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Abstract � As the gap between processor and memory 
continues to grow, memory performance becomes a key 
performance bottleneck for many applications. Compilers 
therefore increasingly seek to modify an application�s data 
layout to improve cache locality and cache reuse. Whole 
program Structure Layout [WPSL] transformations can 
significantly increase the spatial locality of data and reduce the 
runtime of programs that use linked list-based data structures, by 
increasing the cache line utilization. However, in production 
compilers WPSL transformations do not realize the entire 
performance potential possible due to a number of factors. 
Structure layout decisions made on the basis of whole program 
aggregated affinity/hotness of structure fields can be sub-
optimal for local code regions. WPSL is also restricted in 
applicability in production compilers for type unsafe languages 
like C/C++ due to the extensive legality checks and field 
sensitive pointer analysis required over the entire application. In 
order to overcome the issues associated with WPSL, we propose 
Region Based Structure Layout (RBSL) optimization framework 
using selective data copying. We describe our RBSL framework, 
implemented in the production compiler for C/C++ on HP-UX 
IA-64. We show that acting in complement to the existing and 
mature WPSL transformation framework in our compiler, RBSL 
improves application performance in pointer intensive SPEC 
benchmarks ranging from 3% to 28% over WPSL. 

1 INTRODUCTION 
As the gap between processor and memory continues 

to grow, memory performance becomes a key performance 
bottleneck for many applications.  Compilers are 
challenged to improve an application�s cache locality and 
reuse. Standard locality improving transformations [22, 23, 
24], such as loop transformations, for improving cache 
locality are maturing. However their applicability is 
limited to array and loop intensive scientific codes. For 
codes with pointer based data structures and irregular 
pointer chasing access patterns, these transformations are 
not applicable [3]. Therefore, in order to improve cache 
locality and cache reuse, compilers increasingly seek to 
modify an application�s data layout.  Data layout 
transformations [1, 2, 3, 4, 5, 6, 10, 11, 12, 14, 15] are a 
class of optimizations that seek to improve the memory 
performance of applications by controlling the way data is 
arranged in memory. Data layout transformations include 
global variable layout [10], stack layout, heap layout [1] 
and structure layout optimizations [2, 3, 4, 5, 6, 11, 12, 14, 
15].  Our focus in this paper is on structure layout. 

There are many techniques that optimize the placement 
of fields within a structure. These include structure 
splitting [3], structure peeling [4, 11, 12], field reordering 

[3, 4, 11, 12] and dead field removal [4]. These techniques 
use various heuristics to improve locality. For instance, a 
common heuristic is to simply separate hot and cold fields 
so that cold fields are not unnecessarily brought into the 
cache as they decrease the cache-line utilization. However 
the runtime data access pattern might not be consistent 
with the access frequency distribution of the fields. In 
other words, not all hot fields of a structure are   accessed 
together in a region of program. Hence many of the 
structure layout techniques use the notion of affinity 
between fields accessed [3, 4, 5, 6, 12]. Fields f1 and f2 
have a strong affinity to each other if they are often 
accessed close to each other. Placing   fields that have 
stronger affinity together in the same cache line would 
improve spatial locality. 

Structure layout optimizations are essentially whole 
program by nature since they operate on global types 
which are visible and passed across multiple functions. 
These analyses identify the structure types that can be 
modified safely. Affinity and hotness analyses are 
performed on these structures to determine the splitting 
decisions. Once a decision is made to transform a 
particular type, it is applied across the entire program by 
modifying all references to that type.  Because of their 
potential to improve application performance dramatically, 
structure layout transformations have been the focus of 
considerable research of late. 

However whole program structure layout 
transformations (WPSL) in production compilers do not 
realize the full performance potential possible due to a 
number of factors.   Applications often exhibit different 
affinity behavior across the fields of the structure in 
different program regions for the same data structure type. 
Two different hotspots in an application can be accessing 
two different sets of fields of a hot data type. If the data 
layout framework bases its splitting decisions by 
aggregating the affinity/hotness information across all 
regions, then it will split the structure by combining the 
affinity information of both hotspot regions. Such a global 
decision may be sub-optimal for each of the local hotspot 
regions.  On the other hand, if it decides to split the 
structure type for the entire application based on field 
access affinity information for one region only, it will 
result in poor locality and cache line utilization for other 
region. 

Previous research work on field placement and data 
structure splitting appears in [3, 5, 17, 14]. Early work in 
this area uses error-prone human inspection of C 
applications to make sure that the transformation is safe [3, 
5, 14].  In a program written in a pointer-rich language, 
such as C and C++, splitting a structure type might impact 
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the whole program because of aliasing relationships. 
Therefore, a compiler needs to modify all the affected 
references when it splits a particular structure type.  
Applying a type-safe optimization to a type-unsafe 
language without a proper safety assurance mechanism is 
unacceptable in production compilers. Zhao et al show that 
whole program field sensitive inter-procedural pointer 
analysis is needed in order to safely perform structure 
splitting for the application [12]. 

Hundt et al show that extensive legality checks are 
required for the WPSL transformation [4]. For the 
transformation to be legal, the compiler needs to ensure 
that the type is not passed to opaque library calls, and that 
there are no dangerous type casting transformations on the 
type. Since legality checks need to be satisfied throughout 
the whole program, it reduces the potential applicability of 
the transformation. Even if there is a single opaque call 
site to which the type that is selected for structure splitting 
is exposed, the compiler is prevented from performing the 
transformation. 

