
Region Based Structure Layout Optimization by Selective Data Copying

Sandya S. Mannarswamy
Hewlett-Packard,
Bangalore, India

sandya.s.mannarswamy@hp.com

R. Govindarajan
SERC, Indian Institute of Science

Bangalore, India
govind@serc.iisc.ernet.in

Rishi Surendran
Hewlett-Packard
Bangalore, India

rishi.surendran@hp.com

Abstract � As the gap between processor and memory
continues to grow, memory performance becomes a key
performance bottleneck for many applications. Compilers
therefore increasingly seek to modify an application�s data
layout to improve cache locality and cache reuse. Whole
program Structure Layout [WPSL] transformations can
significantly increase the spatial locality of data and reduce the
runtime of programs that use linked list-based data structures, by
increasing the cache line utilization. However, in production
compilers WPSL transformations do not realize the entire
performance potential possible due to a number of factors.
Structure layout decisions made on the basis of whole program
aggregated affinity/hotness of structure fields can be sub-
optimal for local code regions. WPSL is also restricted in
applicability in production compilers for type unsafe languages
like C/C++ due to the extensive legality checks and field
sensitive pointer analysis required over the entire application. In
order to overcome the issues associated with WPSL, we propose
Region Based Structure Layout (RBSL) optimization framework
using selective data copying. We describe our RBSL framework,
implemented in the production compiler for C/C++ on HP-UX
IA-64. We show that acting in complement to the existing and
mature WPSL transformation framework in our compiler, RBSL
improves application performance in pointer intensive SPEC
benchmarks ranging from 3% to 28% over WPSL.

1 INTRODUCTION
As the gap between processor and memory continues

to grow, memory performance becomes a key performance
bottleneck for many applications. Compilers are
challenged to improve an application�s cache locality and
reuse. Standard locality improving transformations [22, 23,
24], such as loop transformations, for improving cache
locality are maturing. However their applicability is
limited to array and loop intensive scientific codes. For
codes with pointer based data structures and irregular
pointer chasing access patterns, these transformations are
not applicable [3]. Therefore, in order to improve cache
locality and cache reuse, compilers increasingly seek to
modify an application�s data layout. Data layout
transformations [1, 2, 3, 4, 5, 6, 10, 11, 12, 14, 15] are a
class of optimizations that seek to improve the memory
performance of applications by controlling the way data is
arranged in memory. Data layout transformations include
global variable layout [10], stack layout, heap layout [1]
and structure layout optimizations [2, 3, 4, 5, 6, 11, 12, 14,
15]. Our focus in this paper is on structure layout.

There are many techniques that optimize the placement
of fields within a structure. These include structure
splitting [3], structure peeling [4, 11, 12], field reordering

[3, 4, 11, 12] and dead field removal [4]. These techniques
use various heuristics to improve locality. For instance, a
common heuristic is to simply separate hot and cold fields
so that cold fields are not unnecessarily brought into the
cache as they decrease the cache-line utilization. However
the runtime data access pattern might not be consistent
with the access frequency distribution of the fields. In
other words, not all hot fields of a structure are accessed
together in a region of program. Hence many of the
structure layout techniques use the notion of affinity
between fields accessed [3, 4, 5, 6, 12]. Fields f1 and f2
have a strong affinity to each other if they are often
accessed close to each other. Placing fields that have
stronger affinity together in the same cache line would
improve spatial locality.

Structure layout optimizations are essentially whole
program by nature since they operate on global types
which are visible and passed across multiple functions.
These analyses identify the structure types that can be
modified safely. Affinity and hotness analyses are
performed on these structures to determine the splitting
decisions. Once a decision is made to transform a
particular type, it is applied across the entire program by
modifying all references to that type. Because of their
potential to improve application performance dramatically,
structure layout transformations have been the focus of
considerable research of late.

However whole program structure layout
transformations (WPSL) in production compilers do not
realize the full performance potential possible due to a
number of factors. Applications often exhibit different
affinity behavior across the fields of the structure in
different program regions for the same data structure type.
Two different hotspots in an application can be accessing
two different sets of fields of a hot data type. If the data
layout framework bases its splitting decisions by
aggregating the affinity/hotness information across all
regions, then it will split the structure by combining the
affinity information of both hotspot regions. Such a global
decision may be sub-optimal for each of the local hotspot
regions. On the other hand, if it decides to split the
structure type for the entire application based on field
access affinity information for one region only, it will
result in poor locality and cache line utilization for other
region.

Previous research work on field placement and data
structure splitting appears in [3, 5, 17, 14]. Early work in
this area uses error-prone human inspection of C
applications to make sure that the transformation is safe [3,
5, 14]. In a program written in a pointer-rich language,
such as C and C++, splitting a structure type might impact

2009 18th International Conference on Parallel Architectures and Compilation Techniques

1089-795X/09 $25.00 © 2009 IEEE

DOI 10.1109/PACT.2009.43

320

2009 18th International Conference on Parallel Architectures and Compilation Techniques

1089-795X/09 $25.00 © 2009 IEEE

DOI 10.1109/PACT.2009.43

338

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 03,2023 at 22:06:39 UTC from IEEE Xplore. Restrictions apply.

the whole program because of aliasing relationships.
Therefore, a compiler needs to modify all the affected
references when it splits a particular structure type.
Applying a type-safe optimization to a type-unsafe
language without a proper safety assurance mechanism is
unacceptable in production compilers. Zhao et al show that
whole program field sensitive inter-procedural pointer
analysis is needed in order to safely perform structure
splitting for the application [12].

Hundt et al show that extensive legality checks are
required for the WPSL transformation [4]. For the
transformation to be legal, the compiler needs to ensure
that the type is not passed to opaque library calls, and that
there are no dangerous type casting transformations on the
type. Since legality checks need to be satisfied throughout
the whole program, it reduces the potential applicability of
the transformation. Even if there is a single opaque call
site to which the type that is selected for structure splitting
is exposed, the compiler is prevented from performing the
transformation.

