarize the results of our heuristic before

going into details. Figures 6a, 6b and 6c show speedup,

2The remaining time is spent performing memory transfers.

code size and compile time increase over baseline for the

heuristic and for all loops and applications with different unroll

factors of 2, 4, 8. Our heuristic improves performance for

13 out of 16 applications, achieving a maximum speedup of

1.81× for bspline-vgh. In some cases, our heuristic is able

to achieve higher speedup than those reported on individual

loops because it applies to multiple well-performing loops

choosing different, beneficial unrolling factors per-loop. The

geometric means for speedup, code size and compile time

increase over all applications for the heuristic are 1.05×, 1.7×
and 1.18× respectively, which shows that the heuristic speeds

up applications while avoiding extremes in code size and

compile time.

RQ1: Does u&u achieve speedup over -O3 compilation?

First of all, we want to find out if u&u outperforms the default

-O3 compilation pipeline. For all applications, except complex,

there is at least one unroll factor for which our transformation

is able to improve the execution time of one or more loops

in the application. For one application, complex, we observe

significant slowdowns that increase with the unroll factor, due to

a branch that is frequently divergent leading to warp execution

inefficiencies in the u&u version. Its maximum slowdown of

0.11× occurs for an unroll factor of 8.

For brevity we will only highlight some interesting aspects.

For bezier-surface and rainflow, u&u enables the elimination

of condition checks that are either always true or false in the

next iteration of the loop, depending on how the conditions

were evaluated in the previous iteration. For XSBench, u&u

is enabling subsequent optimizations that eliminates data

movement and subtraction operations depending on how the

condition inside the binary search loop (see Listing 1) was

evaluated. Even though we are replacing predicated instructions

by possibly divergent branches, we are able to speedup XSBench

by up to 1.36×. For coordinates, we see a speedup of 1.11×
for an unroll factor of 2, but no speedup (nor slowdown) for

other unrolling factors. The speedup occurs because in the

baseline version the loop is fully unrolled by LLVM. When

we include our pass in the pipeline, LLVM does not unroll this

loop, which speeds up execution. To verify our observation,

we also compiled a version by explicitly disable unrolling for

this specific loop and measured similar speedup as to when

applying our pass.

The complex application is an outlier experiencing high

slowdowns with increased unrolling factors. These slowdowns

occur because the baseline version avoids branches by using

predicated instructions, while u&u introduces branches and

increases the length of possibly divergent paths, thus serializ-

ing execution. Subsequent optimizations cannot speedup the

application any further and thus we observe slowdowns.

While in most cases our heuristic is able to avoid per-

formance degradation, there are still 3 applications where

performance is noticeably reduced by u&u. For ccs, the

heuristic chooses to u&u multiple small loops which leads

to slowdown, as shown by the single loop measurements.

Applying u&u disables beneficial runtime unrolling for those

loops, which LLVM otherwise applies. While for complex and
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Fig. 6. Speedup, code size and compile time increase for u&u.

contract the heuristic does not avoid slowdown, it contains

it by choosing a small unrolling factor. To avoid degradation,

u&u can be enhanced with runtime unrolling or the heuristic

should better predict possible optimizations and avoid the

existing u&u transformation that bars them. By selectively

unmerging only those parts of the loop that enable subsequent

optimizations, the heuristic could further improve performance

by reducing inefficiencies in warp execution and instruction

caching. We believe these extensions to our approach will lead

to performance increases for those remaining three applications.

Note that each data point in Figure 6a represents the median

of 20 runs. Table I shows the relative standard deviation (RSD)

for the baseline and heuristic measurements3. The variability

observed is low across the board. The variability for bezier-

surface and bspline-vgh is relatively higher (4.07% and 6.46%
respectively), but speedup from u&u is statistically significant,

as it is much higher than the RSDs and we also report medians,

which removes outliers.

RQ2: How does u&u affect compilation times and code

size? With our second research question, we investigate how

code size and compilation time change when u&u is performed.

3To ensure stable measurements and avoid hardware induced noise, we use
nvidia-smi (NVIDIA’s system management interface) to verify GPUs are at
the highest performance setting (maximum clock frequency), with no adaptive
power management.
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Fig. 7. Speedup achieved by u&u per application and unroll factor vs. just applying unroll, or unmerge.

Figure 6b shows by how much code size increases with different

unroll factors. It is important to note that we compared the size

of the binaries, since this is the end product of compilation

following backend’s lowering to machine instructions. If an

application is large such as XSBench and quicksort, the relative

code size increase will not be large even if the size of the loop

is increased by a lot. The optimized loops of ccs, complex,

haccmk, and rainflow dominate the code size, thus when our

optimization further increases their size we observe significant

overall code size increase.