All these disadvantages owe their origin to the single 
fact that the existing structure layout frameworks make 
WPSL decisions.  That is, the layout decision needs to be 
based on and applied to the entire program.  Every 
reference to structure type selected for layout 
transformation needs to undergo the same layout 
transformation. It is not possible to have different splitting 
decisions for different local regions.  For instance, we 
cannot decide to split a type locally for one region and not 
split it in another code region. Fields selected to be placed 
in the hot and cold part cannot be different for different 
code regions.  The requirement of uniformity of the layout 
decisions   across the whole program prevents WPSL 
transformations from extracting the maximum 
performance possible. 

In order to overcome the above disadvantages 
associated with WPSL, we propose a new local or region 
based structure layout (RBSL) transformation framework. 
RBSL is complementary and can co-exist with WPSL. 
RBSL transformation phase uses data copying (partial 
structure cloning) to enable local data layout decisions that 
are best suited for each local region, which can be different 
from the WPSL decision. Thus our RBSL framework 
trades off the data copying overhead with the increased 
cache line utilization for that local region.  Although there 
has been prior work on using copying to reduce conflict 
misses in the case of array based programs [22, 27],   to 
the best of our knowledge, ours is the first work in 
selectively applying data copying to enable region based 
structure layout automatic optimization for linked data 
structures in type unsafe languages like C/C++. 

We have implemented RBSL in the HP-UX IA-64 
production compiler for C/C++ [7]. We show that working 
in complement to the existing and mature WPSL 
transformation framework in the compiler, our new 
optimization improves application performance in certain 
SPEC benchmarks by up to 28%. More importantly, this 
work establishes that RBSL as an effective region-based 
transformation which facilities the application of data 

layout transformation,   perhaps locally, on structures that 
were not amenable under the WPSL framework. 

In Section 2, we provide the necessary background and 
motivation for RBSL optimization. Section 3 introduces 
data utilization metrics and describes the local region 
based data layout transformation.  In Section 4, we briefly 
describe the steps involved in RBSL transformation.  We 
present our experimental evaluation results in Section 5. 
We discuss related work in Section 6 and conclude with a 
short summary in Section 7.  

2 BACKGROUND  
In this section we present the necessary background on 

WPSL optimization. Subsequently we motivate the need 
for RBSL optimizations with the help of a few examples.   

2.1 Structure Layout Optimizations  
There are regions of code in an application which have 

poor utilization of data, in terms of the ratio of the amount 
of data actually used by the application to the amount of 
data fetched.   Structure layout optimizations attempt to 
improve the data utilization for such delinquent code by 
modifying the structure layout. It typically splits the 
structure type into 2 parts. The hot part contains only those 
fields which are actually used in that region and the 
unused fields are moved to the cold part. Consider the 
following nested loop from 179.art benchmark shown in 
Fig. 1 

for (tj=0; tj < numf2s; tj++)     { 
     Y[tj].y = 0; 
          if ( !Y[tj].reset )     { 
               for (ti=0;ti<numf1s;ti++)     { 
                    Y[tj].y += f1_layer[ti].P* bus[ti][tj]; 
               } 
          } 
} 

Figure 1.  A loop from 179.art 

Each access to structure element f1_layer[ti] of type 
f1_neuron brings in one cache line of data, out of which 
only one field (P) is used. This results in poor data 
utilization for the above loop as only 8 bytes of data out of 
the 64 bytes (L1 D-cache line size) of the cache line data 
fetched is actually used. Such poor data utilization can 
lead to wasted memory bandwidth, poor cache utilization 
and low TLB hit rate.  If structure splitting [3] creates a 
new array of structures f1_layer_P, containing only field 
P, then it results in 100% cache-line utilization for 
f1_layer_P for the above loop. 

Structure layout optimizations are inter-procedural by 
nature as they operate on global types that are visible and 
passed across multiple functions. Structures are identified 
as whether they can be modified safely and attributes are 
collected (such as whether a type has been dynamically 
allocated or whether they are local or global variables of 
that type). These attributes are consulted to determine 
applicable transformations. Affinity and hotness analyses 
are performed across the entire program to determine the 
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final transformations [3, 4]. Once a decision is made to 
transform a particular structure, it is applied across the 
entire application by modifying all references to that type. 

2.2 Limitations of WPSL Decisions 
Many applications, however, contain frequently 

executed code regions in which the groups of fields 
accessed from a hot data type T are different. For instance, 
f1 and f2 can be the set of fields of type T that are 
accessed in one region whereas f1 and f4 are the set of 
fields accessed in another region. This happens, for 
instance, in the SPECint2006 benchmark 429.mcf. The 
two loops shown in Fig 2 and 3 access different hot fields 
of the structure �arc�, which is one of the hottest data 
structures of the application. 