All these disadvantages owe their origin to the single
fact that the existing structure layout frameworks make
WPSL decisions. That is, the layout decision needs to be
based on and applied to the entire program. Every
reference to structure type selected for layout
transformation needs to undergo the same layout
transformation. It is not possible to have different splitting
decisions for different local regions. For instance, we
cannot decide to split a type locally for one region and not
split it in another code region. Fields selected to be placed
in the hot and cold part cannot be different for different
code regions. The requirement of uniformity of the layout
decisions across the whole program prevents WPSL
transformations from extracting the maximum
performance possible.

In order to overcome the above disadvantages
associated with WPSL, we propose a new local or region
based structure layout (RBSL) transformation framework.
RBSL is complementary and can co-exist with WPSL.
RBSL transformation phase uses data copying (partial
structure cloning) to enable local data layout decisions that
are best suited for each local region, which can be different
from the WPSL decision. Thus our RBSL framework
trades off the data copying overhead with the increased
cache line utilization for that local region. Although there
has been prior work on using copying to reduce conflict
misses in the case of array based programs [22, 27], to
the best of our knowledge, ours is the first work in
selectively applying data copying to enable region based
structure layout automatic optimization for linked data
structures in type unsafe languages like C/C++.

We have implemented RBSL in the HP-UX IA-64
production compiler for C/C++ [7]. We show that working
in complement to the existing and mature WPSL
transformation framework in the compiler, our new
optimization improves application performance in certain
SPEC benchmarks by up to 28%. More importantly, this
work establishes that RBSL as an effective region-based
transformation which facilities the application of data

layout transformation, perhaps locally, on structures that
were not amenable under the WPSL framework.

In Section 2, we provide the necessary background and
motivation for RBSL optimization. Section 3 introduces
data utilization metrics and describes the local region
based data layout transformation. In Section 4, we briefly
describe the steps involved in RBSL transformation. We
present our experimental evaluation results in Section 5.
We discuss related work in Section 6 and conclude with a
short summary in Section 7.

2 BACKGROUND
In this section we present the necessary background on

WPSL optimization. Subsequently we motivate the need
for RBSL optimizations with the help of a few examples.

2.1 Structure Layout Optimizations
There are regions of code in an application which have

poor utilization of data, in terms of the ratio of the amount
of data actually used by the application to the amount of
data fetched. Structure layout optimizations attempt to
improve the data utilization for such delinquent code by
modifying the structure layout. It typically splits the
structure type into 2 parts. The hot part contains only those
fields which are actually used in that region and the
unused fields are moved to the cold part. Consider the
following nested loop from 179.art benchmark shown in
Fig. 1

for (tj=0; tj < numf2s; tj++) {
 Y[tj].y = 0;
 if (!Y[tj].reset) {
 for (ti=0;ti<numf1s;ti++) {
 Y[tj].y += f1_layer[ti].P* bus[ti][tj];
 }
 }
}

Figure 1. A loop from 179.art

Each access to structure element f1_layer[ti] of type
f1_neuron brings in one cache line of data, out of which
only one field (P) is used. This results in poor data
utilization for the above loop as only 8 bytes of data out of
the 64 bytes (L1 D-cache line size) of the cache line data
fetched is actually used. Such poor data utilization can
lead to wasted memory bandwidth, poor cache utilization
and low TLB hit rate. If structure splitting [3] creates a
new array of structures f1_layer_P, containing only field
P, then it results in 100% cache-line utilization for
f1_layer_P for the above loop.

Structure layout optimizations are inter-procedural by
nature as they operate on global types that are visible and
passed across multiple functions. Structures are identified
as whether they can be modified safely and attributes are
collected (such as whether a type has been dynamically
allocated or whether they are local or global variables of
that type). These attributes are consulted to determine
applicable transformations. Affinity and hotness analyses
are performed across the entire program to determine the

321339

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 03,2023 at 22:06:39 UTC from IEEE Xplore. Restrictions apply.

final transformations [3, 4]. Once a decision is made to
transform a particular structure, it is applied across the
entire application by modifying all references to that type.

2.2 Limitations of WPSL Decisions
Many applications, however, contain frequently

executed code regions in which the groups of fields
accessed from a hot data type T are different. For instance,
f1 and f2 can be the set of fields of type T that are
accessed in one region whereas f1 and f4 are the set of
fields accessed in another region. This happens, for
instance, in the SPECint2006 benchmark 429.mcf. The
two loops shown in Fig 2 and 3 access different hot fields
of the structure �arc�, which is one of the hottest data
structures of the application.

The first loop in Fig. 2 accesses the fields nextout,
nextin, tail and head from the �arc� structure, while the
second loop shown in Fig. 3 accesses the fields head, tail,
ident and cost. These are two distinct program regions
where the affinity groups for the structure �arc� are
different.

arc = net->arcs;
for (stop = (void *) net-> stop_arcs; arc < (arc_t *) stop; arc++) {
 arc->nextout = arc->tail->firstout;
 arc->tail->firstout = arc;
 arc->nextin = arc->head->firstin;
 arc->head->firstin = arc;
}

Figure 2. Loops from mcf with different hot fields

arc = net->arcs;
for (; arc < stop_arcs; arc += nr_group) {
 if (arc->ident > BASIC) {
 red_cost = arc->cost-arc->tail->potential +
 arc->head->potential;
 ��..
 }
}

Figure 3. Loops from mcf with different hot fields

Existing data layout frameworks typically employ
whole program splitting decisions. Let us consider the
effect of this on the data structure �arc� shown in Fig. 2
and Fig. 3. If the data layout framework bases its splitting
decisions by aggregating the affinity information across all
program regions, it will make the decision to split the
structure �arc� into two parts, a hot part consisting of the
fields cost, tail, head, ident, nextin and nextout and a cold
part consisting of the fields flow and org_cost. Though
such a layout will bring together the high affinity fields of
both loop regions, it results in sub-optimal decisions for
the hottest loop region L2, where only the 4 fields head,
tail, cost and ident are accessed. Thus WPSL decisions
may not always achieve the maximum performance
potential that are realizable by data layout transformations
that are specific to each local region.