Typically, code size increases with the unroll factor, but

we can also observe some irregularities. For bspline-vgh, the

loop’s trip count is 4, so the loop is fully unrolled for an unroll

factor of 4 and 8, which explains why the code size is the

same for an unroll factor of 4 and 8. For ccs, there are 4 loops

for which the compilation process times out after a limit of

5 minutes, which also explains why the maximal code size

increase is observed for an unroll factor of 4.

The heuristic completely avoids extreme code size increases,

as seen for ccs, clink, complex, quicksort and rainflow, by

choosing unrolling factors based on the expected size of the

loop after u&u, excluding loops whose expected loop size is

higher than the threshold. In few cases, such as bezier-surface,

contract and coordinates, the code size increases are slightly

higher than the highest single loop code size increase as the

heuristic chooses to u&u multiple loops.

Figure 6c shows by how much the compile time increased

with different unroll factors. The compile time increase is

slightly slower than code size increase. For two applications,

bezier-surface and qtclustering, the compile time increases are

much higher than the code size increase. Most of the time is

spent in the IPSCCPPass (interprocedural constant propagation

pass), i.e., 86% for bezier-surface and 72% for qtclustering.

While most of the compile time is not spent within our pass,

the time spent in other passes is increased, as they have to

process the duplicated code our pass generates.

Just as for code size, the heuristic completely avoids all

cases of extremely high compile time. The highest compile

time increase of 4.58× for the heuristic is for contract, because

the heuristic decides to u&u many of its loops. Lower unrolling

factors in those cases reduce compile time while still enabling

performance benefits from u&u.

While in many cases, compile time and code size increase is

moderate, there are some outliers. This is to be expected,

because, as discussed in Section III, the size of the loop

increases exponentially with the unroll factor when our transfor-

mation is applied. A remedy, as already mentioned to increase

speedup, unmerging only those control-flow merges that lead

to subsequent optimization opportunities, could also keep code

size and compile time under control.

RQ3: Does u&u perform better than just unroll or un-

merge? Our transformation performs unrolling and unmerging

together. We explore the speedup from just unrolling or just

unmerging, to contrast it with their combined application in

our approach. Figure 7 compares u&u and unroll with unroll

factors of 2, 4, and 8, and unmerge for all loops.

Our u&u method achieves higher speedups than unroll and

unmerge for most applications. Only for mandelbrot, unmerge

achieves higher speedup than both unroll and u&u, although

u&u performs better than unroll. The worst performing u&u

benchmark is complex, and it leads to significant performance

degradation compared to unroll or unmerge. In some bench-

marks, u&u shows only slightly higher speedup such as for

ccs, whereas in few cases unroll’s speedup is slightly higher,

such as for haccmk.

Following, we examine more closely on benchmarks that

u&u achieves the highest speedup. For bezier-surface and

rainflow, u&u eliminates condition checks in iteration i + 1
of a loop by knowing how the conditions were evaluated in

iteration i, thus the higher speedup than just unrolling. For

rainflow, u&u also eliminates load instructions. As we discussed

earlier throughout the text, for XSBench, u&u eliminates both

data movements and subtraction operations, depending on how

the condition inside the binary search loop is evaluated. For

haccmk, the speedups achieved by unroll are slightly higher

than u&u, due to an increasing number of stalls related to

instruction fetching for u&u.

Figures 8a and 8b compare u&u with unroll and with

unmerge respectively. Each data point represents one loop.

The x-axis shows the speedup obtained by applying u&u to
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Fig. 8. Speedup for all loops.

a single loop, whereas the y-axis the speedup by applying

unroll, or unmerge respectively on the same loop. Loops on

the diagonal red line have the same speedup for both u&u

and unroll (unmerge). Loops above the diagonal have greater

speedup from applying unroll (unmerge) alone. Conversely,

loops below the diagonal have greater speedup thanks to u&u.

Observing Figure 8a, there are several loops below that

diagonal that u&u optimizes when unroll fails or even slows

them down, across different unroll factors. A large number of

loops is on or near the diagonal, where speedup from u&u

and unroll is similar. In rare occasions u&u leads to significant

slowdown whereas unroll does not.

The highest unroll factor of 8 shows both greater speedup

and greatest slowdown for loops that only benefit from u&u

but not unroll. This is due to exponential increase on code size

by u&u, when it is not mitigated by subsequent optimization,

resulting in instruction cache or warp execution inefficiencies.

Nevertheless, moderate unroll factors of 2 or 4 in u&u avoid

severe slowdown while achieving noticeable speedup.