The first loop in Fig. 2 accesses the fields nextout, 
nextin, tail and head from the �arc� structure, while the 
second loop shown in Fig. 3 accesses the fields   head, tail, 
ident and cost.  These are two distinct program regions 
where the affinity groups for the structure �arc� are 
different. 

arc = net->arcs; 
for (stop = (void *) net-> stop_arcs; arc < (arc_t *) stop; arc++ )   { 
        arc->nextout = arc->tail->firstout; 
        arc->tail->firstout = arc; 
        arc->nextin = arc->head->firstin; 
        arc->head->firstin = arc; 
} 

Figure 2.  Loops from mcf with   different hot fields 

arc = net->arcs; 
for ( ; arc < stop_arcs; arc += nr_group) { 
        if (arc->ident > BASIC)  { 
                red_cost = arc->cost-arc->tail->potential +  
                                     arc->head->potential; 
                ��.. 
        } 
} 

Figure 3.  Loops from mcf with   different hot fields 

Existing data layout frameworks typically employ 
whole program splitting decisions. Let us consider the 
effect of this on the data structure �arc� shown in Fig. 2 
and Fig. 3. If the data layout framework bases its splitting 
decisions by aggregating the affinity information across all 
program regions, it will make the decision to split the 
structure �arc� into two parts, a hot part consisting of the 
fields cost, tail, head, ident, nextin and nextout and a cold 
part consisting of the fields flow and org_cost.  Though 
such a layout will bring together the high affinity fields of 
both loop regions, it results in sub-optimal decisions for 
the hottest loop region L2, where only the 4 fields head, 
tail, cost and ident are accessed. Thus WPSL decisions 
may not always achieve the maximum performance 
potential that are realizable by data layout transformations 
that are specific to each local region.  

Moreover the access patterns exhibited by a particular 
data structure can be different for different regions. This 

can also happen when an array of structures is traversed 
with different stride patterns in different local regions, or a 
data structure such as a tree is traversed either depth first 
or breadth first in different local regions. A WPSL 
optimization cannot optimize for such varying access 
patterns for different regions. This brings up the possibility 
of having a region based structure layout framework which 
can decide on an optimal data layout for each local region, 
based on the regional affinity of the fields and access 
patterns for that data structure specific to that region. 

Extensive legality checks are required for the WPSL 
transformation. For a transformation to be legal, the 
compiler needs to ensure that the type is not passed to 
opaque library calls and there are no dangerous 
typecasting transformations on the type. 

TABLE I.  DATA TYPES AMENABLE UNDER WPSL 

Benchmark Number of 
types 

Number of 
types 

eligible for 
WPSL 

400.perlbench 101 12 

401.bzip2 6 0 

403.gcc 384 28 

429.mcf 4 3 

445.gobmk 53 9 

450.sjeng 8 4 

464.h264ref 39 7 

462.libquantum 3 2 

456.hmmer 30 5 

 
The potential applicability of WPSL transformation 

becomes restricted since the legality checks need to be 
satisfied throughout the whole program. Even if there is a 
single opaque call site to which the type selected for 
structure splitting is exposed, the compiler is prevented 
from performing the transformation. This results in leaving 
potential performance on the table since all possible data 
layout opportunities cannot be realized.  In Table I, we 
present the number of types which pass the whole program 
legality checks in our WPSL framework, for a set of 
SPECint2006 benchmarks, compared to the number of 
data structure types present in the benchmark. The WPSL 
framework employed in our compiler uses a set of legality 
checks such as �cast not applied�, �sizeof operator not 
applied� and �structure not passed to external shared 
library� to filter candidates for WPSL. We find that nearly 
80% of the types become ineligible for transformation as 
they fail whole program legality checks. Another main 
reason for considering a region based structure layout 
framework comes from the fact that any WPSL decision 
requires that all pointers in the application code which can 
point to the type being split need to be updated to the 
newly created split type after the transformation.  Since the 
compiler needs to identify all pointers that point to the 
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transformed type, in order for the transformation to be 
correct, an accurate alias analysis is required which is 
often expensive. Last, most of the existing automatic 
WPSL frameworks cannot handle array of data structures 
allocated non-contiguously [11], unless there is support for 
automatic pool allocation [16]. This also contributes to 
WPSL not being able to address all of the structure layout 
transformation opportunities available in the application. 

2.3 Region Based Structure Layout (RBSL) 
In order to enhance the efficacy of structure layout 

transformations by mitigating some of the disadvantages 
which are associated with the WPSL transformation, we 
propose a new local, or region based structure layout 
transformation framework. RBSL can co-exist with the 
existing WPSL framework and is complementary to it. 
RBSL uses data copying to enable local data layout 
decisions that are best suited for each local region, which 
can be different from the WPSL decision. The framework 
trades off the data copying overhead with the increased 
cache line utilization for that local region resulting in 
improving the overall application performance. In the case 
of RBSL, candidates for RBSL need to pass the legality 
checks only over the local region and not over the whole 
program. 

3 REGION BASED STRUCTURE LAYOUT OPTIMIZATION 
In this section we discuss the metrics for quantifying 

the data utilization of local regions and how these metrics 
can be used for RBSL candidate selection. 

3.1 Data Utilization Metrics 
In order to quantify our discussion on poor data 

utilization for a local region of code, we introduce the 
following definitions: Data Volume is in general, total 
volume of data accessed over a local code region such as a 
loop. The volume of data intended by the programmer to 
be accessed and the volume of data actually accessed by 
the program can differ considerably. Hence we define two 
quantities namely Programmer Intended Data Volume 
(PIDV) and Actually Accessed Data Volume (AADV). 
Programmer Intended Data Volume (PIDV) is the volume 
of data actually intended by the programmer to be 
accessed over the region, via explicit references to the data 
by the application code in that region. PIDV can be 
defined for different granularities of the code region such 
as functions, loops etc. In this work, we focus on those 
inner loops which traverse over a list/array of structures. 