Moreover the access patterns exhibited by a particular
data structure can be different for different regions. This

can also happen when an array of structures is traversed
with different stride patterns in different local regions, or a
data structure such as a tree is traversed either depth first
or breadth first in different local regions. A WPSL
optimization cannot optimize for such varying access
patterns for different regions. This brings up the possibility
of having a region based structure layout framework which
can decide on an optimal data layout for each local region,
based on the regional affinity of the fields and access
patterns for that data structure specific to that region.

Extensive legality checks are required for the WPSL
transformation. For a transformation to be legal, the
compiler needs to ensure that the type is not passed to
opaque library calls and there are no dangerous
typecasting transformations on the type.

TABLE I. DATA TYPES AMENABLE UNDER WPSL

Benchmark Number of
types

Number of
types

eligible for
WPSL

400.perlbench 101 12

401.bzip2 6 0

403.gcc 384 28

429.mcf 4 3

445.gobmk 53 9

450.sjeng 8 4

464.h264ref 39 7

462.libquantum 3 2

456.hmmer 30 5

The potential applicability of WPSL transformation

becomes restricted since the legality checks need to be
satisfied throughout the whole program. Even if there is a
single opaque call site to which the type selected for
structure splitting is exposed, the compiler is prevented
from performing the transformation. This results in leaving
potential performance on the table since all possible data
layout opportunities cannot be realized. In Table I, we
present the number of types which pass the whole program
legality checks in our WPSL framework, for a set of
SPECint2006 benchmarks, compared to the number of
data structure types present in the benchmark. The WPSL
framework employed in our compiler uses a set of legality
checks such as �cast not applied�, �sizeof operator not
applied� and �structure not passed to external shared
library� to filter candidates for WPSL. We find that nearly
80% of the types become ineligible for transformation as
they fail whole program legality checks. Another main
reason for considering a region based structure layout
framework comes from the fact that any WPSL decision
requires that all pointers in the application code which can
point to the type being split need to be updated to the
newly created split type after the transformation. Since the
compiler needs to identify all pointers that point to the

322340

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 03,2023 at 22:06:39 UTC from IEEE Xplore. Restrictions apply.

transformed type, in order for the transformation to be
correct, an accurate alias analysis is required which is
often expensive. Last, most of the existing automatic
WPSL frameworks cannot handle array of data structures
allocated non-contiguously [11], unless there is support for
automatic pool allocation [16]. This also contributes to
WPSL not being able to address all of the structure layout
transformation opportunities available in the application.

2.3 Region Based Structure Layout (RBSL)
In order to enhance the efficacy of structure layout

transformations by mitigating some of the disadvantages
which are associated with the WPSL transformation, we
propose a new local, or region based structure layout
transformation framework. RBSL can co-exist with the
existing WPSL framework and is complementary to it.
RBSL uses data copying to enable local data layout
decisions that are best suited for each local region, which
can be different from the WPSL decision. The framework
trades off the data copying overhead with the increased
cache line utilization for that local region resulting in
improving the overall application performance. In the case
of RBSL, candidates for RBSL need to pass the legality
checks only over the local region and not over the whole
program.

3 REGION BASED STRUCTURE LAYOUT OPTIMIZATION
In this section we discuss the metrics for quantifying

the data utilization of local regions and how these metrics
can be used for RBSL candidate selection.

3.1 Data Utilization Metrics
In order to quantify our discussion on poor data

utilization for a local region of code, we introduce the
following definitions: Data Volume is in general, total
volume of data accessed over a local code region such as a
loop. The volume of data intended by the programmer to
be accessed and the volume of data actually accessed by
the program can differ considerably. Hence we define two
quantities namely Programmer Intended Data Volume
(PIDV) and Actually Accessed Data Volume (AADV).
Programmer Intended Data Volume (PIDV) is the volume
of data actually intended by the programmer to be
accessed over the region, via explicit references to the data
by the application code in that region. PIDV can be
defined for different granularities of the code region such
as functions, loops etc. In this work, we focus on those
inner loops which traverse over a list/array of structures.

We can estimate programmer intended data volume
accessed over the loop region L which traverses over a list
of structures of type T denoted as PIDV(L,T) to be equal
to

PIDV(L,T) = NL * (SFu + SFcf * pf)

where NL is the number of loop iterations for L, SFu is
the aggregated size of all unconditionally accessed fields
of type T in each iteration by the application code, SFcf
is the size of field f in type T that is conditionally

accessed in a loop iteration, and pf is probability of
accessing field f in an iteration.

We also define the term Actually Accessed Data
Volume over a local region (AADV) as the volume of data
the application actually ends up fetching (into the cache) to
satisfy the programmer intended data accesses over that
region. Given a loop region L which traverses over a list of
structures of type T, we denote AADV(L, T) to be the
volume of data actually fetched by the application in order
to meet PIDV(L,T) required in that region. For example,
consider a loop region L iterates over a list of structures
with each structure element size 64 bytes, where each
element of the list is aligned to the cache line and occupies
only a full cache line size. If only one integer word field f
is accessed in the loop, then the application actually ends
up fetching 64 bytes for each reference of the field,
whereas the programmer intends to use only 4 bytes out of
the 64 bytes accessed. We estimate

AADV(L,T) = NL * CL * CS

where CL is the number of cache lines that were
brought in per iteration to meet the PIDV(L,T) for L, and
CS is the cache line size.

Next we define PIDV(L) to be the total programmer
intended data volume for all types T in loop L. Thus

PIDV (L) = T (PIDV(L,T))

Similarly, AADV(L) is the total data volume actually
brought in by the loop L. Assuming different data types
accessed in a loop do not fit within a cache line,

AADV (L) = T (AADV(L,T))

AADV(L) is always greater than or equal to the size of
PIDV(L). The closer AADV is to the PIDV, better the data
utilization of the local region under consideration. We
define the data utilization ratio (DU) for a local region as
the ratio of PIDV to AADV for that region.

DU (L) = PIDV(L) / AADV (L)

We define Data Volume OverHead for a given region
as AADV � PIDV for that region.

DVoh (L) = AADV (L) � PIDV (L)

If the DU ratio is closer to 1, then DVoh is smaller and
we say the local region is better behaved with respect to
data utilization. We define those loop regions with high
DVoh, and hence low DU ratio, as delinquent regions.