Solely applying unmerge fails to achieve speedup for the

majority of the loops as depicted in Figure 8b. The majority

of the points are either below or align with the diagonal and

therefore strongly indicate that unmerge is typically ineffective

unless composed with unrolling to result in benefits.

1 while( length > 1 ) {

2 mid = lowerLimit + ( length / 2 );

3 if(A[mid] > quarry)

4 upperLimit = mid;

5 else

6 lowerLimit = mid;

7 length = upperLimit - lowerLimit;

8 }

9 return lowerLimit;

Listing 3. Binary search loop in XSBench.

V. IN-DEPTH ANALYSIS

In this section we analyze in-depth certain applications

to highlight the strengths and weaknesses of our approach.

We use Nvprof [27] to collect GPU hardware performance

counters to identify the root causes of the observed trade-

offs. For XSBench we report how our optimization eliminates

computation instructions, while for rainflow it eliminates load

instructions, among others, which shows that both compute-

intensive and memory-intensive workloads profit from it.

XSBench: Listing 3 shows the C++ code of the binary

search loop in XSBench. Our transformation applied on this

loop results in speedups of up to 36%. Listing 4 shows

the original NVPTX code, NVIDIA’s assembly language,

generated for the code presented in Listing 3. The assembly

code includes predicate-based select selp instructions4. The

instruction selp.b64 dst, src1, src2, cond store

to the destination register dst either the value of register src1

or src2 depending on the predicate flag cond. The selp

instruction at Line 8 represents the assignment lowerLimit

= mid which is only performed if A[mid]>quarry.

Listing 5 shows part of the equivalent assembly code after

our transformation has applied with an unroll factor of 2.

Specifically, it shows the part executed when two iterations

of the loop are executed and the condition A[mid]>quarry

is true in both iterations. We observe several differences:

(1) conditionally executed jumps replace selp instructions,

which happens because, as we can see in Figure 4, the depth

of nested branches increases; (2) the subtraction is eliminated

in our version, because upperLimit - lowerLimit is

length/2 if A[mid]>quarry is true; (3) there is only

one mov instruction in the u&u version, for this path which

represents 2 iterations of the loop, compared to 4 selp

instructions, executing in 2 iterations of the baseline version.

The value mid does not move into upperLimit, as it

is unused outside of the loop, and the register that holds

length/2 is reused. But it has to be moved in Line 2,

to update upperLimit if A[mid]>quarry is false. The

hardware performance counters reflect those changes. Although

warp_execution_efficiency5 goes down from 62.88% to 18.91%,

inst_misc6 is reduced by 55%, while IPC increases by 1.88×,

after applying u&u with an unroll factor of 8.

4These are similar to CMOV in the x86 assembly language.
5Ratio of the average active threads per warp to the maximum supported.
6Number of miscellaneous instructions executed by non-predicated threads.
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1 $L__BB7_2:

2 shr.u64 %rd13, %rd17, 1;

3 add.s64 %rd14, %rd13, %rd20;

4 shl.b64 %rd15, %rd14, 3;

5 add.s64 %rd16, %rd10, %rd15;

6 ld.f64 %fd2, [%rd16];

7 setp.gt.f64 %p2, %fd2, %fd1;

8 selp.b64 %rd19, %rd14, %rd19, %p2;

9 selp.b64 %rd20, %rd20, %rd14, %p2;

10 sub.s64 %rd17, %rd19, %rd20;

11 setp.gt.s64 %p3, %rd17, 1;

12 @%p3 bra $L__BB7_2;

13 $L__BB7_3:

14 st.param.b64 [func_retval0+0], %rd20;

15 ret;

Listing 4. PTX for the XSBench binary search loop.

1 $L__BB7_2:

2 mov.u64 %rd4, %rd33;

3 shr.u64 %rd22, %rd34, 1;

4 add.s64 %rd6, %rd22, %rd28;

5 shl.b64 %rd23, %rd6, 3;

6 add.s64 %rd7, %rd19, %rd23;

7 ld.f64 %fd2, [%rd7];

8 setp.leu.f64 %p2, %fd2, %fd1;

9 @%p2 bra $L__BB7_8;

10 setp.lt.u64 %p5, %rd34, 4;

11 @%p5 bra $L__BB7_6;

12 shr.u64 %rd34, %rd34, 2;

13 add.s64 %rd33, %rd34, %rd28;

14 shl.b64 %rd26, %rd33, 3;

15 add.s64 %rd27, %rd19, %rd26;

16 ld.f64 %fd4, [%rd27];

17 setp.leu.f64 %p6, %fd4, %fd1;

18 @%p6 bra $L__BB7_7;

19 bra.uni $L__BB7_5;

20 $L__BB7_5:

21 setp.gt.s64 %p7, %rd34, 1;

22 @%p7 bra $L__BB7_2;

23 bra.uni $L__BB7_6;

Listing 5. PTX after u&u, true-true path.

