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ABSTRACT
SIMD (Single InstructionMultiple Data) instructions apply the same

operation to multiple elements simultaneously. Compilers trans-

form codes to exploit SIMD instructions through auto-vectorization.

Control flow can lead to challenges for auto-vectorization tools

because compilers conservatively assume branches are divergent.

However, it is common that all SIMD lanes follow the same control-

path at run-time, a property we call dynamic uniformity. In this

paper, we present VecRC (an auto-vectorizer with run-time checks),

a novel compile-time technique that uses run-time checks to test

for dynamically uniform control flows. Under the assumption of

dynamic uniformity, we perform several compile-time analyses

that improve control flow auto-vectorization vs state-of-the-art ap-

proaches. VecRC leverages dynamic uniformity to vectorize loops

with control-dependent loop-carried dependences. Existing strate-

gies use speculation to optimistically execute vector code, and must

correct any incorrect computation due to violated run-time assump-

tions. VecRC performs compile-time analysis based on uniformity to

support such dependences without the overhead of speculation. We

propose a probability-based cost model to predict the profitability

of run-time checks to avoid the specialized profiling or expensive

auto-tuning required in existing methods. VecRC is evaluated in

LLVM on a diverse range of benchmarks including SPEC2017, NPB,

Parboil, TSVC, and Rodinia on Intel Skylake and IBM Power 9 ar-

chitectures. On the Skylake architecture, geometric mean speedups

of 1.31x, 1.20x, 1.19x, and 1.06x over Region Vectorizer, GCC, Clang,

and ICC are obtained with VecRC on real benchmark code.

CCS CONCEPTS
• Computer systems organization → Single instruction, mul-
tiple data.
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1 INTRODUCTION
SIMD instructions (Single Instruction Multiple Data) improve the

performance of parallel operations by applying the same opera-

tion to multiple elements simultaneously (also called vectorization).
Well-known compilers such as GCC, Clang, and ICC use loop vec-

torization [29] and Superword Level Parallelism (SLP) [14] to take

advantage of SIMD instructions. However, control flow (such as
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if-statements) can cause these techniques to generate inefficient

code, because it is unknown at compile-time which control paths

will execute. Additionally, if a data dependence exists, then conven-

tional loop auto-vectorization must be disabled entirely. Although

such codes can often be manually vectorized using intrinsics (a

source code mechanism to use SIMD instructions explicitly), the

manual effort is tedious, time-consuming, and often does not lead

to the best attainable performance. Auto-vectorization provided by

compilers is one feasible solution to allow generality and architec-

ture portability, however control flow and data dependence both

limit current auto-vectorization methods.

Control flow is typically auto-vectorized using if-conversion [1].

Under if-conversion, branches are removed and control-dependent

instructions are guarded by predication techniques (such as masked

instructions supported by instruction set architectures) to prevent

illegal computation (see Section 2.1 for more background). For

example, a conditional load might load from a null address unless

the condition is true; this conditional load is converted to a masked

load that takes as extra input a bit-mask. The bit-mask indicates

for which lanes the load should be performed. While if-conversion

allows loops with control flow to be vectorized, it has two major

downsides. First, software predication has overhead [9]. Second, if

the condition of the branch is often false during run-time, then most

SIMD lanes will be unused, resulting in redundant computation.

Similarly, if the branch condition is often true, then all lanes might

frequently be active, obviating the need for software predication.

Prior work has used static analysis to detect these worst cases

(always true or always false conditions) and avoid applying if-

conversion for a class of branch conditions defined as uniform.

A branch is uniform when static analysis can determine that a

condition has the same value for all SIMD lanes [20]. We use the

term dynamic uniformity to describe the case when uniformity

occurs at run-time but cannot be proven statically.

Dynamic uniformity has been shown to exist in many differ-

ent applications [32]. Several existing methods propose run-time

techniques to check branch conditions for dynamic uniformity, al-

lowing more cases of uniformity to be detected [21, 28, 32]. In these

cases, benefit can be achieved either by skipping regions when all

lanes are inactive, or by eliminating software predication when all

lanes are active. If dynamic uniformity occurs frequently during

execution, the run-time check overhead is likely to be amortized by

the benefits of each technique. However, the actual frequency of

dynamic uniformity for a specific branch condition is unknown at



compile-time. Therefore, these methods are limited when estimat-

ing the tradeoff between the additional overhead of run-time checks

and the benefit from skipping or removing predication. As a result,

existing techniques either rely on expensive autotuning, highly spe-

cialized profiling, or manual annotation to select profitable loops

[26, 28, 32]. Additionally, prior works focus only on the benefits of

skipping or removing predication, and do not take advantage of

dynamic uniformity to perform additional compile-time analysis.

Another challenge for control-flow auto-vectorization is how

to deal with control flow affected by dynamic loop-carried depen-

dences. Several run-time techniques are proposed and aim to solve

this problem [3, 31]. One prior work enables auto-vectorization by

detecting control-paths without dependence, speculatively execut-

ing those paths as vector code, and “rolling back” operations when

execution deviates from that path [31]. FlexVec proposes a hardware

solution to speculatively execute vector code using a new instruc-

tion set architecture that detects dynamic loop-carried dependence,

then correcting any computation affected by violated dependences

[3]. However, due to the cost of either rolling back or correcting

speculated operations, both techniques can only achieve benefit

when loop-carried dependences occur infrequently. The control-

path vectorization technique must choose from different candidate

paths, and relies on autotuning to find the optimal vectorized path

[31]. FlexVec performs specialized profiling to determine certain

parameters (such as the number of loop-carried dependences that

occur) that are used by heuristics to select profitable loops.

Our proposed compiler approach, implemented in VecRC (an

auto-vectorizer with run-time checks), improves control flow auto-

vectorization through the following contributions:

• We propose to perform compile-time analyses, such as de-

pendence analysis, under the assumption of dynamic uni-

formity detected at run-time to relax some constraints on

vectorization and improve control flow vectorization in

advance.

• A comprehensive probability-based cost model to deter-

mine when run-time checks should be enabled by evalu-

ating both the benefits and overhead caused by run-time

checks.

• An implementation of VecRC in LLVM and an end-to-end

evaluation on the Test Suite for Vectorizing Compilers

(TSVC) and standard benchmarks: SPEC2017, Rodinia and

NAS parallel benchmark suites. The geometricmean speedup

is 1.21x and 1.19x over Clang on Power 9 and Skylake re-

spectively.

2 MOTIVATION
In this section, we first present the existing techniques for control-

flow vectorization and then use one running example to describe

the approach implemented in VecRC.