We explain the above metrics with the help of our
example innermost loop shown in Fig. 1, from the
application 179.art. For every structure element accessed
in the loop, the application ends up fetching 64 bytes of
data, but utilizes only 8 bytes of data. Assuming a loop
iteration count of 10000 from the profile data, we compute

323341

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 03,2023 at 22:06:39 UTC from IEEE Xplore. Restrictions apply.

the PIDV as 80000 and the AADV as 640000 for this loop
region. The DU ratio is 0.125 and the data volume
overhead is 560000. In our work, we choose a threshold of
0.7 and below for DU ratio to mark a loop as delinquent
loop. Hence this loop is a delinquent loop.

Next, we demonstrate that there exist delinquent loops
in programs even after applying a reasonably good WPSL
transformation. Our production compiler [7] employs a
WPSL framework which includes various optimizations
such as structure splitting, structure peeling and field
reordering. After all the WPSL optimizations have been
employed, we added a phase to identify delinquent loops
as defined above in order to understand the potential for
further local structure layout transformations. We ran the
analysis on a suite of SPEC benchmarks and the results are
shown in Table II. We see that even after mature WPSL
transformations have been employed on the code, eight out
of the eleven benchmarks still exhibit delinquent loops.

TABLE II. DELINQUENT LOOPS IN BENCHMARKS AFTER WPSL

Benchmark

Number of
Delinquent
Loops found
post-WPSL

Number of
Data Types
involved in
Delinquent
Loops

400.perlbench 3 1

401.bzip2 1 1

403.gcc 7 3

429.mcf 6 1

445.gobmk 12 5

456.hmmer 0 0

458.sjeng 4 2

462.libquantum 0 0

468.h264ref 0 0

471.omnetpp 3 1

473.astar 3 2

Therefore we target our region RBSL transformation

on such delinquent loop regions to improve their data
utilization. In order to determine the candidates for RBSL
we need to quantify the potential gain due to RBSL. The
Data Volume OverHead (DVoh) has an impact on
application�s execution time since there is a finite cost
associated with each unit of data that is accessed by the
application. This cost is due to multiple factors such as (a)
the actual cost of data access for each unit of data (b) the
impact of the amount of data accessed on the cache misses,
memory bandwidth and DTLB etc. Assuming an average
fixed unit cost for each byte of data accessed, we estimate
the Data Volume Overhead Cost as,

DVohc(L) = DVoh(L) * average cost for each unit of
data accessed

We approximate the average cost of each unit of data
accessed by the value of k cycles. Hence

DVohc(L) = DVoh(L) * k cycles

As a conservative approximation, we use the value of k
equal to 1 (In practice, k can be many cycles).

Data volume overhead cost is borne by the application
and hence impacts its execution time. Hence the positive
impact of a particular structure layout on the application
performance can be approximated by the reduction in data
volume overhead cost achieved by a given layout for a
region. Let LWPSL be the WPSL layout used for the type T
in the loop region L, if WPSL is possible for L and Lcurrent
be the current layout. Note that if WPSL is not possible
for T, then LWPSL would be same as Lcurrent. Similarly, let
LRBSL represent the RBSL-based optimized structure layout
applied to L for the type T. The estimated reductions in the
data overhead due to WPSL and RBSL optimizations over
the original loop are

DVoh(Lcurrent) - DVoh (LWPSL) and

DVoh(Lcurrent) - DVoh (LRBSL)

respectively. Finally we can estimate benefit of the RBSL
over WPSL in terms of cycles using the k value as;

(DVoh (LWPSL) - DVoh(LRBSL)) * k

which equals,

(AADV (LWPSL) - AADV (LRBSL) * k).

Hence we denote the benefits due to applying RBSL as

Benefits (LRBSL) = ((AADV (LWPSL)) �
AADV (LRBSL)) * k cycles

Now using these metrics, we try to answer the question
of when the compiler needs to employ RBSL on top of a
WPSL framework. For each delinquent region R, we
compute the benefits of applying the local layout decision
compared to the WPSL decision. If the benefit computed
is positive for a given region R, then R is considered
eligible for RBSL transformation. As already mentioned,
if WPSL is not possible for a type due to either legality
checks not passed for the whole application or pointer
analysis declaring the type to be not transformable, then
we compute the benefits compared with respect to the
original loop Lcurrent.

3.2 Overheads associated with RBSL
The above discussion on benefits of RBSL does not

include any overheads introduced by the RBSL
transformation itself. We perform RBSL by selective data
copying. The data layout of the application is adjusted by
making a copy of the original data such that the data
utilization of the delinquent loop is improved and the

324342

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 03,2023 at 22:06:39 UTC from IEEE Xplore. Restrictions apply.

application can amortize or even overcome the cost of
copying overhead. The copy has a better (reduced)
footprint in the cache since it is packed and for cases of
non-sequential access pattern which varies from the
allocation pattern of the structure list, the copy can be set
up to follow the access pattern for the delinquent loop
which helps improve the data utilization for that local
region. We denote the original data structure as the
original structure list and the copy instantiated by RBSL as
the copy structure list.

Although, at first glance, copying appears to be a very
simple idea, it can be difficult to
a) ensure coherence between original structure list and

the copy list and
b) estimate at compile time, whether the benefits of

improved data utilization for the delinquent loop
outweighs the cost of copying.

We define the cost involved in setting up the copy
initially as the copy SetupCost and any cost involved in
keeping the copy in synch with the original data structure
as SyncCost. Both these costs have to be taken into
account when computing the net benefits due to RBSL.
The overall COPYCOST is the sum of SetupCost and
SyncCost. The copy setup cost is nothing but the AADV
cost incurred over the delinquent loop for the original
(whole program) structure layout.

CopySetupCost = AADV(LWPSL) * k cycles .

We approximate the synch cost by upper bounding it
by the copy set up cost. Hence the overall copy cost
becomes

CopyCost = 2* CopySetupCost .