We can estimate programmer intended data volume 
accessed over the loop region L which traverses over a list 
of structures of type T denoted as  PIDV(L,T)  to be equal 
to 

PIDV(L,T) = NL * (SFu  +  SFcf * pf ) 

where NL  is the number of loop iterations for L, SFu  is 
the aggregated size of all unconditionally accessed fields 
of type T in each iteration by the application code,  SFcf  
is the size of field f  in type T that is conditionally 

accessed in a loop iteration, and pf  is probability of 
accessing field f  in an iteration. 

We also define the term Actually Accessed Data 
Volume over a local region (AADV) as the volume of data 
the application actually ends up fetching (into the cache) to 
satisfy the programmer intended data accesses over that 
region. Given a loop region L which traverses over a list of 
structures of type T, we denote AADV(L, T) to be the 
volume of data actually fetched by the application in order 
to meet PIDV(L,T) required in that region. For example, 
consider a loop region L iterates over a list of structures 
with each structure element size 64 bytes, where each 
element of the list is aligned to the cache line and occupies 
only a full cache line size.  If only one integer word field f 
is accessed in the loop, then the application actually ends 
up fetching 64 bytes for each reference of the field, 
whereas the programmer intends to use only 4 bytes out of 
the 64 bytes accessed.   We estimate 

AADV(L,T)  = NL  * CL * CS 

where CL  is the number of cache lines that were 
brought in per iteration to meet the PIDV(L,T) for L, and 
CS is the cache line size. 

Next we define PIDV(L) to be the total programmer 
intended data volume for all types T in loop L. Thus 

PIDV (L) = T  (PIDV(L,T)) 

Similarly, AADV(L) is the total data volume actually 
brought in by the loop L. Assuming different data types 
accessed in a loop do not fit within a cache line,  

AADV (L) = T  (AADV(L,T)) 

AADV(L) is always greater than or equal to the size of 
PIDV(L). The closer AADV is to the PIDV, better the data 
utilization of the local region under consideration.  We 
define the data utilization ratio (DU) for a local region as 
the ratio of PIDV to AADV for that region. 

DU (L)  = PIDV(L) / AADV (L) 

We define Data Volume OverHead for a given region 
as AADV � PIDV for that region.  

DVoh (L) = AADV (L)  � PIDV (L) 

If the DU ratio is closer to 1, then DVoh is smaller and 
we say the local region is better behaved   with respect to 
data utilization.  We define those loop regions with high 
DVoh, and hence low DU ratio, as delinquent regions.   

We explain the above metrics with the help of our 
example innermost loop shown in Fig. 1, from the 
application 179.art.  For every structure element accessed 
in the loop, the application ends up fetching 64 bytes of 
data, but utilizes only 8 bytes of data. Assuming a loop 
iteration count of 10000 from the profile data, we compute 
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the PIDV as 80000 and the AADV as 640000 for this loop 
region. The DU ratio is 0.125 and the data volume 
overhead is 560000. In our work, we choose a threshold of   
0.7 and below for DU ratio to mark a loop as delinquent 
loop. Hence this loop is a delinquent loop. 

Next, we demonstrate that there exist delinquent loops 
in programs even after applying a reasonably good WPSL 
transformation.  Our production compiler [7] employs a 
WPSL framework which includes various optimizations 
such as structure splitting, structure peeling and field 
reordering. After all the WPSL optimizations have been 
employed, we added a phase to identify delinquent loops 
as defined above in order to understand the potential for 
further local structure layout transformations. We ran the 
analysis on a suite of SPEC benchmarks and the results are 
shown in Table II.  We see that even after mature WPSL 
transformations have been employed on the code, eight out 
of the eleven benchmarks still exhibit delinquent loops. 

TABLE II.  DELINQUENT LOOPS IN BENCHMARKS AFTER WPSL 

Benchmark 

Number of  
Delinquent 
Loops found  
post-WPSL 

Number of 
Data Types  
involved in 
Delinquent 
Loops 

400.perlbench 3 1 

401.bzip2 1 1 

403.gcc 7 3 

429.mcf 6 1 

445.gobmk 12 5 

456.hmmer 0 0 

458.sjeng 4 2 

462.libquantum 0 0 

468.h264ref 0 0 

471.omnetpp 3 1 

473.astar 3 2 

 
Therefore we target our region RBSL transformation 

on such delinquent loop regions to improve their data 
utilization. In order to determine the candidates for RBSL 
we need to quantify the potential gain due to RBSL. The 
Data Volume OverHead  (DVoh ) has an impact on 
application�s execution time since there is a finite cost 
associated with each unit of data that is accessed by the 
application. This cost is due to multiple factors such as (a) 
the actual cost of data access for each unit of data (b) the 
impact of the amount of data accessed on the cache misses, 
memory bandwidth and DTLB etc. Assuming an average 
fixed unit cost for each byte of data accessed, we estimate 
the Data Volume Overhead Cost as, 

DVohc(L) = DVoh(L) * average  cost for  each unit of 
data accessed 

We approximate the average cost of each unit of data 
accessed by the value of k cycles. Hence 

DVohc(L) = DVoh(L) * k cycles 

As a conservative approximation, we use the value of k 
equal to 1 (In practice, k can be many cycles). 