2.1 Background
Control Flow Graph: A control flow graph (CFG) 𝐺 = (𝑉 , 𝐸)
contains basic blocks 𝑏 ∈ 𝑉 , where 𝑉 is a set of basic blocks, and

directed control-flow edges (𝑏, 𝑠) ∈ 𝐸, where 𝐸 is a set of edges

between basic blocks in 𝑉 . A basic block represents a series of

instructions executed sequentially. Branch instructions 𝑏𝑟 ∈ 𝐵

for (int i=0; i<n; ++i)
1 if (cond[i])
2 a[i] = b[i]*c[i];
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Figure 1: (1b) Control flow graph of loop body in (1a). (1c)
shows if-conversion applied to the CFG in (1b), and instruc-
tions in block B1 are predicated by the mask M1 generated
from the condition C1. (1d) With run-time check to detect
uniform-false predicates. (1e) With run-time check to detect-
uniform true predicates; block B1unpred has no predication.
(1f) With VecRC run-time checks to detect both types of uni-
formity.

have one successor (if the branch is unconditional) or multiple

successors (if the branch is conditional). Every CFG has one entry
block, which has no predecessors, and at least one exit block, which
has no successors [4]. The notation 𝑏 → 𝑠 denotes that there is

a path from block 𝑏 to 𝑠 through 𝐺 . A block 𝑏 ∈ 𝑉 dominates
𝑠 ∈ 𝑉 if 𝑏 occurs in all paths to 𝑠; in other words, 𝑏 must execute

for 𝑠 to execute. Conversely, block 𝑠 postdominates 𝑏 if 𝑠 occurs

in all paths 𝑏 → 𝑒 , where 𝑒 is an exit block [6]. A block 𝑠 in 𝐺

is control-dependent on a block 𝑏 if there is a path 𝑝 : 𝑏 → 𝑠

such that 𝑠 postdominates every node after 𝑏 on 𝑝 , and 𝑠 does not

postdominate 𝑏. Informally, 𝑏 is a branch with two outgoing paths:

𝑠 appears along one path, but not the other. For each block 𝑘 ∈ 𝑉 ,

the notation 𝑐𝑏𝑙𝑜𝑐𝑘𝑠 (𝑘) ∈ 𝑉 denotes the set of all blocks on which

𝑘 is control-dependent. [4, 8]. For example, 𝑐𝑏𝑙𝑜𝑐𝑘𝑠 (𝐵1) = {𝐶1} in
Figure 1b, as shown by the blue dashed circle. When loops contain

control flow, control dependence occurs in the CFG. Vectorization

techniques for this code pattern, such as if-conversion, rely on the

CFG to perform their transformations.

Compile-time Technique for Control-flow Vectorization
based on Predication: If-conversion identifies control-dependent

blocks and, for each such block, computes a block predicate (or

mask) that represents which lanes should be active. In the remain-

der of the paper, we refer to control-dependent blocks and predi-

cated blocks interchangeably. Figure 1b shows the CFG of the loop

body from Figure 1a, and Figure 1c shows CFG 1b after applying

if-conversion. In the original loop, line 2 (corresponding to B1 in

1b) can only execute if cond[i] is true. However, once the CFG 1b

is if-converted, B1
′
executes on each iteration; to prevent illegal

computation, if-conversion predicates the loads and stores in B1
′

using the block predicate M1. Instructions are placed at the begin-

ning of a block that compute its predicate, using strategies such as

those proposed by Park et al. [4].
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for (int i=0; i<n; ++i) {
if (cond[i]) // without dependence

b[i] = a[i] + b[i];
else { // with dependence

j++;
d[j] = c[i] * b[i];

}
}

(a) Loop with control flow and control-

dependent data dependence.

for (int i=0; i<n/2*2; i+=2) {
v_cond = <cond[i], cond[i+1]>;
/* uniform-true */
if (all(v_cond)) {

5 v_b = v_load(&b[i]);
v_a = v_load(&a[i]);
v_store(&b[i], v_a + v_b);

} else /* scalar restart */
for (int k=0; k<2; ++k)

if (cond[i+k])
b[i+k] = a[i+k] + b[i+k];

else {
j++;
d[j] = c[i+k] * b[i+k];

};
}

(b) Prior work [31]: vectorize the control-path

without dependence.

for (int i=0; i<n/2*2; i+=2) {
cond_v = <cond[i], cond[i+1]>;
v_b = v_load(&b[i]);

4 if (all(cond_v)) {
v_a = v_load(&a[i]);
v_store(&b[i], v_a + v_b);

7 } else if (none(cond_v)) {
v_c = v_load(&c[i]);
v_d = v_c * v_b;

10 j++;
v_store(&d[j], v_d);

12 j++;
} else { /* Divergent path. */ }

}

(c) VecRC: vectorize the control-flow with

dependence.
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(d) Example elements in the cond array.

Figure 2: Comparision of auto-vectorization techniques for control-flow with dynamic uniformity (vectorization factor is 2).
The loop example 2a contains a branch whose condition depends on the elements of cond (example elements shown in 2d). The
values stored in cond result in two instances of dynamic uniformity. Elements 0 and 1 are both 0 and all lanes will be inactive
(uniform-false). Elements 2 and 3 are both 1 and all lanes will be active (uniform-true). Elements 4 and 5 have different values
and no uniformity exists (the divergent case). Loop 2b shows loop 2a after applying the run-time check technique proposed by
Sujon et al [31]. 2c shows loop 2a after applying the VecRC run-time technique, which supports the loop-carried dependence
from j++ at else branch. VecRC’s scalar evolution analysis recognizes that j can be described as a chain of recurrences under
uniformity [2] and uses this insight to vectorize the store to d (shown in 2c).

Run-timeTechniques forControl-flowVectorization:While

if-conversion is an entirely compile-time technique, each block pred-

icate (for example, M1) may change dynamically during execution.

Prior works that use compile-time divergence analysis [5, 17, 20] to

determine whether a branch condition is statically uniform cannot

analyze the behaviour of such data-dependent block predicates at

run-time. Existing run-time techniques address the limitations of

compile-time analysis by dynamically detecting whether a block

predicate is uniform-true (all lanes active) or uniform-false (all

lanes inactive) during execution [28, 32]. When a block predicate

is uniform-false, redundant computation can be skipped using a

run-time check proposed by earlier work [28], shown in Figure 1d

as none(M1). If the block predicate is uniform-true then an unpred-

icated version of the block can be executed to avoid predication

overhead, using the all(M1) run-time check shown in 1e) [32]. Fig-

ure 1f shows how VecRC uses both all() and none() run-time checks

to detect uniform-true and uniform-false predicates.

2.2 Motivating Example
Example Loop. Figure 2a shows an example loop that exhibits one

code pattern VecRC focuses on. The branch condition depends on

the data in cond (shown Figure 2d) which cannot be analyzed at

compile-time. Additionally, the loop contains a control-dependent

loop-carried dependence (statement j++). The control-flow in the

loop presents one obstacle to auto-vectorization. Additionally, the

loop-carried dependence from statement j++ disables if-conversion
and also prevents the compiler from determining the access pattern

on array d.

Run-time Techniques to Test Dynamic Uniformity. Fig-
ure 2b shows an example of the run-time technique proposed by

Sujon et al. to auto-vectorize loops with control-flow and control-

dependent loop-carried dependences [31]. If a control-path does not

contain any dependence, and is known to execute for consecutive

iterations equal to (or greater than) the vectorization width, then

such a control-path can safely be executed as vector code. This strat-

egy uses run-time checks (all(M1) in Figure 2a) to detect whether

such control-paths have dynamically uniform conditions, in other

words, whether they will be executed for the required consecutive

iterations. As shown in Figure 2c, VecRC detects both uniform-true

and uniform-false predicates.