All elements of the structure list over which the delinquent
loop traverses must be brought into the cache once, in
order to set up the copy list. Hence the extra runtime
overhead incurred in setting up the copy must be offset
completely by the improved data utilization of the
transformed loop. Otherwise the RBSL enabled by data
copying can degrade application performance. In order to
ensure this criterion conservatively, for recovering the cost
of copying incurred by the transformation, we use the
simple filtering criterion that the delinquent loop region is
nested inside an outer loop. For ease of reference in further
discussion, we refer to the inner loop as the delinquent
loop (DL) and we refer to the outer loop enclosing the
delinquent inner loop as the ancestor loop (AL). Since the
delinquent loop is nested inside the ancestor loop, we can
estimate the RBSL benefits over the ancestor loop as

BenefitsAL(RBSL) excluding the copy cost =
BenefitsDL(RBSL) * NAL

where NAL is the number of iterations of the ancestor loop.
Therefore the net benefits of RBSL over the ancestor loop
region when we account for the CopyCost is

NetBenefitsAL(RBSL) = BenefitsAL(RBSL) - CopyCost =
BenefitsDL(RBSL) * NAL CopyCost.

Recall that,

BenefitsDL (LRBSL) = ((AADV (LWPSL)) - AADV
(LRBSL)) * k

Using this in the above equation,

NetBenefitsAL(RBSL) = ((AADV (LWPSL) * (NAL - 2) -
AADV (LRBSL) * NAL) * k.

And we apply RBSL only if the NetBenefitsAL(RBSL) as
computed above is positive.

3.3 Granularity of Region for RBSL
The granularity of region considered for structure

layout transformation can vary, being innermost loop
level, function level or inter-procedural. WPSL considers
the whole program as a region and makes layout decisions
which represent one end of the spectrum. The other end of
the spectrum is our RBSL framework which considers
each individual delinquent loop region as the candidate for
layout decisions. It is possible to consider a region
granularity between these two points and consider
combination of delinquent regions for transformation. In
general, one should consider all possible r-combinations of
regions and need to choose the most appropriate one. Note
that when r equals n and if all regions are selected for the
combination, the layout decision becomes WPSL. When r
equals 1, then the RBSL decision is per delinquent loop
region. In this paper we focus on single delinquent loop
regions, enclosed by an Ancestor Loop. We defer the
question of considering all possible r-combinations of
regions where the copy cost can be shared, and hence
redundant copies can be avoided, for future work.

4 IMPLEMENTATION OF RBSL TRANSFORMATION IN
OUR COMPILER

Next, we describe our compiler infrastructure and the
implementation of the RBSL transformation.

4.1 Our Compiler framework
We have implemented the RBSL transformation in the

SYZYGY [7] high level optimizer for the HP-UX IA-64
production C/C++ compilers. Our compiler employs an
Inter-Procedural WPSL phase which includes various
structure layout transformations such as structure splitting,
peeling and field reordering [4]. RBSL happens after all
the transformations identified by the WPSL optimization
phase have been carried out on the code. Hence it targets
those delinquent loops which were not amenable to WPSL
or which did not benefit fully from WPSL.

4.2 Region Based Structure Layout Algorithm
The basic algorithm for RBSL using selective data

copying consists of identifying the delinquent loops,

325343

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 03,2023 at 22:06:39 UTC from IEEE Xplore. Restrictions apply.

performing legality checks on them and code
transformation.

4.2.1 Identification of delinquent loops

We use our optimizer�s loop recognition phase to build

a loop structure graph. For each loop, our optimizer
iterates over the basic blocks and collects the field
references for the structure type which is traversed in that
loop. For each loop region L, it computes the PIDV and
AADV values using the profile information for the loop
iteration counts and conditional branch probabilities as
mentioned in Section 2.1. Nested loops with a DU ratio of
0.7 and below are marked as delinquent loops and for each
such delinquent loop, its ancestor loop is also identified.
These delinquent loops constitute the basic set of RBSL
candidates for further checking and transformation.

4.2.2 Legality and Profitability Checking

Our WPSL framework has an exhaustive set of legality

checks to ensure layout of structure layout transformation
[4]. We use the same set of legality checks in RBSL.
However in our case, they are applied only over the local
region and not over the entire application. We also
perform legality checks over the ancestor loop region to
ensure that we can correctly identify all updates to the
original structure list. In cases where the structure list
elements can escape the ancestor region, the loop is
discarded from the candidate list. For amortizing the cost
of copying incurred by the RBSL transformation, we use
the simple filtering criterion that the delinquent loop
region is nested inside an outer loop. We then apply the
NetBenefits computation as described in Section 3.2 to
identify the candidates profitable for RBSL
transformation.
4.2.3 Code Transformation

RBSL transformation includes the following steps:

(i) Creation of a new structure type containing the hot
fields from the information obtained in 4.2.1 for the
delinquent candidate loop
(ii) Instantiation of the copy list at the entry point to the
ancestor loop
(iii) Replacing the references in the delinquent loop body
from the original structure list to the copy list
(iv) Insertion of code to add updates to the copy list, at
points of update to the original structure list in the
ancestor loop body to maintain the original list and copy
list in sync; and
(v) Insertion of code to free the copy list in the post-pad
of the ancestor loop.

5 EXPERIMENTAL EVALUATION

5.1 Experimental Methodology
We used SPEC2000 and SPEC2006 C/C++

applications as the set of benchmarks for our experiments

and evaluated the performance of our RBSL framework in
HP-UX IA-64 production compiler for C/C++. We
compiled the benchmarks at the highest optimization level
(level 4 with IPO) with RBSL enabled. Many of the
structure layout opportunities present in the application are
already addressed satisfactorily by the WPSL framework
enabled at optimization level 4 in our compiler. We find
that structure layout optimization opportunities in
benchmarks like 177.mesa, 188.ammp, 300.twolf.
462.libquantum and 458.sjeng are transformed by the
WPSL framework in our compiler. RBSL identifies
additional structure layout transformation opportunities in
the 6 benchmarks listed in Table III.