Data volume overhead cost is borne by the application 
and hence impacts its execution time. Hence the positive 
impact of a particular structure layout on the application 
performance can be approximated by the reduction in data 
volume overhead cost achieved by a given layout for a 
region.  Let LWPSL be the WPSL layout used for the type T 
in the loop region L, if WPSL is possible for L and Lcurrent 
be the current layout.  Note that if WPSL is not possible 
for T, then LWPSL would be same as Lcurrent.   Similarly, let 
LRBSL represent the RBSL-based optimized structure layout 
applied to L for the type T. The estimated reductions in the 
data overhead due to WPSL and RBSL optimizations over 
the original loop are 

DVoh(Lcurrent)  - DVoh (LWPSL) and 

DVoh(Lcurrent) - DVoh (LRBSL) 

respectively. Finally we can estimate benefit of the RBSL 
over WPSL in terms of cycles using the k value as; 

(DVoh (LWPSL) - DVoh(LRBSL)) * k  

which equals, 

(AADV (LWPSL) - AADV (LRBSL) * k ). 

Hence we denote the benefits due to applying RBSL  as 

Benefits (LRBSL ) = ((AADV (LWPSL)) � 
AADV (LRBSL)) * k  cycles 

Now using these metrics, we try to answer the question 
of when the compiler needs to employ RBSL on top of a 
WPSL framework.  For each delinquent region R, we 
compute the benefits of applying the local layout decision 
compared to the WPSL decision. If the benefit computed 
is positive for a given region R, then R is considered 
eligible for RBSL transformation.  As already mentioned, 
if WPSL is not possible for a type due to either legality 
checks not passed for the whole application or pointer 
analysis declaring the type to be not transformable, then 
we compute the benefits compared with respect to the 
original loop Lcurrent.    

3.2 Overheads associated with RBSL 
The above discussion on benefits of RBSL does not 

include any overheads introduced by the RBSL 
transformation itself.  We perform RBSL by selective data 
copying.  The data layout of the application is adjusted by 
making a copy of the original data such that the data 
utilization of the delinquent loop is improved and the 
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application can amortize or even overcome the cost of 
copying overhead. The copy has a better (reduced) 
footprint in the cache since it is packed and for cases of 
non-sequential access pattern which varies from the 
allocation pattern of the structure list, the copy can be set 
up to follow the access pattern for the delinquent loop 
which helps improve the data utilization for that local 
region. We denote the original data structure as the 
original structure list and the copy instantiated by RBSL as 
the copy structure list. 

Although, at first glance, copying appears to be a very 
simple idea, it can be difficult to 
a) ensure coherence between original structure list and 

the copy list and 
b) estimate at compile time, whether the benefits of 

improved data utilization for the delinquent loop 
outweighs the cost of copying. 

We define the cost involved in setting up the copy 
initially as the copy SetupCost and any cost involved in 
keeping the copy in synch with the original data structure 
as SyncCost.  Both these costs have to be taken into 
account when computing the net benefits due to RBSL. 
The overall COPYCOST is the sum of SetupCost and 
SyncCost. The copy setup cost is nothing but the AADV 
cost incurred over the delinquent loop for the original 
(whole program) structure layout. 

CopySetupCost = AADV(LWPSL) * k cycles . 

We approximate the synch cost by upper bounding it 
by the copy set up cost. Hence the overall copy cost 
becomes 

CopyCost = 2* CopySetupCost . 

All elements of the structure list over which the delinquent 
loop traverses must be brought into the cache once, in 
order to set up the copy list. Hence the extra runtime 
overhead incurred in setting up the copy must be offset 
completely by the improved data utilization of the 
transformed loop. Otherwise the RBSL enabled by data 
copying can degrade application performance.  In order to 
ensure this criterion conservatively, for recovering the cost 
of copying incurred by the transformation, we use the 
simple filtering criterion that the delinquent loop region is 
nested inside an outer loop. For ease of reference in further 
discussion, we refer to the inner loop as the delinquent 
loop (DL) and we refer to the outer loop enclosing the 
delinquent inner loop as the ancestor loop (AL). Since the 
delinquent loop is nested inside the ancestor loop, we can 
estimate the RBSL benefits over the ancestor loop as 

BenefitsAL(RBSL) excluding the copy cost = 
BenefitsDL(RBSL) * NAL 

where NAL  is the number of iterations of the ancestor loop.  
Therefore the net benefits of RBSL over the ancestor loop 
region when we account for the CopyCost is  
 

NetBenefitsAL(RBSL) = BenefitsAL(RBSL)  - CopyCost = 
BenefitsDL(RBSL) * NAL CopyCost. 

Recall that,  

BenefitsDL (LRBSL )  =  ((AADV (LWPSL)) - AADV 
(LRBSL)) * k   

Using this in the above equation, 

NetBenefitsAL(RBSL)  = ((AADV (LWPSL) * (NAL  - 2) - 
AADV (LRBSL) * NAL ) * k. 

And we apply RBSL only if the NetBenefitsAL(RBSL) as 
computed above is positive.  