Dependence Analysis based on Dynamic Uniformity. Fig-
ure 2a shows an example loop with a control-dependent loop-

carried dependence (j++) that cannot be vectorized. Since the j++
statement is known to occur in all iterations of the uniform-false

path, other non-dependent instructions can be vectorized if j++
is properly scheduled (lines 10 and 12 of Figure 2c). Because this

transformation is only valid when the condition is uniform-false, a

run-time check guards the vectorized code (line 7). Similarly, an-

other run-time check detects the uniform-true case when vector

code can be executed without predication (line 4). This example

shows just one form of dependence addressed by VecRC; further

details are explored in Section 3.1.

Scalar Evolution Analysis based on Dynamic Uniformity.
Normal compile-time analysis can determine array access patterns

by describing the index variable as a chain of recurrences [2]. For

example, the induction variable i in loop 2a is incremented by one

at each iteration and forms the recurrence 𝑖 = 𝑖 + 1. Therefore the



access stride is one and loads from this index can be vectorized.

Because j is conditionally updated, unlike i, it cannot be described
as a recurrence in general. However, for loop iterations i=0 and i=1
corresponding to the uniform-false region of the input data in 2d,

j does form a recurrence, 𝑗 = 𝑗 + 1. This insight allows consecutive

memory access patterns to be detected and vectorized, such as the

store on array d.
Probability-Based Cost Model to Determine the Profitabil-

ity of Run-time Techniques. It is unknown at compile-time how

often uniform paths will actually be taken, therefore prior works

rely on run-time tuning or profiling to determine the profitability of

run-time techniques. The auto-tuning costmodel proposed by Sujon

et al. [31] is taken as one representative example to illustrate com-

mon issues existing in prior work. This auto-tuning cost model con-

siders all combinations of control-paths without dependence (such

as the if-branch in Figure 2a) and compares the execution times of

vectorizing each candidate control-path. The best-performing path

is selected and compared against the performance of scalar code.

This cost model is not a feasible solution for automatic compilers

due to its expensive tuning overhead. Motivated by issues in prior

work, this work proposes one probability-based cost model, which

uses branch probability information from a program’s execution

profile to predict the profitability of vectorization. First, the set of

all branch conditions 𝐵 is found such that 𝐵 does not contain any

statically uniform conditions (for example, no loop invariant con-

ditions). Next, for each branch condition, the cost of applying the

VecRC transformation is calculated based on the branch probability.

If the sum of these costs is less than the estimated cost of a scalar

loop, then the VecRC run-time check technique is considered prof-

itable. Otherwise, the loop is not transformed. See Section 4 for a

detailed explanation of VecRC’s cost model. Unlike an auto-tuning

cost model, the VecRC cost model only requires that each loop be

executed once. Additionally, branch probability information is a

standard feature offered by all widely-used compilers (such as GCC,

ICC, and Clang) and does not require any special implementation,

unlike other profiling-based cost models proposed by prior work

[3, 26, 28].

3 VECRC: COMPILE-TIME ANALYSIS BASED
ON DYNAMIC UNIFORMITY

VecRC performs uniformity-based dependence analysis and scalar

evolution analysis to improve the vectorization of control-paths

with control-dependent loop-carried dependences. In this section,

we describe the structure of the VecRC run-time check, as well as

the basic idea behind leveraging run-time uniformity information

for compile-time analysis ahead of time.

3.1 Dependence Analysis Based on Dynamic
Uniformity

VecRC’s dependence analysis supports control-dependent loop-

carried dependences by taking advantage of dynamic uniformity.

There are three cases of register or memory dependence (shown in

Figure 3) that can be supported through the property of uniformity;

either by scalarization (Figure 3d and 3e), or through vectoriza-

tion if certain dependences are no longer satisfied (Figure 3f). A

data-dependence graph (DDG) is a directed graph with nodes to

represent program components (such as memory operations or

variable assignments), and edges to represent dependence rela-

tionships between nodes [8, 13]. Using the data-dependence graph

implemented in LLVM [15], VecRC determines the category of loop-

carried dependence. Such dependences occur as strongly connected

components (SCC) within the DDG that prevent vectorization [8].

Intra-Predicated Dependence. Figure 3a shows an example of

intra-predicated dependence, where the SCC occurs only within

a predicated block (Figure 3d). In the uniform-true case, instruc-

tions involved in the SCC and in the control-dependent block are

guaranteed to be executed exactly once for every SIMD lane, and

can be directly scalarized (shown Figure 3g). Any instructions in

the uniform paths that are not a part of the SCC can be vectorized

without predication, because they are data-parallel and in a block

with a uniform predicate (as shown in the motivating example,

Figure 2c).

Partially-Predicated Dependence. Figure 3b shows an exam-

ple of partially-predicated dependence, where the SCC includes

both a control-dependent block 𝑡 , and the block 𝑠 it is control-

dependent on, 𝑠 ∈ 𝑐𝑏𝑙𝑜𝑐𝑘𝑠 (𝑡). In this case, the SCC contains a mix-

ture of control-dependent and non-control-dependent instructions,

therefore the control-dependent instructions cannot directly be

scalarized as in the intra-predicated case. Instead, control-dependent

instructions are unrolled such that each instance is guarded by the

branch instruction they depend on, and control-dependence is not

violated (shown Figure 3h). Because this branch instruction must

also define the block predicate, each unrolled branch instance also

computes the block predicate value for the corresponding lane.

Next, VecRC inserts run-time checks to test whether the block pred-

icate is uniform-true (all lanes are active) or uniform-false (all lanes

are inactive). Any instructions not involved in the dependence cycle

can be directly vectorized without predication, for example, the

stores and loads on arrays a and b.
Inter-Predicated Dependence. Figure 3c shows an example of

the inter-predicated dependence case, where dependence edges can

be removed from the DDG by uniform predicates. In this example,

the dependence has a distance of 1, indicating a SCC that directly

disables if-conversion. However, each control-dependent block is

mutually exclusive (one or the other will execute for each iteration,

but not both). Therefore, all blocks along the uniform paths are

also mutually exclusive. Any reads or writes that occur in different

paths cannot affect instructions between iterations of the SIMD

width, therefore instructions in the uniform branches no longer

form an SCC and can be vectorized. However, instructions in the

divergent path (shown Figure 3i) are still contained in an SCC and

must be scalarized.