We report performance results only for those
benchmarks in which RBSL identified candidates for
transformation in Table III. RBSL had no impact on the
other SPEC benchmarks since no candidates were
identified for RBSL transformation in them. We also
evaluated RBSL on two proprietary applications namely
HP-UX operating system kernel and our standard system
library �libc�. We report these results in Table IV. Though
181.mcf (from SPEC2000) is also transformed by RBSL,
we do not include it in our results since the same code
region is transformed in 429.mcf (from SPEC2006) also.
The baseline for our performance comparison is a SPEC
base configuration with reference input sets and using the
HP-UX compiler�s non-profile based heuristics for the
branch frequencies and loop iteration counts. We report
results with RBSL enabled and without RBSL enabled on
the base configuration, to show the extra performance that
is extracted by RBSL over WPSL. All results were
obtained on an HP rx2600 server with a 1500 MHz Intel
Itanium 2 processor, 6 GB of memory, and 6 MB of last
level cache.

5.2 Performance Comparison
In Table III we show, for each the benchmark, the

structure modified by RBSL in the benchmark and the
performance improvement in terms of % improvement in
execution time.

TABLE III. PERFORMANCE IMPROVEMENT OF RBSL OVER WPSL

SPEC
BM

Structure
modified by
RBSL

Improvement
in Execution
time (%)

Reduction
in Dcache
Miss
latency
(%)

Reduction
in DTLB
Miss (%)

mcf Arc_t 28.5 5.94 36.12

milc Site 10.2 7.71 1.02

gobmk String_data 4.2 3.32 1.6

moldyn Mol_t 17.3 22.31 25.78

omnetpp cMessage 3.8 4.59 3.24

art Fl_neuron 11.6 5.12 14.3

We also report the data cache miss latency cycles

reduction along with reduction in the number of data TLB

326344

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 03,2023 at 22:06:39 UTC from IEEE Xplore. Restrictions apply.

misses. The data cache and data TLB miss data were
obtained using the performance profile tool HP-Caliper
by sampling the IA-64 hardware performance counters
[8].

The performance improvements range from 3% to 28%
for these benchmarks. In the case of 429.mcf, our WPSL
framework already performs structure splitting for the 2
structure types �node� and �arc�. The structure �arc� has 8
fields, and WPSL splits the fields cost, tail, head, ident
and flow into the most frequently accessed part (hot part)
and the rest of the fields in to the cold part during
structure layout. However WPSL layout still performs
poorly in the delinquent region identified by RBSL, in the
function �primal_bea_mpp�. This region has poor cache
line utilization due to non-sequential stride. For every
access to the fields of arc in this loop, 128 bytes of data is
brought in, out of which only 16 bytes corresponding to
the 4 fields used in this loop are actually accessed by the
application. There is also no spatial locality in this loop
since the next �arc� element that is accessed is not
sequential, but is separated by a stride value equal to the
variable �nr_group�.

RBSL identifies the above delinquent region as a
candidate for transformation. It creates a new structure
type which contains only the 4 fields accessed in this
region. When it sets up the copy, it uses the stride
information obtained from the compiler analysis for this
delinquent region to set up the copy array such that
consecutive elements in the copy array are those which
are apart by the stride value in the original structure.
Hence the delinquent region is transformed from a region
of no-spatial locality to a region of high spatial locality
and there is no wastage of cache line since only the fields
accessed in the region are brought into the cache. Hence
RBSL improves performance for 429.mcf by 28% over
WPSL.

CPU stalls of 433.milc have a very large data cache
component, about 75%. The major data structure is �site�
whose size is about 2K bytes. In case of 433.milc, WPSL
is unable to transform the type due to legality checks not
passing over the entire program for this type. RBSL
identifies 4 delinquent regions where only one field of the
structure type �site� is accessed over a loop. By copying
the accessed field in each �site� structure to an array of
structures with each structure only containing this field as
its member, we can improve the spatial locality for this
delinquent region. For instance, RBSL identifies a
delinquent region where only the field �tempmat1� is
accessed from the site structure over all the sites. The
size of tempmat1 field is 144 bytes. Hence 2 cache lines
(each of size 128bytes) of data are brought in, out of
which only 144 bytes are actually intended to be used by
the programmer. This results in a low cache line utlization
of only around 57%. RBSL transforms this delinquent
region to improve the cache line utilization to 100%.

In case of 445.gobmk, RBSL identifies 2 delinquent
regions where there is traversal of the structure type
�string_data�. RBSL splits the fields which are accessed in
those regions from string_data. In 471.omnetpp, RBSL
identifies a delinquent region where an array of structures
�cMessage� is traversed. The delinquent region contains
references only to the fields arrival_time, priority and
insert_order. RBSL transformation improves overall
performance by 3.8%. In case of moldyn, RBSL identifies
3 delinquent regions over the traversal of structure type
�Mol� and transforms them resulting in performance
improvement of 17.26%. Performance results for HP-UX
kernel and HP-UX libc are shown in Table IV.

TABLE IV. PERFORMANCE IMPROVEMENT FOR HP-UX

Other Applications
Structure

Transformed
by RBSL

Improvement
in Exec.

Time
over WPSL

HP-UX kernel Structure A 1.4%

HP-UX libc Structure B 3.2%

Because of the proprietary nature of HP-UX kernel

and standard library source code, we omit the names of
the structures and refer to them as structures A and B
respectively. Structure A is one of the hottest structures of
the kernel, having 190 fields, containing data belonging to
different subsystems. WPSL is not able to transform this
structure due to legality considerations over the entire HP-
UX kernel. RBSL identified 2 delinquent regions where
only one field was accessed and transformed the loop
regions to obtain 1.4% improvement for the SPEC
057.sdet benchmark which is used for HP-UX kernel
performance testing. We also compiled HP-UX standard
library libc for finding opportunities with RBSL. WPSL
does not find any candidates in standard library �libc� due
to legality constraints. RBSL identified 2 delinquent
regions in the memory allocation routines involving the
structure B. Applying RBSL gave a performance
improvement of 3.2% for �libc� when tested with the
memory allocator performance benchmark [26].

We find that though the number of delinquent loops
identified is much larger as found in Table II, only a few
of them are transformed by RBSL due to RBSL�s
filtering criterion that the delinquent loop needs to be a
nested loop. We are investigating whether this criterion
can be relaxed.

5.3 Copying Overhead
For the benchmarks transformed by RBSL, we

measured the overheads due to setting up and
maintenance of the copy of the original data structure. To
measure this overhead, in this experiment, RBSL inserts
the copy and sync operations, but does not transform the
delinquent loop region field references to access the copy
data structure. The copying overheads measured as the

327345

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 03,2023 at 22:06:39 UTC from IEEE Xplore. Restrictions apply.

performance degradations over our baseline are shown in
Table V.