3.3 Granularity of Region for RBSL 
The granularity of region considered for structure 

layout transformation can vary, being   innermost loop 
level, function level or inter-procedural. WPSL considers 
the whole program as a region and makes layout decisions 
which represent one end of the spectrum. The other end of 
the spectrum is our RBSL framework which considers 
each individual delinquent loop region as the candidate for 
layout decisions. It is possible to consider a region 
granularity between these two points and consider 
combination of delinquent regions for transformation. In 
general, one should consider all possible r-combinations of 
regions and need to choose the most appropriate one.  Note 
that when r equals n and if all regions are selected for the 
combination, the layout decision becomes WPSL.  When r 
equals 1, then the RBSL decision is per delinquent loop 
region.  In this paper we focus on single delinquent loop 
regions, enclosed by an Ancestor Loop. We defer the 
question of considering all possible r-combinations of 
regions where the copy cost can be shared, and hence 
redundant copies can be avoided, for future work.  

4 IMPLEMENTATION OF RBSL TRANSFORMATION IN 
OUR COMPILER  

Next, we describe our compiler infrastructure and the 
implementation of the RBSL transformation. 

4.1 Our Compiler framework 
We have implemented the RBSL transformation in the 

SYZYGY [7] high level optimizer for the HP-UX IA-64 
production C/C++ compilers.  Our compiler employs an 
Inter-Procedural WPSL phase which includes various 
structure layout transformations such as structure splitting, 
peeling and field reordering [4]. RBSL happens after all 
the transformations identified by the WPSL optimization 
phase have been carried out on the code. Hence it targets 
those delinquent loops which were not amenable to WPSL 
or which did not benefit fully from WPSL. 

4.2 Region Based Structure Layout Algorithm 
The basic algorithm for RBSL using selective data 

copying consists of identifying the delinquent loops, 
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performing legality checks on them and code 
transformation. 

  
4.2.1 Identification of delinquent loops 

 
We use our optimizer�s loop recognition phase to build 

a loop structure graph. For each loop, our optimizer 
iterates over the basic blocks and collects the field 
references for the structure type which is traversed in that 
loop.  For each loop region L, it computes the PIDV and 
AADV values using the profile information for the loop 
iteration counts and conditional branch probabilities as 
mentioned in Section 2.1.  Nested loops with a DU ratio of 
0.7 and below are marked as delinquent loops and for each 
such delinquent loop, its ancestor loop is also identified. 
These delinquent loops constitute the basic set of RBSL 
candidates for further checking and transformation. 

 
4.2.2 Legality and Profitability Checking 

 
Our WPSL framework has an exhaustive set of legality 

checks to ensure layout of structure layout transformation 
[4]. We use the same set of legality checks in RBSL. 
However in our case, they are applied only over the local 
region and not over the entire application. We also 
perform legality checks over the ancestor loop region to 
ensure that we can correctly identify all updates to the 
original structure list. In cases where the structure list 
elements can escape the ancestor region, the loop is 
discarded from the candidate list.   For amortizing the cost 
of copying incurred by the RBSL transformation, we use 
the simple filtering criterion that the delinquent loop 
region is nested inside an outer loop.  We then apply the 
NetBenefits computation as described in Section 3.2 to 
identify the candidates profitable for RBSL 
transformation. 
4.2.3 Code Transformation 

 
RBSL transformation includes the following steps: 

(i) Creation of a new structure type containing the hot 
fields from the information obtained in 4.2.1 for the 
delinquent candidate loop 
(ii) Instantiation of the copy list at the entry point to the 
ancestor loop 
(iii) Replacing the references in the delinquent loop body 
from the original structure list to the copy list 
(iv) Insertion of code to add updates to the copy list, at 
points of update to the original structure list in the 
ancestor loop body to maintain the original list and copy 
list in sync; and   
(v) Insertion of code to   free the copy list in the post-pad 
of the ancestor loop. 

5 EXPERIMENTAL EVALUATION 

5.1 Experimental Methodology 
We used SPEC2000 and SPEC2006 C/C++ 

applications as the set of benchmarks for our experiments 

and evaluated the performance of our RBSL framework in 
HP-UX IA-64 production compiler for C/C++. We 
compiled the benchmarks at the highest optimization level 
(level 4 with IPO) with RBSL enabled.  Many of the 
structure layout opportunities present in the application are 
already addressed satisfactorily by the WPSL framework 
enabled at optimization level 4 in our compiler. We find 
that structure layout optimization opportunities in 
benchmarks like 177.mesa, 188.ammp, 300.twolf. 
462.libquantum and 458.sjeng are transformed by the 
WPSL framework in our compiler. RBSL identifies 
additional structure layout transformation opportunities in 
the 6 benchmarks listed in Table III.  

We report performance results only for those 
benchmarks in which RBSL identified candidates for 
transformation in Table III. RBSL had no impact on the 
other SPEC benchmarks since no candidates were 
identified for RBSL transformation in them. We also 
evaluated RBSL on two proprietary applications namely 
HP-UX operating system kernel and our standard system 
library �libc�. We report these results in Table IV. Though 
181.mcf (from SPEC2000) is also transformed by RBSL, 
we do not include it in our results since the same code 
region is transformed in 429.mcf (from SPEC2006) also. 
The baseline for our performance comparison is a SPEC 
base configuration with reference input sets and using  the 
HP-UX compiler�s non-profile based heuristics for the 
branch frequencies and loop iteration counts. We report 
results with RBSL enabled and without RBSL enabled on 
the base configuration, to show the extra performance that 
is extracted by RBSL over WPSL. All results were 
obtained on an HP rx2600 server with a 1500 MHz Intel 
Itanium 2 processor, 6 GB of memory, and 6 MB of last 
level cache.  