3.2 Scalar Evolution Analysis Based on
Dynamic Uniformity

Typical scalar evolution analysis, such as implemented in GCC and

LLVM, aims to describe scalar values as a chain of recurrences [2]

that describe how a value changes over loop iterations [33]. For

example, an induction variable 𝑖 starting from 0 and having stride

1 can be represented as the scalar evolution expression {0, +, 1}
to indicate 𝑖 increases by 1 at each iteration (also called an add

recurrence). Stride information of induction variables is helpful
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for (int i=0; i<n; ++i)
if (b[i] < 0)

c[i+1] = c[i];

(a)

for (int i=0; i<n; ++i)
m = c[i];
if (b[i] < 0) {

c[i+1] = 0;
a[i] = b[i];

}

(b)

for (int i=0; i<n; ++i)
if (b[i] < 0)

a[i] = c[i];
else

c[i+1] = a[i];

(c)

ENTRY:

%b0 = load b[i]
%cmp = slt %b0, 0
br %cmp, %B1, %EXIT

B1:

%c0 = load c[i]

store c[i+1], %c0

EXIT:

(d)

ENTRY:
%m0 = load c[i]
%b0 = load b[i]
%cmp = slt %b0, 0
br %cmp, %B1, %EXIT

B1:

store c[i+1], 0

EXIT:

(e)

ENTRY:

%b0 = load b[i]
%cmp = slt %b0, 0
br %cmp, %B1, %B2

B1:

%c0 = load c[i]

store a[i], %c0

B2:

%a0 = load a[i]

store c[i+1], %a0

EXIT:

(f)

for (int i=0; i<n/2*2; i+=2) {
v_mask = {b[i]<0, b[i+1]<0};
if (all(v_mask)) {

c[i+1] = c[i];
c[i+2] = c[i+1];

else if (none(v_mask)) { }
else { /* divergent path */ }

}

(g)

for (int i=0; i<n/2*2; i+=2) {
v_mask = {0, 0};
m0 = c[i];
if (b[i]<0) {c[i+1] = 0; v_mask[0] = 1;}
m1 = c[i+1];
if (b[i+1]<0) {c[i+2] = 0; v_mask[1] = 1;}
if (all(v_mask))

v_store(&a[i], v_load(&b[i]));
else if (none(v_mask)) { }
else { /* divergent path */ }

}

(h)

for (int i=0; i<n/2*2; i+=2) {
v_mask = {b[i] < 0, b[i+1] < 0};
if (all(v_mask))

v_store(&a[i], v_load(&c[i]));
else if (none(v_mask))

v_store(&c[i+1], v_load(&a[i]));
else { /* divergent path */ }

}

(i)

Figure 3: Examples of the three types of control-dependent loop-carried dependences supported by VecRC. (3a) Loop exhibiting
an intra-predicated dependence. (3b) Loop exhibiting a partially-predicated dependence. (3c) Loop exhibiting an inter-predicated
dependence. (3d), (3e), (3f) are the CFGs of each loop body. (3g), (3h), (3i), are the loops after applying the VecRC run-time check
technique to each loop.

for loop auto-vectorization because loads or stores can be directly

vectorized if their access function is known to have a stride of 1 at

compile-time. In general, the stride of control-dependent scalars

cannot be analyzed at compile-time if the control flow depends on

input data (such as the motivating example in Figure 2a).

VecRC performs extra scalar evolution analysis based on dy-

namic uniformity. The fundamental issue with forming chains of

recurrences to analyze stride for control-dependent scalars is that,

from any iteration to the next, the stride may change. Thus, stride

information is linked to control-dependence. If control flow infor-

mation becomes known, in this case through run-time checks for

uniformity, then it can be used at compile-time to determine exact

stride information that is safe for vectorization. In the motivating

example loop 2a with input data 2d, the variable j only has a stride

1 between iterations 0 and 1 (the uniform-false region). Along the

uniform-true and uniform-false paths, the value of the block pred-

icate is known at compile-time. VecRC attempts to form a chain

of recurrences to find potential induction variables along each uni-

form path. If the block predicate is all false (uniform-false path),

then j has the behaviour {j, +, 1}, and the stride is exactly 1. Any
memory accesses that use j as an access function can be vectorized

in the uniform-false path. Without performing this analysis, such

memory accesses must be predicated.

4 PROBABILITY-DRIVEN COST MODEL
VecRC proposes a probability-based cost model to predict the most

profitable strategy for auto-vectorization. Many factors must be

considered when estimating profitability, such as the overhead

from run-time checks, benefit from the uniform branches, and

the cost of the divergent path when a condition is not uniform.

VecRC uses general profiling information, available from all widely-

used compilers, to consider the impact of these factors and predict

profitability.

Profile-Guided Optimization (PGO, also called feedback-directed

optimizations or FDO) is a general technique that uses a program’s

execution profile to either expose new optimization opportunities

not detected by static analysis, or improve cost-benefit analysis [10].

The exact types of profile information collected by different com-

pilers may vary, but all widely used compilers such as GCC, Clang,

and ICC collect branch probabilities. Based on a branch instruction

𝑏 with probability 𝑝 , which is known from PGO information, each

uniform and divergent path has a different probability of being



Algorithm 1 VecRC’s Probability-Based Cost Model

Input: 𝑉𝐹 : The set of vectorization factors > 1

𝑃 : The probability table, which contains the probability

of a branch 𝑏𝑟 condition being true

𝑅: The set of all branches with dynamically uniform conditions

Output: 𝑟𝑡_𝑐ℎ𝑒𝑐𝑘_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 : a structure that stores

the mapping ⟨𝑏𝑟, 𝑣𝑓 ⟩ ↦→ ⟨𝑐𝑜𝑠𝑡,𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛⟩
𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 : a structure that stores

the mapping ⟨𝑏𝑟, 𝑣𝑓 ⟩ ↦→ ⟨𝑐𝑜𝑠𝑡,𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛⟩
1: for all 𝑣 ∈ 𝑉𝐹 do
2: for all branch instructions 𝑏 ∈ 𝑅 do
3: // Phase 1: find the minimum cost decision

// for the divergent path
4: 𝑝 := 𝑃 [𝑏 ]
5: 𝑇, 𝐹 := get_truefalse_paths(𝑏)

6: 𝑐𝑜𝑠𝑡SCA := scalarize_cost(𝑝 , 𝑣,𝑇 , 𝐹 )

7: 𝑐𝑜𝑠𝑡IF := ifconvert_cost(𝑣,𝑇 ∪ 𝐹 )

8: if 𝑐𝑜𝑠𝑡IF < 𝑐𝑜𝑠𝑡SCA then
9: 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [ ⟨𝑏, 𝑣⟩] := ⟨𝑐𝑜𝑠𝑡IF, if-convert⟩
10: else
11: 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [ ⟨𝑏, 𝑣⟩] := ⟨𝑐𝑜𝑠𝑡SCA, scalarize⟩
12: end if
13: // Phase 2: determine profitability of

// the run-time check technique
14: 𝑈𝑇,𝑈 𝐹 := get_uniform_paths(𝑏)