TABLE V. COPY OVERHEAD

Benchmark copy
overhead

429.mcf 1.29%

433.milc 3.2%

471.omnetpp 3.87%

445.gobmk 1.1%

472.moldyn 2.1%

179.art 0.9%

We find that copying overheads range from 0.9% to

3.8%. Currently our RBSL framework does not do any
specific optimization for reducing the copying overhead.
It is possible to reduce the copying overhead by delaying
the sync-up of original data structure until the point of use
of the original data structure after the exit from the
delinquent region (lazy sync-up) and by chunking the
copying instead of inserting point-updates. We plan to
investigate this as part of our future work.

6 RELATED WORK
The area of research most closely related to this work

is the area of automatic data transformations. Chilimbi et
al. first used structure splitting to improve data locality
[3]. Rabbah and Palem split structured data in C programs
by allocating objects in large chunks where structure
fields were stored in separate arrays [17]. Chilimbi later
improved structure splitting using the frequency of data
sub-streams called hot-streams [9]. Zhong et al. defined a
model to measure the closeness of references in a memory
trace, known as reference affinity and show how it can be
used for structure splitting and array regrouping [14].
Although they perform structure splitting in a compiler
they assume that the language is type-safe and use
programmer intervention to ensure safety. The Forma
framework for array grouping and structure layout
automatically and safely reshapes single-instantiated
arrays [12]. Curial et al [11] combine structure splitting
with automatic pool allocation [16], and use a
comprehensive field sensitive pointer analysis to ensure
safety.

Many of the structure layout frameworks mentioned
above employ WPSL decisions. WPSL transformations
have also been discussed in detail in [4, 5, 11, 12, 23].
Hundt et al [4] show that the applicability of WPSL
transformations is limited and propose using a semi-
automatic tool to address some of the layout opportunities
not amenable for WPSL. However the semi-automatic
tools require code changes by the programmer unlike
RBSL which is performed automatically by the compiler.
The applicability of RBSL is wider compared to WPSL

since the legality checks need to be satisfied only over the
delinquent region targeted for transformation. RBSL is
fully automatic and does not need any programmer
intervention. RBSL is complementary to the existing
WPSL transformations and can co-exist with them.
Alternatives to the automatic transformations described
above are transformations that require programmer
intervention or special allocator libraries [28, 18],
whereas RBSL does not require any special libraries.
There has been work on loop transformations where
copying has been proposed to aid loop tiling in order to
avoid conflict misses [22, 27]. Yi et al [30] use data
copying based on standard array dependence analysis for
improving the data layout of array based computations.

 Chilimbi and Larus [30] used the copying garbage
collection [GC] mechanism for object movements guided
by locality information, aimed at type safe languages with
GC support. Our work uses a purely compile time
analysis for RBSL transformations aimed at type unsafe
languages like C/C++ which do not support automatic
GC. There has been work on runtime data layout and data
relocation [20, 25. 28]. However these require special OS
techniques [28] or special hardware [20].

7 CONCLUSIONS AND FUTURE WORK
In this paper we have proposed Region Based Structure
Layout optimization for improving cache utilization and
locality. Our paper proposes, for the first time, local or
region based approach which is especially attractive for
structures that are not amenable for transformation under
WPSL. We have implemented RBSL in our production
C/C++ compiler for HP-UX IA-64 and evaluated its
performance for certain SPEC benchmarks and HP-UX
proprietary applications. We showed that RBSL working
complementary to a mature WPSL framework can help
improve performance from 3% to 28% in a set of
benchmarks. We plan to investigate RBSL for
multithreaded applications as part of our future work. We
also plan to investigate whether a WPSL scheme which is
aware of a down-stream RBSL phase can make better
layout decisions. Profitability analysis for RBSL
candidate selection can be inaccurate when loop counts
cannot be determined at compile-time. We plan to address
this in future-work, using loop multi-versioning with
RBSL applied selectively at runtime based on iteration
count.

ACKNOWLEDGEMENTS
We like to thank our team members in the IA-64

optimizer group for their help and support. We
particularly like to thank Teresa Johnson and Kaushik
Rajan for their comments/suggestions. We would also like
to extend our thanks to the anonymous reviewers; their
feedback helped greatly to improve the quality of this
paper.

328346

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 03,2023 at 22:06:39 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[1] B. Calder, C. Krintz, S. John, and T. Austin. 1998. Cache-

conscious data placement. In ASPLOS-VIII: Proceedings of the
eighth international conference on Architectural support for
programming languages and operating systems, NY, USA, pp.
139�149, ACM Press, 1998.

[2] T. M. Chilimbi, B. Davidson, and J. R. Larus. 1999. Cache-
conscious structure definition. In PLDI �99: Proceedings of the
ACM SIGPLAN 1999 conference on Programming language
design and implementation, NY, USA, pp. 13�24, ACM Press,
1999.

[3] T. M. Chilimbi, M. D. Hill, and J. R. Larus. 1999. Cache-
conscious structure layout. In PLDI �99: Proceedings of the ACM
SIGPLAN 1999 conference on Programming language design and
implementation, NY, USA, pp. 1�12, ACM Press, 1999.

[4] R. Hundt, S. Mannarswamy, and D. Chakrabarti. 2006. Practical
structure layout optimization and advice. In CGO �06: Proceedings
of the International Symposium on Code Generation and
Optimization, (Washington, DC, USA), pp. 233�244, IEEE
Computer Society, 2006.

[5] T. Kistler and M. Franz. 2000. Automated data-member layout of
heap objects to improve memory-hierarchy performance. ACM
Trans. Program. Lang. Syst., vol. 22, no. 3, pp. 490�505, 2000.

[6] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. 2004. Array
regrouping and structure splitting using whole-program reference
affinity. In PLDI �04: Proceedings of the ACM SIGPLAN 2004
conference on Programming language design and implementation,
(New York, NY, USA), pp. 255�266, ACM Press, 2004.