Rainflow: In Listing 6, we can see one of two loops in the

rainflow application, that u&u is able to optimize7. Let the

following conditions (i) a := x[i] > y[j] (ii) b := x[i]

> x[i+1] (iii) c := x[i] < y[j] (iv) d := x[i] <

x[i+1] (v) e := y[++j] = x[i]. In this example, having

knowledge about how the conditions were evaluated previously,

allows the elimination of loads, and condition checks. There

are 7 paths in this loop, abe, abcde, abcd, abc, acde, acd and

a c. We observe the following: (1) If a or c are true, then

x[i+1] must be loaded to check if b or d are true. If a
or c evaluate to true, the load of x[i] can be eliminated

in the next iteration since it is equal to x[i+1] from the

previous iteration. (2) On paths starting with ab, c is always

false, because a ⇒ c. (3) If e has executed, y[j] is equal to

x[i], thus loading y[j] in the next iteration is redundant.

(4) After the abe path, in the next iteration, a is false and c
must be true, so the condition needs to check only if d is true,

since b and e imply c in this next iteration. (5) Analogously, on

7Note that x and y are marked with the __restrict__ keyword.

1 for (int i = 1; i < len-1; i++) {

2 if ((x[i] > y[j] && x[i] > x[i+1]) ||

3 (x[i] < y[j] && x[i] < x[i+1])) {

4 y[++j] = x[i];

5 }

6 }

Listing 6. Loop in the rainflow application optimized by u&u.

1 while (n > 0) {

2 if (n & 1) {

3 a_new *= a;

4 c_new = c_new * a + c;

5 }

6 c *= (a + 1);

7 a *= a;

8 n >>= 1;

9 }

Listing 7. Loop in complex slowed down by u&u.

the paths that end with cde, in the next iteration a must be true

(and therefore c is false), hence the condition only needs to

check if b is true. These are all partial redundancies, i.e., they

exist only in some, but not all, paths and therefore cannot be

eliminated only by unrolling since it lacks information about

how the conditions were evaluated in the previous iteration.

However, u&u makes these partial redundancies explicit for

removal. These optimizations are reflected in the performance

metrics. For an unroll factor of 4, inst_misc is reduced by 77%,

inst_control8 by 45% and gld_throughput9 by 17%. While

warp_execution_efficiency goes down from 28.42% to 13.79%,

IPC is increased by 2.04×.

Complex: Listing 7 shows the loop in complex that

significantly slows down by u&u. We trace the reason

for this slowdown to branch divergence. The variable n

is a function parameter, that is set to the global thread

id, i.e., threadIdx.x + blockIdx.x * blockDim.x.

The condition in Line 2 checks if n is an odd number. Because

the thread ids are unique within a warp, there is a high

chance that the branch will diverge. For an unroll factor of

8, the warp_execution_efficiency goes down from 100% to

19.37%. At the same time stall_inst_fetch10 goes up from

3.72% to 79.59%. Unrolling and unmerging increases the

penalty incurred by branch divergence because threads stay

divergent longer due to the longer paths before reconvergence.

There are also no optimizations from u&u to offset this. We

could avoid such cases by employing a taint analysis that

checks whether a condition depends on the values of e.g.,

threadIdx, and not apply our transformation in these cases.

VI. CONCLUSION

This work introduces a novel and aggressive transformation

to unroll loops in the code and duplicate control flow by un-

merging to expand conditional execution flow. Subsequent

8Number of control-flow instructions executed by non-predicated threads.
9Global memory load throughput.
10Percentage of stalls occurring because of delayed instruction fetching.
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compiler optimization exploits the transformed control flow

to enable optimizations that cannot be enabled without our

transformation. We prototype our optimization in LLVM, and

evaluate its performance on a collection of GPU benchmarks.

Although our optimization induces branch divergence in SIMT

architectures, such as the GPUs we use, the technique can

achieve performance improvements of up to 81%.

As future work we plan to extend our method with partial

unmerging and partial/runtime unrolling. Also, we will improve

our heuristic’s cost model to predict the benefits of subsequent

optimization, including divergence analysis [28], [29], to better

identify loops for applying our approach.
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APPENDIX

A. Abstract

Our artifact provides everything that is necessary to re-

produce Table 1 and Figures 6 - 8. This includes a fork

of LLVM that contains our code to perform unrolling and

unmerging, the benchmarks used in our paper and scripts to

run the measurements, and create the plots.