15: 𝑐𝑜𝑠𝑡RT :=

rt_cost(𝑝 , 𝑣,𝑈𝑇 ,𝑈𝐹 , 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [ ⟨𝑏, 𝑣⟩] .𝑓 𝑖𝑟𝑠𝑡 )
16: if 𝑐𝑜𝑠𝑡RT < 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [ ⟨𝑏, 𝑣⟩] .𝑓 𝑖𝑟𝑠𝑡 then
17: 𝑟𝑡_𝑐ℎ𝑒𝑐𝑘_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [ ⟨𝑏, 𝑣⟩] := ⟨𝑐𝑜𝑠𝑡RT, 𝑡𝑟𝑢𝑒 ⟩
18: else
19: 𝑟𝑡_𝑐ℎ𝑒𝑐𝑘_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [ ⟨𝑏, 𝑣⟩] :=

⟨𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [ ⟨𝑏, 𝑣⟩] .𝑓 𝑖𝑟𝑠𝑡, 𝑓 𝑎𝑙𝑠𝑒 ⟩
20: end if
21: end for
22: end for
23: // Phase 3: choose the minimum cost vectorization factor
24: return select_vectorization_factor(𝑟𝑡_𝑐ℎ𝑒𝑐𝑘_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠)

executed. We assume that the branch probability 𝑝 in a specific

iteration is independent from that of other iterations. Thus, loops

with a loop-carried dependence in their branch condition are not

supported in our cost model. Under this assumption, the probability

of executing the uniform-true path is 𝑝𝑣 , where 𝑣 is the vectoriza-

tion factor (number of SIMD lanes). Symmetrically, the probability

of taking the uniform-false path is (1 − 𝑝)𝑣 . The probability of

taking the divergent branch is then 1 − 𝑝𝑣 − (1 − 𝑝)𝑣 . These three
probabilities correspond to the likelihood of each uniform-true path

𝑈𝑇 , uniform-false path𝑈𝐹 , or divergent path 𝐷𝑉 being executed

at run-time. In the following sections, we present how VecRC’s

cost model (shown in Algorithm 1) incorporates this compile-time

prediction.

Phase 1: Decision for Divergent Path. During phase 1, the

cost model makes a decision for the divergent path that is a key-

value mapping between a branch/vectorization factor pair (the

key) and a vectorization decision/associated cost pair (the value) as

shown in lines 9 and 11. If the divergent path does not contain any

control-dependent loop-carried dependence, then it can either be

executed as vector code (through if-conversion) or scalar code. In

some cases, scalarization may be more profitable than vectorization.

For example, if the divergent path is executed with low probability,

vectorization using masked instructions will consequently have low

lane utilization; scalar code may achieve better performance. Thus,

branch probability is an important factor when deciding whether

to vectorize or scalarize the divergent path.

Each candidate branch instruction 𝑏 ∈ 𝑅 has a set of blocks𝑇 ∪𝐹

(line 5) that are control-dependent on the block terminated by 𝑏.

The condition of branch instruction 𝑏 will evaluate to true with

probability 𝑝 (line 4). Additionally, each block contains instructions

with an associated cost. Let 𝑖 be a scalar instruction inside a block

𝐵 ∈ 𝑇 ∪ 𝐹 , then seq(𝑖) is the cost of instruction 𝑖 . The function

ifconv(𝑣, 𝑖) is the cost for the vector instruction sequence of scalar

instruction 𝑖 . The cost of a block 𝐵 is the sum

∑
𝑖∈𝐵 fn(𝑖) of all

instruction costs in 𝐵 (where fn is seq or ifconv). The cost model

calculates the cost of either scalarization or vectorization of the

divergent path using the following equations:

scalarize_cost(𝑝, 𝑣,𝑇 , 𝐹 ) =
∑︁
𝐵∈𝑇

∑︁
𝑖∈𝐵

seq(𝑖) · 𝑣 · 𝑝

+
∑︁
𝐵∈𝐹

∑︁
𝑖∈𝐵

seq(𝑖) · 𝑣 · (1 − 𝑝)
(1)

ifconvert_cost(𝑣, 𝐵PD) =
∑︁

𝐵∈𝐵PD

∑︁
𝑖∈𝐵

ifconv(𝑖) (2)

As the branch probability 𝑝 varies, so does the number of scalar in-

structions that will be executed in the divergent path (Equation 1). If

the divergent path is vectorized, each instruction will always be ex-

ecuted due to if-conversion and therefore the cost does not depend

on 𝑝 (Equation 2). On line 8, the cost model uses equations 1 and 2 to

compare the costs of either scalarizing or vectorizing the divergent

path. The decision with lowest cost is stored in 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠

as a mapping between branch and vectorization factor to associated

cost and decision (lines 9 and 11). If the divergent path contains

a dependence, if-conversion is an illegal transformation and the

associated cost is equal to infinity. This cost/decision pair is later

used in phase 2 to calculate the overall cost of applying the run-time

check technique.

Phase 2: Decision for Run-time Checks. The cost of the run-
time check technique is divided into four components: uniform-true

path cost, uniform-false path cost, divergent path cost, and the cost

of detecting uniformity (run-time check overhead). Additionally, the

uniform and divergent path costs depend on the branch probability

𝑝 . For example, if the divergent path is executed frequently, its

cost may dominate and cause the run-time check technique to

be unprofitable. The cost of a path 𝑠 → 𝑡 is the sum of all block

costs 𝑏 ∈ 𝑠 → 𝑡 and is defined as 𝑐𝑜𝑠𝑡 (𝑠 → 𝑡). Additionally, let
𝑅𝑇 be the set of instructions that implement the run-time checks.

These instructions are always executed (with probability 𝑝 = 1).

Then, the total expected value of the entire VecRC transformation

is calculated as:

𝑐𝑜𝑠𝑡DV = 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [⟨𝑏, 𝑣⟩] .𝑓 𝑖𝑟𝑠𝑡

rt_cost(𝑝, 𝑣,𝑈𝑇 ,𝑈 𝐹, 𝑐𝑜𝑠𝑡DV) =
∑︁
𝑖∈𝑅𝑇

seq(𝑖) + 𝑐𝑜𝑠𝑡 (𝑈𝑇 ) · 𝑝𝑣

+ 𝑐𝑜𝑠𝑡 (𝑈𝐹 ) · (1 − 𝑝)𝑣

+ 𝑐𝑜𝑠𝑡DV · (1 − 𝑝𝑣 − (1 − 𝑝)𝑣)

(3)
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On line 15, the cost model compares the total cost of the run-time

check technique to the minimum divergent path cost calculated

in phase 1. The run-time check technique is profitable if its cost

is less than the best decision for the divergent path. Otherwise,

the run-time check technique will not be applied for the current

branch instruction and vectorization factor; instead, the decision

from phase 1 is most profitable. This profitability decision is stored

in the 𝑟𝑡_𝑐ℎ𝑒𝑐𝑘_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 structure as a mapping between branch

instruction and vectorization factor to associated cost and run-time

check technique disabled/enabled (represented as a boolean value).

Thus, phase 2 computes the most profitable decision for all branch

instruction/vectorization factor pairs.