5.2 Performance Comparison 
In Table III we show, for each the benchmark, the 

structure modified by RBSL in the benchmark and the 
performance improvement in terms of % improvement in 
execution time.  

TABLE III.   PERFORMANCE IMPROVEMENT OF RBSL OVER WPSL 

SPEC 
BM 

Structure 
modified by 
RBSL 

Improvement 
in Execution 
time (%) 

Reduction 
in Dcache 
Miss 
latency 
(%) 

 
Reduction  
in DTLB 
Miss (%) 

mcf Arc_t 28.5 5.94 36.12 

milc Site 10.2 7.71 1.02 

gobmk String_data 4.2 3.32 1.6 

moldyn Mol_t 17.3 22.31 25.78 

omnetpp cMessage 3.8 4.59 3.24 

art Fl_neuron 11.6 5.12 14.3 

 
We also report the data cache miss latency cycles 

reduction along with reduction in the number of data TLB 
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misses. The data cache and data TLB miss data  were 
obtained using the performance profile tool HP-Caliper 
by sampling the IA-64 hardware performance counters 
[8].  

The performance improvements range from 3% to 28% 
for these benchmarks.  In the case of 429.mcf, our WPSL 
framework already performs structure splitting for the 2 
structure types �node� and �arc�.  The structure �arc� has 8 
fields, and WPSL splits the fields cost, tail, head, ident 
and flow into the most frequently accessed part (hot part) 
and the rest of the fields in to the cold part during 
structure layout. However WPSL layout still performs 
poorly in the delinquent region identified by RBSL, in the 
function �primal_bea_mpp�.  This region has poor cache 
line utilization due to non-sequential stride. For every 
access to the fields of arc in this loop, 128 bytes of data is 
brought in, out of which only 16 bytes corresponding to 
the 4 fields used in this loop are actually accessed by the 
application. There is also no spatial locality  in this loop 
since the next �arc� element that is accessed is not 
sequential, but is separated by a stride value equal to the 
variable �nr_group�.  

RBSL identifies the above delinquent region as a 
candidate for transformation. It creates a new structure 
type which contains only the 4 fields accessed in this 
region. When it sets up the copy, it uses the stride 
information obtained from the compiler analysis for this 
delinquent region to set up the copy array such that 
consecutive elements in the copy array are those which 
are apart by the stride value in the original structure. 
Hence the delinquent region is transformed from a region 
of no-spatial locality to a region of high spatial locality 
and there is no wastage of cache line since only the fields 
accessed in the region are brought into the cache.  Hence 
RBSL improves performance for 429.mcf by 28% over 
WPSL.   

CPU stalls of 433.milc have a very large data cache 
component, about 75%.  The major data structure is �site� 
whose size is about 2K bytes. In case of 433.milc, WPSL 
is unable to transform the type due to legality checks not 
passing over the entire program for this type.  RBSL 
identifies 4 delinquent regions where only one field of the 
structure type �site� is accessed over a loop.  By copying 
the accessed field in each �site� structure to an array of 
structures with each structure only containing this field as 
its member, we can improve the spatial locality for this 
delinquent region. For instance, RBSL identifies a 
delinquent region where only the field �tempmat1� is 
accessed from the site structure over all the sites.  The 
size of tempmat1 field is 144 bytes. Hence 2 cache lines 
(each of size 128bytes) of data are brought in, out of 
which only 144 bytes are actually intended to be used by 
the programmer. This results in a low cache line utlization 
of only around 57%. RBSL transforms this delinquent 
region to improve the cache line utilization to 100%.  

In case of 445.gobmk, RBSL identifies 2 delinquent 
regions where there is traversal of the structure type 
�string_data�. RBSL splits the fields which are accessed in 
those regions from string_data. In 471.omnetpp, RBSL 
identifies a delinquent region where an array of structures 
�cMessage� is traversed.  The delinquent region contains 
references only to the fields arrival_time, priority and 
insert_order. RBSL transformation improves overall 
performance by 3.8%. In case of moldyn, RBSL identifies 
3 delinquent regions over the traversal of structure type 
�Mol� and transforms them resulting in performance 
improvement of 17.26%.  Performance results for HP-UX 
kernel and HP-UX libc are shown in Table IV. 

TABLE IV.  PERFORMANCE IMPROVEMENT FOR HP-UX 

Other Applications 
Structure 

Transformed  
by RBSL 

Improvement 
in Exec. 

Time  
over WPSL 

HP-UX kernel Structure A 1.4% 

HP-UX libc Structure B 3.2% 

 
Because of the proprietary nature of HP-UX kernel 

and standard library source code, we omit the names of 
the structures and refer to them as structures A and B 
respectively. Structure A is one of the hottest structures of 
the kernel, having 190 fields, containing data belonging to 
different subsystems. WPSL is not able to transform this 
structure due to legality considerations over the entire HP-
UX kernel.  RBSL identified 2 delinquent regions where 
only one field was accessed and transformed the loop 
regions to obtain 1.4% improvement for the SPEC 
057.sdet benchmark which is used for HP-UX kernel 
performance testing.  We also compiled HP-UX standard 
library libc for finding opportunities with RBSL. WPSL 
does not find any candidates in standard library �libc� due 
to legality constraints. RBSL identified 2 delinquent 
regions in the memory allocation routines involving the 
structure B.  Applying RBSL gave a performance 
improvement of 3.2% for �libc� when tested with the 
memory allocator performance benchmark [26].  