B. Artifact Check-List (Meta-Information)

• Algorithm: Unmerging and Unrolling.
• Program: All 16 benchmarks used in this paper are included

in the artifact.
• Compilation: A C/C++ compiler is required to build our fork

of LLVM that is then used to build the benchmarks.
• Run-time environment: A system that has docker or podman

installed. Otherwise, a system with cuda, cmake, ninja, a C/C++
compiler and python3.

• Hardware: An NVIDIA GPU is required. We used an NVIDIA
V100 GPU.

• Metrics: Execution times, measured as the sum of all kernel
execution times, compilation time, and code size.

• Output: Figures 6a, 6b, 6c, 7, 8a, 8b and Table 1.
• How much disk space required (approximately)?: At least

45GB.
• How much time is needed to prepare workflow (approxi-

mately)?: Approximately 1 hour.
• How much time is needed to complete experiments (approx-

imately)?: Approximately 50 hours.
• Publicly available?: Yes

• Code licenses (if publicly available)?: LLVM is licensed
under Apache License v2.0 with LLVM Exceptions.

• Data licenses (if publicly available)?: HeCBench is licensed
under the BSD 3-Clause License. XSBench is licensed under
the MIT License.

• Archived (provide DOI)?: 10.5281/zenodo.10205186

C. Description

1) How Delivered: Our artifact can be downloaded from Zenodo:
https://zenodo.org/doi/10.5281/zenodo.10205186.

2) Hardware Dependencies: An NVIDIA GPU is required.
3) Software Dependencies: Our artifact can either be run using

container technologies, e.g. docker, podman or singularity. Otherwise,
the following software has to be installed: cuda, cmake, ninja, a C/C++
compiler, python3.

D. Installation

Download the zip from https://zenodo.org/doi/10.5281/zenodo.
10205186, unpack it, and step into the unpacked folder cgo-uu
afterward. The unpacked folder contains a README.md (also

1 tar -xzvf cgo-uu.tar.gz

2 cd cgo-uu

README.pdf) that gives detailed instructions and help on potential
issues. We provide a Dockerfile that can be used to build an image
that contains all dependencies that are needed to run our artifact. The
README.md contains detailed instructions on how to build and run
the docker image.

Alternatively, the artifact can also be run without using container
technologies such as Docker. In this case, one has to install all
dependencies on their own machine. We provide a script that checks
whether all necessary software dependencies can be found:

1 bash scripts/check_dependencies.sh

After installing all necessary dependencies or building the image
and starting a container, a version of LLVM has to be built that
contains our Unrolling and Unmerging pass:

1 cd scripts

2 . build_llvm.sh

E. Experiment Workflow

Once LLVM has been built, it is possible to start the measurements.
Execute the following two commands to run all the measurements
and create Table 1 and Figures 6, 7 and 8.

1 bash run_all.sh

2 bash plot/generate_all.sh

Alternatively, it is possible to run measurements separately:

1 # Run the measurements for uu-heuristic

2 bash run_heuristic.sh

3 # Create Table 1

4 bash plot/create_table.sh

5

6 # Run u&u with an unroll factor of 2

7 bash run_uu.sh 2

8 # Run u&u with an unroll factor of 4

9 bash run_uu.sh 4

10 # Run u&u with an unroll factor of 8

11 bash run_uu.sh 8

12 # Create Figures 6a, 6b, 6c
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13 bash plot/fig6.sh

14

15 # Run config 'unroll' with an unroll factor of 2

16 bash run_unroll.sh 2

17 # Run config 'unroll' with an unroll factor of 4

18 bash run_unroll.sh 4

19 # Run config 'unroll' with an unroll factor of 8

20 bash run_unroll.sh 8

21

22 # Run config 'unmerge'

23 bash run_unmerge.sh

24

25 # Create Figure 7

26 bash plot/fig7.sh

27 # Create Figure 8a and 8b

28 bash plot/fig8.sh

F. Evaluation and Expected Result

After running the experiment workflow, the cgo-uu/results/
folder contains Table 1 (table1.txt) and Figures 6a, 6b, 6c, 7,
8a, and 8b (fig6a.pdf, fig6b.pdf, fig6c.pdf, fig7.pdf,
fig8a.pdf, fig8b.pdf).

G. Notes

Refer to the README.md for in-depth instructions on how to use
the artifact, how to use the provided Dockerfile, and for help with
potential issues that may arise.
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