Phase 3: Select Vectorization Factor. After phases 1 and 2 are

complete, the optimal decisions and associated costs for each branch

instruction/vectorization factor pair are stored in the structures

𝑟𝑡_𝑐ℎ𝑒𝑐𝑘_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 and 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 . Phase 3 selects the

vectorization factor with lowest cost for all branch instructions in

the loop body:

𝑣opt = argmin

𝑣∈𝑉𝐹

(∑︁
𝑏∈𝐵

𝑟𝑡_𝑐ℎ𝑒𝑐𝑘_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [⟨𝑏, 𝑣⟩] .𝑓 𝑖𝑟𝑠𝑡
)

(4)

If the cost associated with 𝑣opt is less than the cost of the scalar

loop, then the run-time check technique is enabled. Once the loop is

being transformed, decisions are recovered through the mappings

defined in earlier phases; for example, the decision whether to en-

able run-time checks for branch instruction 𝑏 with vectorization

factor 𝑣opt is stored as 𝑟𝑡_𝑐ℎ𝑒𝑐𝑘_𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [⟨𝑏, 𝑣opt⟩] .𝑠𝑒𝑐𝑜𝑛𝑑 . The
cost model can make individual decisions for each branch instruc-

tion within the loop body, in other words, the decision to enable

or disable the run-time check technique is not global among all

branch instructions.

The main benefits of this cost model are that it 1) does not require

special profiling or expensive auto-tuning; 2) is parameterized by

vectorization factor, unlike prior work that must collect profiling

for each factor [28]; 3) relies on instruction cost information offered

by any widely-used compiler, and therefore can be applied to a

compiler-supported target architecture without modification.

Implementation. VecRC determines which vectorization factor

to use by selecting a vectorization plan (VPlan) with the lowest

associated cost. A VPlan is a model within LLVM for describing

different vectorization transformations, without modifying the in-

termediate representation [24]. VecRC’s VPlan consists of three

paths, one for each of the uniform-true, uniform-false, and diver-

gent paths. In phase 1 of Algorithm 1, VecRC’s VPlan uses decisions

from the cost model to determine whether if-conversion or scalar-

ization is profitable for a divergent path. To decide if the VPlan

should include a run-time check, the cost model is used to calcu-

late run-time check profitability (phase 2 of Algorithm 1). After

phase 1 and 2, for every vectorization factor, one specific VPlan is

constructed. During phase 3, the VPlan/vectorization factor with

the lowest associated cost is selected. VecRC’s cost model uses

the BranchProbabilityInfo analysis provided by LLVM to obtain

branch weights from profile information [23]. If profile informa-

tion is not available, branch weights are estimated using heuristics

implemented in the BranchProbabilityInfo analysis.

5 EVALUATION
VecRC is implemented in LLVM (13.0.0) and based on the existing

loop-level vectorizer. We modify the legality analysis, cost analysis,

and code generation modules to realize the VecRC compiler.

5.1 Methodology and Benchmarks
Architectures.We evaluate VecRC on the Intel Skylake and Power

9 architectures shown in Table 2. Both processors support vector

extensions with different SIMDwidths and different instruction sup-

port. For example, AVX512 supports predication through masking,

but VSX does not.

Prior Work. We compare VecRC against Clang and Region Vec-

torizer (which implements compile-time and run-time techniques

based on uniformity [20, 28]). Despite our best efforts to com-

pare against one additional prior work based on Region Vectorizer,

WCCV [32], we were unable to successfully compile the selected

benchmarks.

Benchmarks. We select eight benchmarks to evaluate our VecRC

implementation. The benchmarks are selected based on twometrics:

1) they have the code patterns VecRC supports; 2) they are widely

used and cited in prior work [3, 12, 16, 19, 32, 34]. The TSVC-2

benchmark suite [18] is used to compare VecRC’s vectorization rate

against other compilers, as well as evaluate the accuracy of the

probability-based cost model.

Setup. To ensure a fair comparison against Clang and Region Vec-

torizer, the same LLVM-IR is used as input to every vectorization

pass implemented by each compiler. Additionally, because Region

Vectorizer does not perform legality analysis and requires man-

ual annotation from the user to enable vectorization, we annotate

one bottleneck loop in each benchmark to indicate that it is safe

to vectorize for Region Vectorizer. For experiments that compare

against Region Vectorizer, all compilers vectorize the single bottle-

neck loop only. To generate the input LLVM-IR, an unoptimized

binary is compiled by Clang with PGO enabled to collect the nec-

essary profiling information. Next, that profiling information is

used to generate unoptimized LLVM-IR from the file containing

the target loop; profiling information is encoded as metadata in the

resulting IR. The unoptimized IR with PGO information is used as

input to the opt tool, which applies the mem2reg, loop-simplify,
and simplify-cfg passes. The output from opt is used as input

for each vectorization pass from Clang (LLVM’s Loop Vectorizer),

Region Vectorizer, and VecRC. The resulting IR is linked with other

required objects (compiled using the same optimization pipeline)

to generate a binary. Because Region Vectorizer has a different opti-

mization pipeline than Clang and VecRC, this strategy guarantees a

fair comparison between different loop vectorization passes. How-

ever, since Clang and VecRC share the same optimization pipeline,

we also evaluate the performance benefit from different loop vec-

torization passes using the O3 pipeline. We use the single-thread

performance reported by each benchmark; the run-time check over-

head is included implicitly.

5.2 TSVC-2 Loops
Comparison of Vectorization Rates. The TSVC-2 benchmark

contains 34 loops with 1) control-dependent predicated blocks,

and 2) dynamically uniform branch conditions. On both Skylake



Figure 4: 34 loops from TSVC-2. A dot shows that the corresponding compiler can vectorize the inner loop of the listed function.

Name Domain Suite

519.lbm_r Computational fluid dynamics SPEC2017

525.x264_r Video compression SPEC2017

Moldyn Particle Simulation

EP Random-number generation NPB

Cutcp Cutoff Pair Potential for Molecular

Modeling Applications

Parboil

Mri-Gridding Magnetic Resonance Imaging Parboil

CFD Finite volume solver for three-

dimensional Euler equations

Rodinia

miniMD Simulates the Newtownian equa-

tions of particle motion

Table 1: Selected Benchmarks

Architecture CPU Vector Extension

Skylake Xeon W-2145 (3.70GHz) AVX512 (512-bit)

Power ISA Power 9 VSX (128-bit)

Table 2: Evaluation Architectures

and Power 9 architectures, GCC, ICC (Skylake only), Clang, and

VecRC vectorize 8, 24, 19, and 20 of the total 34 loops respectively

(shown Figure 4). Because Clang and VecRC are both based on

LLVM, VecRC vectorizes one additional loop over Clang due to

uniformity-based dependence analysis. Clang vectorizes five loops,

s279, s1279, s2710, s316, and s441 that VecRC cannot. This is

because the loops (except s316) have complex control-flow such

as nested if-statements, which is not currently supported in our

compiler. ICC recognizes three cases of reductions in loops s315,
s316, and s318 that VecRC does not vectorize. This is because

VecRC’s cost model does not support min/max style reductions that

contain loop-carried dependences in the branch condition. VecRC

vectorizes the three loops s161, s258, and s342 that ICC cannot

due to control-dependent loop-carried dependences.