We find that though the number of delinquent loops 
identified is much larger as found in Table II, only a few 
of them are transformed by RBSL due to RBSL�s   
filtering criterion that the delinquent loop needs to be a 
nested loop. We are investigating whether this criterion 
can be relaxed. 

5.3 Copying Overhead  
For the benchmarks transformed by RBSL, we 

measured the overheads due to setting up and 
maintenance of the copy of the original data structure.  To 
measure this overhead, in this experiment, RBSL inserts 
the copy and sync operations, but does not transform the 
delinquent loop region field references to access the copy 
data structure. The copying overheads measured as the 
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performance degradations over our baseline are shown in 
Table V. 

TABLE V.  COPY OVERHEAD 

Benchmark copy 
overhead 

429.mcf 1.29% 

433.milc 3.2% 

471.omnetpp 3.87% 

445.gobmk 1.1% 

472.moldyn 2.1% 

179.art 0.9% 

  
We find that copying overheads range from 0.9% to 

3.8%.  Currently our RBSL framework does not do any 
specific optimization for reducing the copying overhead.  
It is possible to reduce the copying overhead by delaying 
the sync-up of original data structure until the point of use 
of the original data structure after the exit from the 
delinquent region (lazy sync-up) and by chunking the 
copying instead of inserting point-updates. We plan to 
investigate this as part of our future work. 

6 RELATED WORK  
The area of research most closely related to this work 

is the area of automatic data transformations. Chilimbi et 
al. first used structure splitting to improve data locality 
[3]. Rabbah and Palem split structured data in C programs 
by allocating objects in large chunks where structure 
fields were stored in separate arrays [17]. Chilimbi later 
improved structure splitting using the frequency of data 
sub-streams called hot-streams [9].  Zhong et al. defined a 
model to measure the closeness of references in a memory 
trace, known as reference affinity and show how it can be 
used for structure splitting and array regrouping [14]. 
Although they perform structure splitting in a compiler 
they assume that the language is type-safe and use 
programmer intervention to ensure safety. The Forma 
framework for array grouping and structure layout 
automatically and safely reshapes single-instantiated 
arrays [12]. Curial et al [11] combine structure splitting 
with automatic pool allocation [16], and use a 
comprehensive field sensitive pointer analysis to ensure 
safety.  

Many of the structure layout frameworks mentioned 
above employ WPSL decisions. WPSL transformations 
have also been discussed in detail in [4, 5, 11, 12, 23]. 
Hundt et al [4] show that the applicability of WPSL 
transformations is limited and propose using a semi-
automatic tool to address some of the layout opportunities 
not amenable for WPSL. However the semi-automatic 
tools require code changes by the programmer unlike 
RBSL which is performed automatically by the compiler.  
The applicability of RBSL is wider compared to WPSL 

since the legality checks need to be satisfied only over the 
delinquent region targeted for transformation. RBSL is 
fully automatic and does not need any programmer 
intervention. RBSL is complementary to the existing 
WPSL transformations and can co-exist with them.  
Alternatives to the automatic transformations described 
above are transformations that require programmer 
intervention or special allocator libraries [28, 18], 
whereas RBSL does not require any special libraries.  
There has been work on loop transformations where 
copying has been proposed to aid loop tiling in order to 
avoid conflict misses [22, 27]. Yi et al [30] use data 
copying based on standard array dependence analysis for 
improving the data layout of array based computations.     

 Chilimbi and Larus [30] used the copying garbage 
collection [GC] mechanism for object movements guided 
by locality information, aimed at type safe languages with 
GC support. Our work uses a purely compile time 
analysis for RBSL transformations aimed at type unsafe 
languages like C/C++ which do not support automatic 
GC. There has been work on runtime data layout and data 
relocation [20, 25. 28].  However these require special OS 
techniques [28] or special hardware [20].  

7 CONCLUSIONS AND FUTURE WORK 
In this paper we have proposed Region Based Structure 
Layout optimization for improving cache utilization and 
locality.  Our paper proposes, for the first time, local or 
region based approach which is especially attractive for 
structures that are not amenable for transformation under 
WPSL. We have implemented RBSL in our production 
C/C++ compiler for HP-UX IA-64 and evaluated its 
performance for certain SPEC benchmarks and HP-UX 
proprietary applications. We showed that RBSL working 
complementary to a mature WPSL framework can help 
improve performance from 3% to 28% in a set of 
benchmarks. We plan to investigate RBSL for 
multithreaded applications as part of our future work. We 
also plan to investigate whether a WPSL scheme which is 
aware of a down-stream RBSL phase can make better 
layout decisions. Profitability analysis for RBSL 
candidate selection can be inaccurate when loop counts 
cannot be determined at compile-time. We plan to address 
this in future-work, using loop multi-versioning with 
RBSL applied selectively at runtime based on iteration 
count.   
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