[7] S. Moon, X. D. Li, R. Hundt, D. R. Chakrabarti, L. A. Lozano, U.
Srinivasan, and S.-M. Liu. 2004. Syzygy - a framework for
scalable cross-module ipo. In CGO �04: Proceedings of the
international symposium on Code generation and optimization,
(Washington, DC, USA), p. 65, IEEE Computer Society, 2004.

[8] R. Hundt. 2000. HP Caliper: A framework for performance
analysis tools. IEEE Concurrency, vol. 8, no. 4, pp. 64�71, 2000.

[9] T. M. Chilimbi and R. Shaham. 2006. Cache-conscious
coallocation of hot data streams. SIGPLAN Not., vol. 41, no. 6, pp.
252�262, 2006.

[10] N. McIntosh, S. Mannarswamy, and R. Hundt. 2006. Whole
program optimization of global variable layout. In PACT �06:
Proceedings of the 15th International Conference on Parallel
Architectures and Compilation Techniques, (Seattle, WA, USA),
IEEE Computer Society, 2006.

[11] S. Curial, P. Zhao, J. N. Amaral, Y. Gao, S.Cui, R. Silvera, and
R. Archambault. 2008. MPADS: memory-pooling-assisted data
splitting. In Proceedings of the 7th international Symposium on
Memory Management (Tucson, AZ, USA, June 07 - 08, 2008).
ISMM '08. ACM, New York, NY, 101-110.

[12] P. Zhao, S. Cui, Y. Gao, R. Silvera, and N. J. Amaral. 2007.
Forma: A framework for safe automatic array reshaping. ACM
Trans. Program. Lang. Syst. 30, 1 (Nov. 2007).

[13] E. Petrank and D. Rawitz. 2005. The hardness of cache conscious
data placement. Nordic J. of Computing 12, 3 (Jun. 2005), 275-
307.

[14] Y. Zhong, M. Orlovich, X. Shen and C. Ding. 2004. Array
regrouping and structure splitting using whole-program reference
affinity. SIGPLAN Not. 39, 6 (Jun. 2004), 255-266.

[15] M. Franz and T. Kistler. 1998. Splitting data objects to increase
cache utilization. Tech. Report ICS-TR-98-34, Dept. of
Information and Computer Science, Univ. of California, Irvine,
Irvine, CA, Oct.

[16] C. Lattner, and V. S. Adve. 2002. Automatic pool allocation for
disjoint data structures. In ACM SIGPLAN Workshop on Memory
System Performance (Berlin, Germany). ACM, New York, 13�24.

[17] R. Rabbah and S. Palem. 2003. Data remapping for design space
optimization of embedded memory systems. ACM Trans. Embed.
Comput. Syst. 2, 2, 186�218.

[18] D. N. Truong, F. Bodin, and A. Seznec. 1998. Improving cache
behavior of dynamically allocated data structures. In PACT �98:
Proceedings of the 1998 International Conference on Parallel
Architectures and Compilation Techniques, (Washington, DC,
USA), p. 322, IEEE Computer Society, 1998.

[19] M. Hirzel. 2007. Data layouts for object-oriented programs.
SIGMETRICS Perform. Eval. Rev. 35, 1 (Jun. 2007), 265-276.

[20] X. Huang, Z. Wang, and K.S. McKinley. 2001. Compiling for the
Impulse Memory Controller. In Proceedings of the 2001
international Conference on Parallel Architectures and
Compilation Techniques (September 08 - 12, 2001). PACT. IEEE
Computer Society, Washington, DC, 141-150.

[21] E. Raman, R. Hundt and S. Mannarswamy. 2007. Structure layout
optimizations for multithreaded programs. In CGO �07:
Proceedings of the International Symposium on Code Generation
and Optimization, pages 271�282, Washington, DC, USA, 2007.
IEEE Computer Society.

[22] M. S. Lam, E Rothberg, and M. E. Wolf. 1991. The cache
performance and optimizations of blocked algorithms. In Proc.
ASPLOS-IV, 1991.

[23] K.S. McKinley, S. Carr, and C. Tseng. 1996. Improving data
locality with loop transformations. ACM Trans. Program. Lang.
Syst. 18, 4 (Jul. 1996), 424-453

[24] D F Bacon, S L Graham, and O J Sharp. Compiler transformations
for high-performance computing. ACM Computing Surveys,
26:346�420, 1994.

[25] C. Ding and K. Kennedy. 1999. Improving cache performance in
dynamic applications through data and computation reorganization
at run time. SIGPLAN Not. 34, 5 (May. 1999), 229-241. [26]
Chuck Lever and David Boreham. malloc() performance in a
multithreaded linux environment. In Proceedings of the USENIX
Annual 2000 Technical Conference, June 2000.

[26] O. Temam, E. D. Granston, and W. Jalby. 1993. To copy or not to
copy: a compile-time technique for assessing when data copying
should be used to eliminate cache conflicts. In Proceedings of the
1993 ACM/IEEE Conference on Supercomputing (Portland,
Oregon, United States). Supercomputing '93. ACM, New York,
NY, 410-419.

[27] C. Luk and T. C. Mowry. 1999. Memory forwarding: enabling
aggressive layout optimizations by guaranteeing the safety of data
relocation. SIGARCH Comput. Archit. News 27, 2 (May. 1999),
88-99.

[28] Y. Feng and E. D. Berger. 2005. A locality-improving dynamic
memory allocator. In Proceedings of the 2005 Workshop on
Memory System Performance (Chicago, Illinois, June 12 - 12,
2005). MSP '05. ACM, New York, NY, 68-77.

[29] T. M. Chilimbi and J. R. Larus. 1998. Using generational garbage
collection to implement cache-conscious data placement. In
Proceedings of the 1st international Symposium on Memory
Management (Vancouver, British Columbia, Canada, October 17 -
19, 1998). ISMM '98. ACM, New York, NY, 37-48.

[30] Q. Yi. 2005. Applying Data Copy to Improve Memory
Performance of General. Array Computations. Languages and
Compilers for Parallel Computing, 18th International Workshop,
LCPC 2005, Hawthorne, NY, USA, 91-105.

329347

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 03,2023 at 22:06:39 UTC from IEEE Xplore. Restrictions apply.