5.3 Real-world Benchmarks
Performance as a Single Vectorization Pass. On the Skylake

architecture, VecRC attains a geometric mean speedup over a scalar

baseline of 1.32x on 6 real-world benchmarks (Figure 5a) compared

to 1.11x and 1.00x for Clang and Region Vectorizer, respectively. On

the Power 9 processor, VecRC achieves a geometric mean speedup of

1.22x over 1.01x and 1.00x for Clang and Region Vectorizer, respec-

tively (Figure 5b). Figures 5a and 5b show the performance benefits

from run-time techniques implemented in Region Vectorizer are

insignificant on both Skylake and Power 9 architectures.

The results show that run-time techniques combined with the

compile-time analysis implemented in VecRC can outperform the if-

conversion technique used by mainstream compilers, such as Clang.

When data-dependence does not exist and dynamic uniformity oc-

curs (Cutcp, CFD), the benefits from run-time checks amortize

run-time check overhead and outperform the if-conversion method

implemented in Clang. When data-dependence exists (Moldyn, EP,

Mri-Gridding and miniMD) and dynamic uniformity occurs, Clang

and Region-Vectorizer disable loop vectorization; however, VecRC

can still partially vectorize such loops through additional depen-

dence analysis based on dynamic uniformity. Region Vectorizer

doesn’t achieve significant speedup due to two main reasons: 1)

run-time checks are often disabled due to an overly conservative

cost model; 2) the proposed approach focuses only on control de-

pendence and doesn’t support data dependence.

In the highest speedup case of VecRC over scalar code on Skylake,

2.8x (cutcp), the predicated block contains only one store opera-

tion, has a high compute-to-memory ratio, and does not contain

any loop-carried dependences. Therefore, both Clang and VecRC

achieve good speedup over scalar code. VecRC achieves speedup

over Clang by reducing predication overhead and skipping redun-

dant computation. Without masked instruction support on Power

9, vectorization through if-conversion has a high predication over-

head, and Clang is unable to achieve speedup over scalar code.

VecRC is most effective when dynamic uniformity is abundant,

because the uniform paths are more likely to be executed. VecRC

also often provides good speedup when a loop contains control-

dependent loop-carried dependence (for example, the loop types in

Figure 3) because unlike other compilers VecRC can vectorize such

loops using uniformity-based dependence analysis (Section 3.1).

Performance as a Pass in the O3 Pipeline. This experiment

(shown Figure 6) aims to evaluate the performance of VecRC as a

loop vectorization pass in Clang’s O3 pipeline. The auto-vectorization

pass is applied to all the source code files in the selected benchmarks

(automatically, without any manual annotations).

VecRC+O3 achieves a geometric mean speedup of 1.18x and

1.23x over Clang+O3 on Skylake and Power 9, respectively. To show

the benefit from vectorization, we also compare the normalized

speedup when vectorization is disabled, VecRC+O3 (No-Vec). On

Power 9, Clang+O3 and VecRC+O3 (No-Vec) perform similarly

across benchmarks (Figure 6b), indicating that the benefit from

vectorization through if-conversion is not high. Power 9 has a
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(a) Performance Comparison on Intel Skylake

(b) Performance Comparison on Power 9

Figure 5: The performance of Loop-Vectorization Pass in
VecRC compared to Clang and Region Vectorizer

lower register width (resulting in a lower maximum vectorization

factor) and does not support masking; a lower vectorization factor

increases the probability of dynamic uniformity, and architectures

that do not support masking benefit from vectorized loads and

stores. Combined, these factors allow VecRC to achieve speedup.

Additionally, although the x264 benchmark contains no bottleneck

loops, VecRC achieves a 1.06x speedup over Clang+O3 on Skylake;

this is an example of the accumulated benefit from applying run-

time techniques on many small loops.

Comparison With GCC and ICC.We are unable to reimplement

the VecRC approach inside GCC and ICC, due to the expensive

engineering effort (and because the ICC source code is not public).

To guarantee a fair comparison with GCC/ICC, we manually imple-

ment the VecRC run-time check technique at the source code level

to compare against the loop vectorizers of GCC and ICC on Skylake.

Figure 7 shows the performance comparison between VecRC, GCC,

and ICC on Intel Skylake. While GCC’s legality analysis tends to be

conservative, ICC is optimized to take advantage of masked instruc-

tions supported by AVX512. Although the manually implemented

version cannot benefit from cost model decisions (such as vector-

ization factors), the manual VecRC implementations compiled by

GCC and ICC attain geometric mean speedups of 1.20x and 1.06x

respectively over the compiler auto-vectorization on 5 real-world

benchmarks (Figure 7).

5.4 Performance Breakdown
In Figure 8, we separate the effect of dependence analysis and

scalar evolution analysis based on dynamic uniformity. All five

benchmarks contain a control-dependent loop-carried dependence

(a) Performance Comparison (O3) on Intel Skylake

(b) Performance Comparison (O3) on IBM Power 9

Figure 6: The Performance of VecRC+O3 compared to
Clang+O3 on Skylake and Power 9. All execution times are
normalized to a scalar baseline (Clang+O0).

that Clang fails to vectorize. When VecRC’s dependence analysis

is disabled (RTC+NoDep), the execution time matches Clang. The

s124, s341, and s342 benchmarks additionally contain consecutive

memory access patterns that can only be vectorized using VecRC’s

scalar evolution analysis. Therefore, when vectorization is enabled

but scalar evolution is not (RTC+Dep), these benchmarks experi-

ence a slowdown due to scalarized memory operations (normally,

the cost model would disable run-time checks). Once scalar evo-

lution analysis is enabled (RTC+Dep+SCEV), speedup is achieved

over RTC+Dep for s124. For the s341 and s342 loops, the benefit

from vectorization is trivial, and neither RTC Disabled nor VecRC

can achieve speedup. In these cases, VecRC will disable vectoriza-

tion and match the performance of scalar code. VecRC achieves

speedup for the EP and Mri-Gridding benchmarks due to the partial

vectorization enabled by dependence-analysis based on dynamic

uniformity.

5.5 Compilation Overhead
VecRC introduces compile-time overhead due to the additional de-

pendence analysis, scalar evolution analysis, and cost analysis that

is not performed by LLVM’s loop vectorizer. Table 3 compares the

compilation times of Clang, No-Vec (where vectorization in the

VecRC compiler is disabled), and VecRC for eight benchmarks on

the Skylake architecture. VecRC’s run-time check technique intro-

duces a compile-time overhead of approximately 13%. In smaller

benchmarks such as LBM, VecRC’s compile-time overhead is more

apparent, taking approximately 30% longer to compile than Clang.

For the longest benchmark to compile, x264, loop vectorization



(a) Comparison between GCC auto-vectorization and manual VecRC
vectorization. Speedups are normalized to GCC scalar execution time.

(b) Comparison between ICC auto-vectorization and manual VecRC
vectorization. Speedups are normalized to ICC scalar execution time.

Figure 7: The performance of VecRC implemented at the
source-code level compared to auto-vectorization in (7a) GCC
and (7b) ICC on the Skylake architecture.

Figure 8: The benefit from each compile-time analysis. RTC
stands for run-time check. RTC+NoDep: RTC is enabled, de-
pendence analysis is disabled. RTC+Dep: RTC is enabled,
dependence analysis is enabled. RTC+Dep+SCEV: runtime-
check, dependence analysis, and scalar evolution analysis
are enabled. All execution times are normalized to the scalar
baseline.

does not dominate compile time, therefore both VecRC and Clang

compile the benchmark in approximately the same amount of time.

5.6 Cost Model Accuracy
The probability-based cost model was evaluated across the 20 TSVC-

2 loops VecRC can vectorize and 11 different branch probabilities

(each branch probability is obtained by modifying the loop input

data randomly). The TSVC-2 benchmark was selected specifically

Clang (s) No-Vec (s) VecRC (s) Ratio (%)

Moldyn 0.15 0.13 0.16 6.6

EP 0.19 0.20 0.21 10.5

Cutcp 0.37 0.37 0.43 16.2

Mri-Gridding 0.25 0.24 0.30 20

CFD 0.30 0.29 0.32 6.6

miniMD 1.55 1.57 1.84 18.7

lbm 0.46 0.46 0.61 32.6

x264 23.42 22.73 22.85 -2.4

Geomean (%) 13.1

Table 3: Comparison of O3 compilation time on Intel Skylake
(in seconds).

(a) Costmodel predictions, vector-
ization factor 2.

(b) Real performance, vectoriza-
tion factor 2.

(c) Cost model predictions, vector-
ization factor 4.

(d) Real performance, vectoriza-
tion factor 4.

Figure 9: Comparison of cost model predictions and real
profitability. Blue: The baseline and VecRC transformation
have the same running time within 2%. Green: the cost model
predicted speedup, or the real execution time of VecRC was
faster than the baseline. White: the cost model predicted
slowdown, or the real execution time of VecRC was slower
than the baseline.

for this experiment because the loops contain very few instruc-

tions in the uniform paths, and therefore the threshold between

profitability and non-profitability is small. To determine whether

the cost model correctly predicts run-time check profitability for a

given loop, branch probability, and vectorization factor, the result

from cost analysis is compared against real performance (Figure

9). Real performance is a comparison between two loop versions:

run-time check disabled and run-time check enabled. In the run-

time check disabled version, all unpredicated blocks are vectorized,

and any predicated blocks are scalarized or vectorized through

if-conversion (whichever is lowest cost). In the run-time check

enabled version, the run-time check technique is applied to all can-

didate branches, thus creating vectorized versions of predicated
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blocks. The run-time check disabled version is used as the baseline,

instead of scalar loops, to ensure that any benefit from vectorized

unpredicated blocks is not a contributing factor to real speedup

with the run-time check enabled version.

A false positive occurs when the cost model predicts speedup, but

the run-time check technique results in a slowdown. Conversely, a

false negative occurswhen the costmodel predicts a slowdown, but a

speedup was observed when applying the run-time check technique

and executing the loop. If the cost model predicted either a speedup

or slowdown, but real execution time was within 2%, we consider

this neither a false positive nor a false negative. Figure 9 shows a

comparison between predicted profitability (left-hand side) and real

performance (right-hand side) of different vectorization factors. For

vectorization factors 2 and 4, the cost model has a false negative

rate of 13.6% and 23.2%, respectively. As the vectorization factor

increases, the likelihood of executing uniform paths decreases, and

the cost model becomes more conservative. As a result, the false

positive rate decreases as the vectorization factor increases: our

cost model has a false positive rate of 4.5% and 0% for vectorization

factors 2 and 4, respectively. Through these experiments (of 440

test cases in total), we demonstrate that the probability-based cost

model can correctly predict run-time check profitability in practice.

6 RELATEDWORK
Modern compilers employ twomain techniques for auto-vectorization:

1) loop auto-vectorization merges multiple scalar operations across

consecutive loop iterations into a single SIMD instruction [29], 2)

Superword Level Parallelism (SLP) merges isomorphic instructions

in the same block into a single SIMD instruction [14].

The main strategy for vectorizing control flow is if-conversion

[1], which converts control flow dependence to data flow depen-

dence thus enabling vectorization through predication. Shin et al.

propose a technique to support control flow in the SLP method by

using select instructions to merge control paths [27]. Similarly,

Pohl et al. combine select instructions with a run-time check to

enable loop auto-vectorization of control flow without masked in-

structions [21]. Previous work has proposed several techniques

to auto-vectorize loops with control flow and control-dependent

loop-carried dependences [3, 31].

Karrenberg et al. [11] propose a compile-time approach that

avoids if-converting uniform branches, which Moll et al. [20] im-

prove to avoid creating irreducible loops and decrease algorithmic

complexity. There are two main run-time approaches to avoid if-

converting uniform branches. The Branch-On-Superword-Condition-

Codes (BOSCC) strategy [27, 28] inserts run-time checks to detect

uniform-false block predicates and skip redundant computation.

WCCV [32] proposes a run-time check to detect uniform-true pred-

icates and avoid predication overhead (for example, by eliding

masked instructions). To improve the effectiveness of such run-

time techniques on architectures with very wide registers, existing

work [22] proposes a strategy to construct dynamic uniformity

at run-time by grouping active and inactive lanes into separate

registers. While this method can increase dynamic uniformity, it

introduces additional overhead and is limited to data-parallel loops.

Strategies are proposed to overcome the limitations of static

analysis and execute more aggressive optimizations based on infor-

mation from run-time checks [7, 25]. These works follow a common

approach of constructing a run-time check at compile-time that

verifies certain constraints of conservative static analysis, for ex-

ample dependence information. The run-time check determines if

an optimized or fallback loop version should be executed, based on

whether the optimization is valid at run-time. A drawback of this

approach is that different run-time checks are required for different

analyses.

7 FUTUREWORK AND CONCLUSION
In this paper, we demonstrated that combining run-time checks for

dynamic uniformity with compile-time analysis improves control-

flow vectorization. Our proposed technique, VecRC, takes a loop,

dynamic uniformity information from run-time checks, and pro-

filing information as inputs to apply uniformity-based analyses at

compile-time. VecRC’s cost model determines the most profitable

decision for control-flow vectorization. By taking advantage of

dynamic uniformity at both compile-time and run-time, VecRC

outperforms existing uniformity-based vectorization techniques

and enables vectorization even for loops with control-dependent

loop-carried dependences.

VecRC can be extended to support a wide range of irregular loops

with features that hinder or disable traditional loop vectorization.

In future work, we plan to support more complex control-flow, such

as nested if-statements. Additionally, we plan to adapt VecRC to

vector-length agnostic architectures (such as ARM SVE [30]) and

architectures with very wide vector registers. Along this direction,

we plan to evaluate approaches in which blocks are vectorized using

different vectorization factors (VF), where unpredicated blocks are

vectorizedwith a highVFwhile predicated blocks are still vectorized

using our current approach but with a lower VF to take advantage

of dynamic uniformity.
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